Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Effects of Enzymatic Hydrolysis on the Physicochemical and Structural Properties of Cassava Bagasse (Manihot esculenta Cranz).

1Maria V. Ortega, 2D. Lujan-Rhenals and 3Jairo G. Salcedo
1Department of Biotechnology, Universidad de Córdoba, Carrera 6 No. 76-103 Montería,
2Food Engineering Program, Universidad de Córdoba, Berástegui, Km 10 vía Cereté-Ciénaga de Oro,
3Agroindustrial Engineering Program, Universidad de Sucre, Los Pericos, Km 7 vía Sincelejo-Sampués, Colombia
Advance Journal of Food Science and Technology  2018  SPL:158-165
http://dx.doi.org/10.19026/ajfst.14.5889  |  © The Author(s) 2018
Received: ‎September 14, 2017  |  Accepted: December 9, 2017  |  Published: July 10, 2018

Abstract

This study evaluated the effect of enzymatic hydrolysis on the physicochemical and structural properties of cassava bagasse (Manihot esculenta Cranz). Cassava bagasse is a byproduct of the cassava starch process with limited applications in the industry. Were applied enzymatic treatments to three ratios a substrate (cassava bagasse): Buffer volume (1:10, 1:15, 1:20). Were used two commercial enzymes, cellulase (CelluSEB TL) and α-amylase (Licquozyme supra 2.2X). The physicochemical and structural analysis was performed after each treatment, including a control. The physicochemical analysis showed that the cassava bagasse had a high content of carbohydrates (61,19%) and fiber (22,63%); additionally, there were significant differences (p<0,05) between the bagasse control and the three enzymatic treatments. The FT-IR spectroscopies of the enzymatic treatments showed the absence of the absorption signal 1374 cm-1 corresponding to the cellulose chemical bond CH, as well as the decrease in the intensity of the band 2927 cm-1 corresponding to the CH bonds and CH2, which may be related to a decrease of the crystallinity in the enzymatically treated bagasse. It was found that, due to its physicochemical composition, cassava bagasse is a material that could be used for biotechnology or food purposes; moreover, enzymatic hydrolysis produces the decrystallization of cellulose and significant changes in its physicochemical properties.

Keywords:

&alpha-amylase, cellulose, cellulose, crystallinity, FT-IR spectroscopy, lignocellulosic,


References

  1. Åkerholm, M., B. Hinterstoisser and L. Salmén, 2004. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohyd. Res., 339(3): 569-578.
    CrossRef    PMid:15013393    
  2. Alarcón, M. and D. Dufour, 1998. Almidón Agrio de Yuca en Colombia: Producción y Recomendaciones. 1st Edn., Centro Internacional de Agricultura Tropical (CIAT), Cali.
  3. Alvira, P., E. Tomás-Pejó, M. Ballesteros and M.J. Negro, 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol., 101(13): 4851-4861.
    CrossRef    PMid:20042329    
  4. AOAC, 1990. Official Methods of Analysis. 15th Edn., Association of Official Analytical Chemists, Washington D.C.
  5. Aristizábal, J. and T. Sánchez, 2007. Guía técnica para producción y análisis de almidón de yuca. Bol. Serv. Agríc. FAO, Nº 163.
  6. Belitz, H. and W. Grosch, 1997. Cereales y Derivados. In: Belitz, H. and W. Grosch (Eds.), Química de Los Alimentos. Acribia, Zaragoza, pp: 725-796.
  7. Bertocchi, C., D. Delneri, S. Signore, Z. Weng and C.V. Bruschi, 1997. Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochim. Biophys. Acta, 1336(2): 211-217.
    CrossRef    
  8. Brummer, V., P. Skryja, T. Jurena, V. Hlavacek and P. Stehlik, 2014. Suitable technological conditions for enzymatic hydrolysis of waste paper by novozymes® enzymes NS50013 and NS50010. Appl. Biochem. Biotech., 174(4): 1299-1308.
    CrossRef    PMid:25104003    
  9. Carre-o Pineda, L.D., 2011. Efecto de las condiciones de cultivo y purificación sobre las propiedades fisicoquímicas y de transporte en membranas de celulosa bacteriana. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá D.C, Colombia.
  10. Ceballos, H. and G. De la Cruz, 2002. Taxonomía y Morfología de la Yuca. In: Ospina, I. and H. Ceballos (Eds.), La Yuca en el Tercer Milenio. CIAT, pp: 17-34.
  11. Chaikaew, S., Y. Maeno, W. Visessanguan, K. Ogura, G. Sugino, S.H. Lee and K. Ishikawa, 2012. Application of thermophilic enzymes and water jet system to cassava pulp. Bioresource Technol., 126: 87-91.
    CrossRef    PMid:23073093    
  12. Chen, J., X. Liu, D. Wei and G. Chen, 2015. High yields of fatty acid and neutral lipid production from cassava bagasse hydrolysate (CBH) by heterotrophic Chlorella protothecoides. Bioresource Technol., 191: 281-290.
    CrossRef    PMid:26002147    
  13. Choe, D. and C.S. Shin, 2015. Gelation and decrystallization of cellulose by TAAHs/DMSO treatment and the role of anions and cations. Cellulose, 22(5): 3013-3025.
    CrossRef    
  14. Contreras, Q.H.J., P.H.A. Trujillo, O.G. Arias, C.J.L. Pérez and F.E. Delgado, 2010. Espectroscopía ATR-FTIR de celulosa: Aspecto instrumental y tratamiento matemático de espectros. e-Gnosis, 8: 1-13.
  15. DANE, 2016. El cultivo de la yuca (Manihot esculenta Crantz). Boletin Mensual Insumos y Factores Asociados a la Producción Agropecuaria, 46: 1-89.
  16. Farias, F.O., A.C. Jasko, T.A.D. Colman, L.A. Pinheiro, E. Schnitzler, A.C. Barana and I.M. Demiate, 2014. Characterisation of cassava bagasse and composites prepared by blending with low-density polyethylene. Braz. Arch. Biol. Technol., 57(6): 821-830.
    CrossRef    
  17. Gil, J.L. and A.J.A. Buitrago, 2002. La yuca en la alimentación animal. In: Ospina, I. and H. Ceballos (Eds.), La Yuca en el Tercer Milenio. CIAT, pp: 527-569.
  18. Hendriks, A.T.W.M. and G. Zeeman, 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol., 100(1): 10-18.
    CrossRef    PMid:18599291    
  19. ISO 6647-1, 2007. International Organization for Standardization. 1st Edn., Vernier, Geneva, Switzerland.
  20. Jasko, A.C., J. de Andrade, P.F. de Campos, L. Padilha, R.B. de Pauli, L.B. Quast, E. Schnitzler and I.M. Demiate, 2011. Caracterização físico-química de bagaço de mandioca in natura e após tratamento hidrolítico. Rev. Bras. Tecnol. Agroind., 5(1): 427-441.
  21. John, R.P., 2009. Biotechnological Potentials of Cassava Bagasse. In: Singh nee' Nigam, P. and A. Pandey (Eds.), Biotechnology for Agro-Industrial Residues Utilisation, Springer, Dordrecht, pp: 225-237.
  22. Lourdin, D., J.L. Putaux, G. Potocki-Véronèse, C. Chevigny, A. Rolland-Sabaté and A. Buléon, 2015. Crystalline Structure in Starch. In: Nakamura, Y. (Ed.), Starch. Springer, Tokyo, Japan, pp: 61-90.
    CrossRef    
  23. Lu, C., J. Zhao, S.T. Yang and D. Wei, 2012. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technol., 104: 380-387.
    CrossRef    PMid:22101071    
  24. Maitan-Alfenas, G.P., E.M. Visser and V.M. Guimarães, 2015. Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Curr. Opin. Food Sci., 1: 44-49.
    CrossRef    
  25. Mandal, A. and D. Chakrabarty, 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd. Polym., 86(3): 1291-1299.
    CrossRef    
  26. Meng, X. and A.J. Ragauskas, 2014. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol., 27: 150-158.
    CrossRef    PMid:24549148    
  27. Nair, M.P.D., G. Padmaja and S.N. Moorthy, 2011. Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass Bioenerg., 35(3): 1211-1218.
    CrossRef    
  28. Oh, S.Y., D. II Yoo, Y. Shin and G. Seo, 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd. Res., 340(3): 417-428.
    CrossRef    PMid:15680597    
  29. Pandey, A., C.R. Soccol, P. Nigam, V.T. Soccol, L.P.S. Vandenberghe and R. Mohan, 2000. Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Bioresource Technol., 74(1): 81-87.
    CrossRef    
  30. Parida, C., S. Dash and C. Pradhan, 2015. FTIR and raman studies of cellulose fibers of Luffa cylindrica. Open J. Compos. Mater., 5: 5-10.
    CrossRef    
  31. Paternina, A., J. Salcedo, K. Contreras and M. Garcia, 2016. Characterization and desorption isotherm modeling of cassava bagasse (Manihot esculenta Crantz). Starch, 68: 1-8.
  32. Rattanachomsri, U., S. Tanapongpipat, L. Eurwilaichitr and V. Champreda, 2009. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J. Biosci. Bioeng., 107(5): 488-493.
    CrossRef    PMid:19393545    
  33. Ray, R.C., S. Mohapatra, S. Panda and S. Kar, 2008. Solid substrate fermentation of cassava fibrous residue for production of alpha-amylase, lactic acid and ethanol. J. Environ. Biol., 29(1): 111-115.
    PMid:18831342    
  34. Salcedo, M.J.G., J.E. López Galan and L.M. Flórez Parda, 2011. Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha ca-a de azúcar. Dyna, 78(169): 182-190.
  35. Široký, J., R.S. Blackburn, T. Bechtold, J. Taylor and P. White, 2010. Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose, 17(1): 103-115.
    CrossRef    
  36. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, 2012. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, Colorado.
  37. Smits, A.L.M., F.C. Ruhnau, J.F.G. Vliegenthart and J.J.G. van Soest, 1998. Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch, 50(11-12): 478-483.
    CrossRef    
  38. Sriroth, K., R. Chollakup, S. Chotineeranat, K. Piyachomkwan and C.G. Oates, 2000. Processing of cassava waste for improved biomass utilization. Bioresource Technol., 71(1): 63-69.
    CrossRef    
  39. Suárez, L. and V. Mederos, 2011. Apuntes sobre el cultivo de la yuca (Manihot esculenta Crantz). Tendencias actuales. Cult. Trop., 32(3): 27-35.
  40. Tan, X., B. Gu, X. Li, C. Xie, L. Chen and B. Zhang, 2017. Effect of growth period on the multi-scale structure and physicochemical properties of cassava starch. Int. J. Biol. Macromol., 101: 9-15.
    CrossRef    PMid:28283453    
  41. Tonukari, N.J., 2004. Cassava and the future of starch. Electron. J. Biotechnol., 7(1): 5-8.
    CrossRef    
  42. Tumwesigye, K.S., L. Morales-Oyervides, J.C. Oliveira and M.J. Sousa-Gallagher, 2016. Effective utilisation of cassava bio-wastes through integrated process design: A sustainable approach to indirect waste management. Process Safety Environ. Protect., 102: 159-167.
    CrossRef    
  43. Vandenberghe, L., C. Soccol, J. Lebeault and N. Krieger, 1998. Cassava wastes hydrolysate an alternative carbon source for citric acid production by Candida lipolytica. Proceeding of International Congress on Biotechnology, Portugal.
    PMCid:PMC1858247    
  44. Van Soest, J.J.G. and P. Essers, 1997. Influence of amylose-amylopectin ratio on properties of extruded starch plastic sheets. J. Macromol. Sci. A, 34(9): 1665-1689.
    CrossRef    
  45. Virunanon, C., C. Ouephanit, V. Burapatana and W. Chulalaksananukul, 2013. Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources. J. Clean. Prod., 39: 273-279.
    CrossRef    
  46. Wang, X.J., J.G. Bai and Y.X. Liang, 2006. Optimization of multienzyme production by two mixed strains in solid-state fermentation. Appl. Microbiol. Biot., 73(3): 533-540.
    CrossRef    PMid:16802152    
  47. Zhang, M., L. Xie, Z. Yin, S.K. Khanal and Q. Zhou, 2016. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresource Technol., 215: 50-62.
    CrossRef    PMid:27117291    
  48. Zhang, Z., B. Liu and Z. Zhao, 2012. Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions. Polym. Degrad. Stabil., 97(4): 573-577.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved