Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Prediction of Microwave-Assisted Extraction to Determine Zinc in Fish Muscles Using Support Vector Machine and Artificial Neural Network

1ZhihanXu, 2JinkunYao and 3YimengWang
1College of Light Industry, Textile and Food Engineering
2College of Chemistry
3College of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
Advance Journal of Food Science and Technology   2016  9:680-686
http://dx.doi.org/10.19026/ajfst.10.2215  |  © The Author(s) 2016
Received: May ‎25, ‎2015  |  Accepted: ‎June ‎19, ‎2015  |  Published: March 25, 2016

Abstract

In this study, the support vector machine and the artificial neural network are adopted in the microwave-assisted extraction method to determine the amount of zinc in fish muscle samples. In the experiment, the irradiation power, irradiation time, nitric acid concentration and temperature are set as independent variables while the amount of zinc was considered as a function of the four factors. By comparing the RMS error and the training time of the support vector machine and the artificial neural network, the most suitable predicting model can be determined. The results show that the MLFN model with 7 nodes performed the best with the lowest RMS error of 1.21 and 100% prediction accuracy.

Keywords:

Artificial neural networks, microwave-assisted extraction, predicting accuracy, support vector machine,


References

  1. Bas, D. and I.H. Boyaci, 2007. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng., 78(3): 846-854.
    CrossRef    
  2. Basri, M., R.R. Zaliha, A. Ebrahimpour, A.B. Salleh, E.R. Gunawan and M.B. Abdul-Rahman, 2007. Comparison of estimation capabilities of Response Surface Methodology (RSM) with Artificial Neural Network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnol., 7: 53-63.
    CrossRef    PMid:17760990 PMCid:PMC2211475    
  3. Baxt, W.G., 1991. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann. Int. Med., 115: 843-848.
    CrossRef    PMid:1952470    
  4. Bourquin, J., H. Schmidli, P.V. Hoogevest, A. Leu-Enberger, 1998. Advantages of Artificial Neural Networks (ANNs) as alternative modeling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur. J. Pharm. Sci., 7(1): 15-16.
    CrossRef    
  5. Dayhoff, J.E. and J.M. DeLeo, 2001. Artificial neural networks. Cancer, 91: 1615-35.
    CrossRef    
  6. Deng, N., Y. Tian and C. Zhang, 2012. Support Vector Machines: Optimization Based Theory, Algorithms and Extensions. 1st Edn., Chapman and Hall/CRC, New York.
  7. Desai, K.M., S.A. Survase, P.S. Saudagar, S.S. Lele and R.S. Singhal, 2008. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J., 41(3): 266-273.
    CrossRef    
  8. Fan, R.E., K.W. Chang, C.J. Hsieh, X.R. Wang and C.J. Lin, 2008. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res., 9: 1871-1874.
  9. Friesen, D.D., M. Patterson and B. Harmel, 2011. A comparison of multiple regression andneural networks for forecasting real estate values. Reg. Bus. Rev., 30: 114-36.
  10. Goulermas, J.Y., P. Liatsis, X.J. Zeng and P. Cook, 2007. Density-Driven Generalized Regression Neural Networks (DD-GRNN) for function approximation. IEEE T. Neural Networ., 18: 1683-1696.
    CrossRef    PMid:18051185    
  11. Guo, Q. and Y. Liu, 2010. ModEco: An integrated software package for ecological niche modeling. Ecography, 33: 637-642.
    CrossRef    
  12. Hao, J.Y., W. Han, S. Huang, B. Xue and X. Deng, 2000. Microwave assisted extraction of artemisinin from Artemisiaannua L. Sep. Purif. Technol., 28(3): 191-196.
    CrossRef    
  13. Hopfield, J.J., 1988. Artificial neural networks. IEEE Circuit Devic., 4: 3-10.
    CrossRef    
  14. Hoskins, J.C. and D.M. Himmelblau, 1998. Artificial neural network models of knowledge representation in chemical engineering. Comput. Chem. Eng., 12: 881-890.
    CrossRef    
  15. Kandirmaz, H.M., K. Kaba and M. Avci, 2014. Estimation of monthly sunshine duration in Turkey using artificial neural networks. Int. J. Photoenerg., 2014: 1-9.
    CrossRef    
  16. Khan, J., J.S. Wei, M. Ringné, L.H. Saal, M. Ladanyi, F. Westermann et al., 2007. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med., 7: 673-679.
    CrossRef    PMid:11385503 PMCid:PMC1282521    
  17. Kim, D.W., K. Lee, D. Lee and K.H. Lee, 2005. A kernel-based subtractive clustering method. Pattern Recogn. Lett., 26: 879-891.
    CrossRef    
  18. Xu and X. Liu, 2014. Prediction of Henry's law constants for organic compounds using multilayer feed for ward neural networks based on linear solvation energy relationship. J. Chem. Pharm. Res., 6(6): 1557-1564.
  19. Li, H., W. Leng, Y. Zhou, F. Chen, Z. Xiu and D. Yang, 2014. Evaluation models for soil nutrient based on support vector machine and artificial neural networks. Sci. World J., 2014: 478569.
    CrossRef    
  20. Lou, W. and S. Nakai, 2001. Application of artificial neural networks for predicting the thermal inactivation of bacteria: A combined effect of temperature, pH and water activity. Food Res. Int., 34(7): 573-591.
    CrossRef    
  21. Manohar, B. and S. Divakar, 2005. An artificial neural network analysis of porcine pancreas lipase catalysed esterification of anthranilic acid with methanol. Process Biochem., 40(10): 3372-3376.
    CrossRef    
  22. Mansour, G.M. and K. Mostafa, 2011. Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles. Food Nutr. Sci., 2: 803-808.
    CrossRef    
  23. Montgomery, D.C., 2004. Design and Analysis of Experiments. Wiley, Hoboken.
  24. Pareek, V.K., M.P. Brungs, A.A. Adesina and R. Sharma, 2002. Artificial neural network modeling of a multiphase photodegradation system. J. Photoch. Photobio. A, 149: 139-146.
    CrossRef    
  25. Pollar, M., M. Jaroensutasinee and K. Jaroensutasinee, 2007. Morphometric analysis of Tor tambroides by stepwise discriminant and neural network analysis. World Acad. Sci. Eng. Technol., 33: 16-20.
  26. Sharma, P., L. Singh and N. Dilbaghi, 2008. Optimization of process variables for decolorization of disperse yellow 211 by bacillus subtilis using box-behnken design. J. Hazard. Mater., 164: 2-3.
    CrossRef    PMid:18845394    
  27. Shen, Y., Z. He, Q. Wang and Y. Wang, 2012. Feature generation of hyperspectral images for fuzzy support vector machine classification. Proceeding of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, pp: 1977-1982.
    CrossRef    
  28. Specht, D.F., 1991. A general regression neural network. IEEE T. Neural. Netw., 2: 568-576.
    CrossRef    PMid:18282872    
  29. Svozil, D., V. Kvasnickab and J. Pospichalb, 1997. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst., 39: 43-62.
    CrossRef    
  30. Vouk, D., D. Malus and I. Halkijevic, 2011. Neural networks in economic analyses of wastewater systems. Expert Syst. Appl., 38: 10031-10035.
    CrossRef    
  31. Yang, D., H. Li, C. Cao, F. Chen, Y. Zhou and Z. Xiu, 2014. Analysis of the oil content of rapeseed using artificial neural networks based on near infrared spectral data. J. Spectroscopy., 2014.
    CrossRef    
  32. Yegnanarayana, B., 2009. Artificial Neural Networks. Prentice-Hall of India, New Delhi.
    PMid:19813815    
  33. Zhong, X., J. Li, H. Dou, S.J. Deng, G.F. Wang, Y. Jiang et al., 2013. Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image. PLoS One, 8: e69434.
    CrossRef    PMid:23936016 PMCid:PMC3720649    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved