Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Optimization of Chaetoceros gracilis Microalgae Production for Fish Feeding Using an Airlift Photobioreactor

1 Oscar Pupo, 1 Samira Garcia, 1 Leonardo Di Mare, 2 Sandra Gomez and 1 Antonio Bula
1Universidad del Norte, km 5 Antigua Via Puerto Colombia, Barranquilla, Colombia
2Universidad del Atlantico, km 7 Antigua Vía Puerto Colombia, Barranquilla, Colombia
Advance Journal of Food Science and Technology  2018  SPL:83-90
http://dx.doi.org/10.19026/ajfst.14.5876  |  © The Author(s) 2018
Received: September 13, 2017  |  Accepted: November 24, 2017  |  Published: July 10, 2018

Abstract

An experimental procedure was carried out to maximize Chaetoceros gracilis growth. Chaetoceros gracilis, marine microalgae, is considered for feeding fisheries with no GMO (Genetically Modified Organisms) to avoid human health hazards. Furthermore, following United Nations Resolution on water, the microalgae is grown in photobioreactors due to its low water usage. To maximize the microalgae growth, an experimental design was carried out to analyze the effects of Light Intensity, CO2 supply per day, Sparger type, Photoperiod and Inlet airflow, pH and water temperature were monitored but not controlled. It was found that Light intensity and CO2 supply per day have statistical significance. Out of three possible scenarios, 1700 lux and 80 gr/day of CO2, leads to a cell density at day three of 310×104 cel/mL which represents 20% more of the density attained in day two under bag (standard) growing conditions. It was also found that water Ph has also a strong effect over cell density.

Keywords:

Airlift, Chaetoceros gracilis, food security, optimization, photobioreactor,


References

  1. Anandarajah, K., G. Mahendraperumal, M. Sommerfeld and Q. Hu, 2012. Characterization of microalga nannochloropsis sp. mutants for improved production of biofuels. Appl. Energ., 96: 371-377.
    CrossRef    
  2. Andersen, R.A., 2005. Algal Culturing Techniques. Elsevier Academic Press, Amsterdam, pp: 565.
    PMid:15738346    
  3. Barbosa, M.J., J. Hoogakker and R.H. Wijffels, 2003. Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the a-stat technique. Biomol. Eng., 20(4-6): 115-123.
    CrossRef    
  4. Borowitzka, M.A., 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol., 70(1-3): 313-321.
    CrossRef    
  5. Carlos, A.C., N.K. Sakomura, S.R.F. Pinheiro, F.M.M. Toledano, R. Giacometti and J.W. Da Salvar Júnior, 2011. Use of algae Lithothamnium calcareum as alternative source of calcium in diets for broiler chickens. Ciênc. Agrotec., 35(4): 833-839.
    CrossRef    
  6. Cheng, K.C. and K.L. Ogden, 2011. Algal biofuels: The research. Chem. Eng. Prog., 107: 42-47.
    CrossRef    
  7. De Pauw, N., J. Morales and G. Persoone, 1984. Mass culture of microalgae in aquaculture systems: Progress and constraints. In: Bird, C.J. and M.A. Ragan (Eds.), Proceeding of 1th International Seaweed Symposium. Developments in Hydrobiology. Springer, Dordrecht, 22: 121-134.
  8. Degen, J., A. Uebele, A. Retze, U. Schmid-Staiger and W. Trösch, 2001. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J. Biotechnol., 92(2): 89-94.
    CrossRef    
  9. FAO (Food and Agriculture Organization), 2016. Climate Change, Agriculture and Food Security. The State of Food Insecurity in the World 2016. United Nations, Rome.
  10. Gouveia, L. and A.C. Oliveira, 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36(2): 269-274.
    CrossRef    PMid:18982369    
  11. Hodaifa, G., M. Eugania Martínez and S. Sánchez, 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technol., 99(5): 1111-1117.
    CrossRef    PMid:17434730    
  12. Hossain, A.B.M.S., A. Salleh, A.N. Boyce, P. Chowdhury and M. Naqiuddin, 2008. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol., 4(3): 250-254.
    CrossRef    
  13. Kumar, K., S. Ghosh, I. Angelidaki, S.L. Holdt, D.B. Karakashev, M.A. Morales and D. Das, 2016. Recent developments on biofuels production from microalgae and macroalgae. Renew. Sust. Energ. Rev., 65: 235-249.
    CrossRef    
  14. Laliberté, G., P. Lessard, J. De La Noue and S. Sylvestre, 1997. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technol., 59(2-3): 227-233.
    CrossRef    
  15. Le, E., C. Park and S. Hiibel, 2012. Investigation of the effect of growth from low to high biomass concentration inside a photobioreactor on hydrodynamic properties of Scenedesmus obliquus. J. Energ. Resour. Technol., 134(1): 011801-6.
    CrossRef    
  16. Leal, M.C., R.J.M. Rocha, R. Rosa and R. Calado, 2016. Aquaculture of marine non-food organisms: What, why and how? Rev. Aquaculture. Retrieved from: https://onlinelibrary.wiley.com/doi/pdf/10.1111/raq.12168.
  17. Ma, J. and O. Hemmers, 2011. Technoeconomic analysis of microalgae cofiring process for fossil fuel-fired power plants. J. Energ. Resour. Technol., 133(1): 011801-8.
    CrossRef    
  18. Mata, T.M., A.A. Martins and N.S. Caetano, 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev., 14(1): 217-232.
    CrossRef    
  19. Meng, X., J. Yang, X. Xu, L. Zhang, Q. Nie and M. Xian, 2009. Biodiesel production from oleaginous microorganisms. Renew. Energ., 34(1): 1-5.
    CrossRef    
  20. Mirón, A.S., M.C.C. García, F.G. Camacho, E.M. Grima and Y. Chisti, 2002. Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: Studies in fed-batch culture. Enzyme Microb. Technol., 31(7): 1015-1023.
    CrossRef    
  21. Molina Grima, E., E.H. Belarbi, F.G. Acién Fernández, A. Robles Medina and Y. Chisti, 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv., 20(7-8): 491-515.
    CrossRef    
  22. Mu-oz, R., C. Köllner and B. Guieysse, 2009. Biofilm photobioreactors for the treatment of industrial wastewaters. J. Hazard. Mater., 161(1): 29-34.
    CrossRef    PMid:18436371    
  23. Ogbonna, J.C. and H. Tanaka, 2000. Light requirement and photosynthetic cell cultivation – development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol., 12(3-5): 207-218.
    CrossRef    
  24. Ohs, C.L., K.L. Chang, S.W. Grabe, M.A. Dimaggio and E. Stenn, 2010. Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture, 307(3-4): 225-232.
    CrossRef    
  25. Olguín, E.J., S. Galicia, G. Mercado and T. Pérez, 2003. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J. Appl. Phycol., 15(2-3): 249-257.
    CrossRef    
  26. Oncel, S. and F. Vardar Sukan, 2008. Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresource Technol., 99(11): 4755-4760.
    CrossRef    PMid:17981030    
  27. Pérez, L., J.L. Salgueiro, J. González, A.I. Parralejo, R. Maceiras and Á. Cancela, 2017. Scaled up from indoor to outdoor cultures of Chaetoceros gracilis and Skeletonema costatum microalgae for biomass and oil production. Biochem. Eng. J., 127: 180-187.
    CrossRef    
  28. Pires, J.C.M., M.C.M. Alvim-Ferraz and F.G. Martins, 2017. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renew. Sust. Energ. Rev., 79: 248-254.
    CrossRef    
  29. Posten, C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci., 9(3): 165-177.
    CrossRef    
  30. Pulz, O., 2001. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biot., 57(3): 287-293.
    CrossRef    PMid:11759675    
  31. Pulz, O. and W. Gross, 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biot., 65(6): 635-648.
    CrossRef    PMid:15300417    
  32. Rawat, I., S.K. Gupta, A. Shriwastav, P. Singh, S. Kumari and F. Bux, 2016. Microalgae Applications in Wastewater Treatment. In: Bux, F. and Y. Chisti (Eds.): Algae Biotechnology. Green Energy and Technology. Springer, Cham, pp: 249-268.
    CrossRef    PMid:27408405    
  33. Richmond, A., 2000. Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol., 12(3-5): 441-451.
    CrossRef    
  34. Roncallo, O.P., S.G. Freites, E.P. Castillo, A.B. Silvera, A. Cortina and F. Acu-a, 2013. Comparison of two different vertical column photobioreactors for the cultivation of Nannochloropsis sp. J. Energ. Resour. Technol., 135(1): 11201-11207.
    CrossRef    
  35. Suganya, T., M. Varman, H.H. Masjuki and S. Renganathan, 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sust. Energ. Rev., 55: 909-941.
    CrossRef    
  36. Ugwu, C.U., H. Aoyagi and H. Uchiyama, 2008. Photobioreactors for mass cultivation of algae. Bioresource Technol., 99(10): 4021-4028.
    CrossRef    PMid:17379512    
  37. United Nations, 2011. The Human Right to Safe Drinking Water and Sanitation. A/HRC/RES/18/1, Resolution Adopted by the Human Right Council on 12 October 2011, 18/1.
  38. United Nations, 2012. Millennium Development Goals Report 2012. Retrieved from: http://www.un.org/en/development/desa/publications/mdg-report-2012.html.
  39. Vu, M.T.T., C. Douëtte, T.A. Rayner, C. Thoisen, S.L. Nielsen and B.W. Hansen, 2016. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. J. Appl. Phycol., 28(3): 1485-1500.
    CrossRef    
  40. Wang, B., Y. Li, N. Wu and C.Q. Lan, 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biot., 79(5): 707-718.
    CrossRef    PMid:18483734    
  41. Zhou, W., J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu and R. Ruan, 2017. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sust. Energ. Rev., 76: 1163-1175.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved