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Abstract: This study evaluated the effect of enzymatic hydrolysis on the physicochemical and structural properties 
of cassava bagasse (Manihot esculenta Cranz). Cassava bagasse is a byproduct of the cassava starch process with 
limited applications in the industry. Were applied enzymatic treatments to three ratios a substrate (cassava bagasse): 
Buffer volume (1:10, 1:15, 1:20). Were used two commercial enzymes, cellulase (CelluSEB TL) and α-amylase 
(Licquozyme supra 2.2X). The physicochemical and structural analysis was performed after each treatment, 
including a control. The physicochemical analysis showed that the cassava bagasse had a high content of 
carbohydrates (61,19%) and fiber (22,63%); additionally, there were significant differences (p<0,05) between the 
bagasse control and the three enzymatic treatments. The FT-IR spectroscopies of the enzymatic treatments showed 
the absence of the absorption signal 1374 cm-1 corresponding to the cellulose chemical bond CH, as well as the 
decrease in the intensity of the band 2927 cm-1 corresponding to the CH bonds and CH2, which may be related to a 
decrease of the crystallinity in the enzymatically treated bagasse. It was found that, due to its physicochemical 
composition, cassava bagasse is a material that could be used for biotechnology or food purposes; moreover, 
enzymatic hydrolysis produces the decrystallization of cellulose and significant changes in its physicochemical 
properties. 
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INTRODUCTION 

 

Cassava (Manihot esculenta Cranz) is one of the 
main energy sources in many tropical countries; it 
appears to have originated in Venezuela during 2700 
BC (Pandey et al., 2000). According to Aristizábal and 
Sánchez (2007), among the main characteristics of 
cassava are: the high potential to produce starch, 
tolerance to drought and worn soils and large 
adaptability to different growth conditions. Worldwide, 
more than 600 million people depend on cassava in the 
Africa, Asia and Latin America (Tonukari, 2004). 
According to FAO, world cassava production during 
2014 was 268.277.743 Ton., the African continent was 
the largest cassava producer with 145.770.528 Ton 
(53,9% of world production), followed by Asia, which 
reported a production of 89.833.397 Ton (30,3%). 
America had a production of 32.421.670 Ton (15,7%) 
and Oceania reported a production of 252.148 Ton. 
(0,1%). Also during 2014, cassava production in Latin 

America was 30.641.834 Ton., where Colombia is the 
third largest producer of cassava. The departments of 
the Colombian Caribbean Region have an important 
place in the production of cassava in this country. In 
2015, the departments of Córdoba, Sucre, Bolívar, 
Atlántico, Magdalena and Cesar was among the top ten 
cassava producers in Colombia, contributing a total 
production of 183.731 Ton (DANE, 2016). More than 
two-thirds of total cassava production is used for human 
consumption and the other fraction is used in the animal 
feed industry (John, 2009; Tonukari, 2004). A 
considerable part of cassava production is processed 
and marketed as starch (Alarcón and Dufour, 1998); 
therefore, cassava starch is the most important 
industrial product obtained from this raw material 
(Ceballos and De la Cruz, 2002; Suárez and Mederos, 
2011).  

Cassava bagasse is a fibrous by-product resulting 
from the industrial processing of cassava during the 
extraction of starch, which is generated in large 
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quantities and treated as a solid residue (Lu et al., 
2012). It is the most abundant by-product of cassava, 
approximately 90% of its wet weight (Chen et al., 
2015). Since the bagasse has a high humidity (about 
85%) after the starch extraction process, it is difficult to 
store and transport due to its high perishable nature 
(Farias et al., 2014). The dry bran of cassava bagasse 
has a dry matter content of 80% to 85%; 60% -70% of 
which corresponds to starch and 12%-14% to fiber 
(Alarcón and Dufour, 1998). Cassava bagasse (dry 
matter) contains starch and fibrous compounds in 
equivalent proportions, with low levels of minerals, 
proteins and lipids, which together represent less than 
5% a dry basis (Farias et al., 2014). This residue 
contains high contents of starch (40-64%), cellulose, 
hemicellulose and lignin (15-50%) (Chen et al., 2015). 

The lignocellulosic materials comprise three 
polymers: cellulose, hemicellulose and lignin (Meng 
and Ragauskas, 2014; Hendriks and Zeeman, 2009). 
Due to the large amounts of lignocellulosic biomass 
generated in the agroindustry, forestry and agriculture, 
there is an accumulation of this one, which can cause 
environmental problems (Maitan-Alfenas et al., 2015). 
Lignocellulosic biomass can be degraded to simple 
sugars through enzymatic or chemical treatments; 
however enzymatic hydrolysis proves to be more 
suitable because it has less energetic requirements, it is 
environmentally friendly and generate few inhibitory 
products, which is an advantage for the following 
fermentation (Zhang et al., 2012; Brummer et al., 
2014). There are used effective methods of multi-
enzymatic hydrolysis for lignocellulosic materials 
containing starch, these methods involve the amylolytic 
activity combined with the action of other hydrolytic 
enzymes; there are studies where the combination of 
different enzymes have been used for the hydrolysis of 
complex materials such as cassava pulp and other 
materials (Chaikaew et al., 2012; Wang et al., 2006). 
The enzymatic hydrolysis of lignocellulosic materials 
may be limited by the action of several factors such as 
cellulose crystallinity, the degree of polymerization, 
moisture content, available contact surface, lignin 
content and the degree of milling (Hendriks and 
Zeeman, 2009; Nair et al., 2011).  

The objective of this study was to evaluate the 
effect of enzymatic hydrolysis on the physicochemical 
and structural properties of cassava bagasse (Manihot 
esculenta Cranz). 
 

MATERIALS AND METHODS 
 

Collection of the raw material: Samples of cassava 
bagasse were collected from the company Almidones 
de Sucre S.A.S located at Km 4.5 via Sincelejo-Corozal 
(Colombia). 
 
Physico-chemical characterization: Was performed 
the analysis of moisture, crude protein, crude fiber, 
lipids and ash according to the official methods 
described by AOAC (1990). 

The content of cellulose, hemicellulose and lignin 
in cassava bagasse were determined by the NREL/TP-
510-42618 method (Sluiter et al., 2012). 
 
Starch content: Was determined the starch content by 
enzymatic hydrolysis (Belitz and Grosch, 1997), were 
added 200 mg of the sample to 42 mL of distilled water. 
Subsequently, 20 μL of α-amylase solution was added 
and heated into a water bath at 80-90°C during 15 min 
under constant agitation. The suspension was then 
cooled down and was added 2,5 mL of 0,1M sodium-
acetic acid buffer solution pH 4,8. Then, 300 μL of 
amyloglucosidase solution was added and heated into a 
water bath at a temperature of 60°C during 30 min with 
constant agitation. Then the bioreaction was cooled 
down at room temperature and two drops of NaOH 2N 
solution were added to neutralize. It was transferred to a 
125-mL Erlenmeyer flask by filtering the solution with 
gauze; the sample was made up to a volume of 125 mL 
by adding distilled water. Was determined the 
concentration of reducing sugars (RA) by using the 
DNS method proposed by Miller (1959). The starch 
content was calculated using Eq. (1) and (2): 
 

%������ = 	
 × 0.125 × 1000               (1) 
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Amylose content: Was determined the amylose content 
with the method ISO 6647-1 (2007); was placed 100 
mg of lipid-free-cassava bagasse into a 100-mL flask 
with one mL of ethanol (96%) and 9 mL of NaOH 
(1M). Was placed the flask in a water bath at 90-100°C 
during 10 min. Then, the solution was cooled down up 
to room temperature. 

Was subjected the sample to a colorimetric 
reaction; 200 μL of acetic acid (1 M) and 400 μL of 
Lugol solution were added to 1 mL of the solution 
transferred in a test tube, then made up to 20 mL with 
distilled water. The solution was stored in the dark for 
20 min to develop the color. Then, was measured 
absorbance at 620 nm. Was made the quantification of 
amylose by using a calibration curve (Concentration vs. 
absorbance) between 0 and 1 mg of amylose. Was 
estimated the amount of amylose in each sample by 
applying the straight line regression formula of the 
calibration curve Eq. (3): 
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                             (3) 

 
where, 
Y  = The absorbance of the simple 
A  = The slope of the line 
B  = The intersection with the Y axis  
P  = The weight of the sample in mg 
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Infrared spectroscopy with Fourier transform (FT-

IR): Were obtained cassava bagasse infrared spectra by 
using a Fourier transform infrared spectrometer 
(Thermo scientific reference Nicolet iS5 Transmission 
iD1) in the region of 4000 to 500 cm-1 at a resolution of 
4 cm-1. Was made the formation of the crystals by 
mixing 20 mg of the cassava bagasse with KBr in a 
ratio of 1:5 (Cassava bagasse: KBr).  
 
Enzymatic hydrolysis: Was made the enzymatic 
hydrolysis by using the commercial enzymes 
Licquozyme Supra 2.2X from Novozymes (α-amylase, 
obtained from Bacillus licheniformis, 300 KNU/g) and 
CelluSEB from Enzyme Innovation (Cellulase, 8000 
CMC/g). Initially, citrate buffer 0,1M (pH 5,0) and the 
enzyme cellulase were added, to the cassava bagasse 
sample, heated in a water bath at 70°C during 30 min 
with constant agitation. Then, was added the α-amylase 
enzyme and was raised the temperature to 80-90°C 
under constant agitation (120 rpm). After the hydrolysis 
process finished, was determined the concentration of 
reducing sugars (RA) by using the DNS method 
(Miller, 1959). The percentage of saccharification was 
calculated by Eq. (4); this value is an indicator of 
hydrolysis conversion (Salcedo et al., 2011). 
 

%Saccharification =
<0 (
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)×�,�×���
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=

>
)
             (4) 

 
Experimental design: To evaluate the effect of 
enzymatic hydrolysis on cassava bagasse was applied a 
Completely Randomized Design (CRD) with a single 
categorical factor. The Solid: Liquid ratio (Bagasse: 
Buffer) was the factor evaluated and a control treatment 
corresponding to cassava bagasse without enzymatic 
treatment. In Table 1 is shown the factorial arrangement 
used. 
 
Statistic analysis: Data collected were analyzed by 
Statgraphics® Centurion XVI statistical program, an 
Analysis of Variance (ANOVA) was applied, 
considering the factorial arrangement of the treatments 
and a Tukey Test was performed to compare the means 
of the treatments. 
 

RESULTS AND DISCUSSION 
 

Table 2 shows the physicochemical properties of 
cassava bagasse. The protein content (1,78%) and fiber 
(22,63%) are between the range reported by other 
authors,  0,13-3,5% and 10-58,19%, respectively; the 
ash value (2,27%) was below to those obtained by other 
authors who reported values between 7,0 and 11,9%; 
the lipids value (1,69%) is higher than the estimated in 
other   studies, between 0,54% and 0,12% (Paternina et 

al., 2016; Ray et al., 2008; Vandenberghe et al., 1998; 
Sriroth et al., 2000; Chaikaew et al., 2012; Tumwesigye  

Table 1: Factor arrangement employed in the enzymatic hydrolysis on 
cassava bagasse 

Treatment Solid: Liquid ratio 
T1 1:10 
T2 1:15 
T3 1:20 
Solid: Cassava bagasse; Liquid: Citrate buffer 0.1M (pH 5.0) 
 
Table 2: Physicochemical properties of cassava bagasse 
Composition Content (%) 
Moisture 10.44±0.02 
Protein 1.78±0.05 
Fiber 22.63±0.34 
Ash 2.27±0.04 
Lipids 1.69±0.08 
Carbohydrates (*) 61.19 
Cellulose 35.57 
Hemicellulose 5.36 
Lignin 4.53 
(*) It was calculated by difference 

 
Table 3: Starch and amylose content of cassava bagasse 
Composition Content (%) 
Starch 50.55±0.32 
Amylose 7.70±0.06 

 
et al., 2016; Zhang et al., 2016). The carbohydrate 
value was 61,19%, which is similar to that reported by 
Vandenberghe et al. (1998). The values of 
hemicellulose and lignin, 5,36% and 4,53%, 
respectively, are similar to those reported by Chaikaew 
et al. (2012), who obtained values of 5,1% and 4,6% for 
these components, respectively. The percentage of 
cellulose found (35,57%) is higher than the obtained in 
other   studies,   between  4.11  and  17.4% (Chaikaew 
et al., 2012;  Rattanachomsri  et al.,  2009; Virunanon 
et al., 2013). Differences in the values of 
physicochemical properties may be due to the fact that 
the nutritional value of the root can be affected by the 
use of different cassava varieties, soil conditions and 
climate, fertilization (Gil and Buitrago,  2002; Pandey 
et al., 2000); on the other hand, the chemical 
composition of the cassava bagasse could also be 
affected by the starch extraction technology applied in 
these researchers (Rattanachomsri et al., 2009; 
Paternina et al., 2016). 

Table 3 is shown the starch and amylose content in 
cassava bagasse. The residual starch content of 50,55% 
is similar to that reported by Chaikaew et al. (2012), but 
is lower than the obtained in other studies, which range 
was between 60,1 and 75,1% (Rattanachomsri et al., 
2009; Sriroth et al., 2000; Virunanon et al., 2013). 
Because of the high starch content, cassava bagasse can 
be used in biotransformation processes with edible 
fungus cultures (Pandey et al., 2000). The amylose 
content (7,70%) is lower than the reported in cassava 
starch which may be between 20,93 and 22,61%; this 
value depends on the age and variety of the plant (Tan 
et al., 2017). 

The values of fiber, ash, lipids, amylose and starch, 
shown in Table 4, had significant differences (p˂0.05) 
between treatments, also between the three enzymatic 
treatments   and    the   cassava   bagasse  (control). The  
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Table 4: Effect of the enzymatic treatments on the chemical composition of the cassava bagasse (means±SD) 

Treatments 

Composition (%) 
------------------------------------------------------------------------------------------------------------------------------------------ 
Protein Fiber Ash Lipids Amylose Starch 

Cassava bagasse (control) 1.78±0.05 a 22.63±0.34 a 2.27±0.04 a 1.69±0.08 a 7.70±0.06 a 50.55±0.32 a 
T1 1.31±0.12 ab 18.50±0.55 b 31.21±0.40 b 0.94±0.21 b 1.38±0.04 b 32.7±1.71 b 
T2 1.26±0.18 b 17.36±0.02 b 31.4±0.15 bc 0.33±0.14 bc 1.385±0.04 b 35.33±0.55 bc 
T3 1.00±0.05 b 14.73±1.00 c 32.57±0.50 c 0.44±0.01 c 1.32±0.00 b 38.54±1.81 c 
Values followed by a different letter, within a column, are significantly different (p<0.05) according to the Tukey test. 
 
Table 5: Percentages of saccharification in each treatment 
Treatment Saccharification (%)±SD 
T1 21.50±0.44 a 
T2 29.98±0.95 b 
T3 21.79±0.24 a 
Values followed by a different letter, within a column, are 
significantly different (p<0.05) according to the Tukey test. 
 
augment of ash after the three enzymatic treatments 
could have been due to the addition of the citrate buffer, 
which was prepared with sodium citrate. Protein value 
had significant differences (p<0.05) between control 
and treatments 2 and 3. Furthermore, the means of the 
three treatments are lower than the control; these results 
are not similar to that obtained by Jasko et al. (2011) 
who reported increments in the percentage of protein 
after performing the enzymatic hydrolysis of cassava 
bagasse. The means of fiber and lipids for the control 
are higher than the means values obtained for the three 
treatment evaluated, which differs with the results 
obtained by Jasko et al. (2011), where the fiber 
increased after enzymatic hydrolysis. The percentage of 
starch decreased in the enzymatic treatments due to the 
possible action of α-amylase. Since amylose is part of 
the crystalline fragment in the starch molecule (Lourdin 
et al., 2015), the decrease in its value may indicate a 
reduction in the crystallinity of the residual starch 
present in the bagasse (Van Soest and Essers, 1997). 

Table 5 shows the percentages of saccharification 
after each treatment evaluated. The ANOVA indicates 
that there are significant differences (p<0.05) between 
treatments and the Tukey test showed that there are 
significant differences between treatment 2 and 
treatments 1 and 3. The mean of treatment 2 (29,98%) 
is greater than in the treatments 1 and 3, which may 
indicate that when using a solid: liquid ratio of 1:15, 
there is a high conversion to reducing sugars. Chaikaew 
et al. (2012) obtained a 20% higher saccharification 
percentage when using an enzymatic cocktail 
(cellulases and α-amylase) than when using individual 
enzymes in the hydrolysis of cassava pulp. In their 
study, Jasko et al. (2011) reported soluble reducing 
sugars percentages of 14,5% and 7,7%, obtained with 
an enzymatic hydrolysis of cassava bagasse using 
cocktails of α-amylase plus amyloglucosidase and α-
amylase, amyloglucosidase plus cellulase. The 
enzymatic hydrolysis of cassava bagasse is different 
from that of pure starch, since there are non-starch 
polysaccharides such as cellulose, hemicellulose and 
lignin, also the starch granules are trapped in this 
structure; therefore, to achieve a good degradation of 
this  material  is  needed  the  action  of both cellulolytic  

and amylolytic enzymes (Chaikaew et al., 2012). Alvira 
et al. (2010) mentioned in his study that not only the 
effectiveness of the enzymes affect the development of 
the enzymatic hydrolysis, but also factors that influence 
the enzymatic hydrolysis such as the physical, chemical 
and morphological characteristics of the lignocellulosic 
materials; likewise the access of the enzyme to the 
cellulose can be affected by the cellulose crystallinity, 
the content and distribution of lignin and hemicellulose 
and the available surface area. 

Figure 1 shows the Fourier transform infrared 
spectroscopy of the cassava bagasse, in which some 
bands of vibration characteristic of cellulose are 
highlighted: C-H2 (1422 cm-1), CH (1374 cm -1), CO 
(1021 cm-1), C-O-C (1158 cm-1) (Contreras et al., 
2010). The vibration band between 3500 and 3200 cm-1 
refers to the characteristic stretching of OH in cellulose 
(Mandal and Chakrabarty, 2011; Široký et al., 2010). 
The band 1735 cm-1 is assigned to the C-O stretch of 
the carboxyl group in the hemicellulose (Parida et al., 
2015). The band around 1420-1430 cm-1 is related to 
the amount of the crystal structure of the cellulose 
(Åkerholm et al., 2004). Similarly, Oh et al. (2005) 
indicated that the band 1375 cm-1 is especially sensitive 
to the state of the crystalline and amorphous regions of 
cellulose. Smits et al. (1998) indicated that the 1047 
cm-1 vibration band is related to the crystalline 
(amylose) part of the starch, while the 1022 cm-1 
vibration band has to do with amorphous (amylopectin) 
zones. 

Figure 2 shows Fourier transform infrared 
spectroscopies of the cassava bagasse (control) and the 
three enzymatic treatments evaluated. The lack of the 
vibration bands 1422 and 1374 cm-1 in the three 
enzymatic treatments are related to the crystalline 
structure  of the cellulose. The vibration bands 1374 
cm-1 (CH bond) and 2927 cm-1 (deformation of the CH 
and CH2 bonds) are used to determine the degree of 
crystallinity (Bertocchi et al., 1997), therefore as 
reported by Carreño Pineda (2011) non-detection of 
these bands (Fig. 2) may indicate a decrease in 
crystallinity in enzymatically treated bran. Crystallinity 
is one of the limiting factors in the enzymatic 
hydrolysis of cellulose because it offers resistance to 
the action of the enzyme; therefore, the decrease of the 
crystallinity indicates a better accessibility of the 
cellulase to the cellulose molecules in the spaces 
created by the decrystallization of the cellulose, thus 
increasing the enzymatic reaction (Choe and Shin, 
2015). 
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Fig. 1: FT-IR spectroscopies of cassava bagasse 
 

 
 
Fig. 2: FT-IR spectroscopies of cassava bagasse (control) and enzimatic tratments 

 

CONCLUSION 
 

Because of its high carbohydrate content, the 
cassava bagasse could be used is a substrate for biotech 
or food industry as a carbon source. Physicochemical 

analyses of the hydrolyzed cassava bagasse showed that 
enzymatic hydrolysis produces significant changes in 
the chemical composition of this material. The 
enzymatic treatment using a solid: liquid ratio of 1:15 
shows the highest conversion to reducing sugars with a 
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saccharification percentage of 29,98%. Fourier 
transform infrared spectroscopy of the cassava bagasse 
showed cellulosic binding vibration bands and the non-
detection of the 1374 cm-1 band together with the 
decrease in the intensity of the 2927 cm-1 band, which 
indicates a decrease in crystallinity associated with the 
applied enzymatic treatment. 
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