Comparison of Hybrid Codes for MRI Brain Image Compression

G. Soundarya and S. Bhavani
Department of ECE, Sri Shakthi Institute of Engineering and Technology, Coimbatore, TamilNadu, India

Abstract: In general, medical images are compressed in a lossless manner in order to preserve details and to avoid wrong diagnosis. But this leads to a lower compression rate. Therefore, our aim is to improve the compression ratio by means of hybrid coding the MRI brain (tumor) images. Hence we consider Region of Interest (ROI) normally the abnormal region in the image and compress it without loss to achieve high compression ratio in par with maintaining high image quality and the Non-Region of Interest (Non-ROI) of the image is compressed in a lossy manner. This study discusses two simple hybrid coding techniques (Hybrid A and Hybrid B) on MRI human brain tumor image datasets. Also we evaluate their performance by comparing them with the standard lossless technique JPEG 2000 in terms of Compression Ratio (CR) and Peak to Signal Noise Ratio (PSNR). Both hybrid codes have resulted in computationally economical scheme producing higher compression ratio than existing JPEG2000 and also meets the legal requirement of medical image archiving. The results obtained prove that our proposed hybrid schemes outperform existing schemes.

Keywords: Compression ratio, fractal, non-ROI, PSNR, ROI, segmentation

INTRODUCTION

In the diagnosis of diseases and surgical planning, vital role is played by the medical imaging techniques. Such medical images are prohibitive in nature and also they require long-term storage and efficient transmission. The need for data storage capacity and transmission bandwidth continues to exceed the capability of available technologies. The process of obtaining a compact representation of an image while maintaining all the necessary information important for medical diagnosis is referred to as image compression. Image compression can be classified into lossless and lossy compression. Lossy compression is called as irreversible compression, whereas the lossless compression is also called as reversible, as it enables complete recovery of the original image from the compressed image. An important disadvantage of lossless compression scheme is its low compression ratio. Hybrid coding of medical images (Salih et al., 2001) could be the solution for the above problem. The main idea is to preserve the fine details in the Region of Interest (ROI) by lossless coding, while allowing lossy coding for the Non- Region of Interest (NON-ROI).

Our proposed method is an effort to provide effective storage of medical images for analysis in future and also for efficient transmision of such images for diagnosis by various technologists. This objective can be achieved by hybrid coding the MRI brain (tumor) images, which provides increased compression ratio than existing compression schemes.

To separate ROI and Non-ROI regions we require the image to be segmented. In our proposed scheme, the MRI human brain image is segmented by using Region Growing algorithm and then coded using the hybrid schemes. Our experiments show that the hybrid coding techniques resulted in higher compression ratio than existing JPEG 2000 scheme. Hence it proves that the hybrid coding schemes outperform the other existing techniques in compressing the MRI brain images. Figure 1 depicts the proposed hybrid scheme.

METHODOLOGY

Image segmentation and region extraction: Image segmentation is required as a preliminary and indispensable stage in the computer aided medical image process, particularly during the clinical analysis of Magnetic Resonance brain images. Segmentation (Rafel and Richard, 2002) subdivides an image into its constituent regions or objects. The level to which the subdivision is carried depends on the problem being solved. That is, segmentation should stop when the objects of interest in an application have been isolated.
Fig. 1: Flow diagram

Fig. 2: (a) Input image, (b) Histogram equalization, (c) Eroded image, (d) Dilated image, (e) Region of interest, (f) Region extraction

Segmentation accuracy determines the eventual success or failure of computerized analysis procedure. For this reason, considerable care should be taken to improve the probability of rugged segmentation. Image segmentation algorithms generally are based on one of two basic properties of intensity values: discontinuity and similarity. In the first category, the approach is to partition an image based on abrupt changes in intensity, such as edges in an image. The principal approaches in the second category are based on partitioning an image into regions that are similar according to a set of predefined criteria. Thresholding, region growing and region splitting and merging are different methods in this category.

Thresholding is a fundamental approach to segmentation that enjoys a significant degree of popularity, especially in applications where speed is an important factor. Region splitting and merging is a technique in which images is subdivided initially into a set of arbitrary disjointed regions and then merge and/or split the regions in an attempt to satisfy the basic conditions of segmentation. Region growing is a procedure that groups pixels or subregions into larger regions based on predefined criteria. The basic approach is to start with a set of “seed” points and from these grow regions by appending to each seed those neighboring pixels that have properties similar to the seed. Selecting a set of one or more starting points often can be based on the nature of the problem. When a priori information is not available, the procedure is to compute at every pixel the same set of properties that ultimately will be used to assign pixels to regions during the growing process.

Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Our segmentation algorithm, Region Growing Algorithm, relies on 3-D extension of mathematical morphology, a branch of science that is built upon set theory with many application areas in image processing. It includes generation of mappings for each pixel according to the pixel’s local neighborhood. Many researchers have used this technique to segment biomedical images (Storer, 1988; Serra, 1982).

The outputs of the segmentation are depicted in Fig. 2. Each pixel in the segmented ROI is coded in a lossless manner, while the rest is lossily compressed. Figure 2e includes only a little portion of the complete image in Fig. 2a and this brings a considerable amount of compression efficiency. Region extraction is an algorithmic application of graph theory. Figure 2f depicts the extracted region.
Hybrid coding-a:

Compression of ROI: Once the ROI is segmented, it is compressed using Integer Wavelet Transform (IWT) (Calderbank et al., 1997). IWT is an invertible integer-to-
integer wavelet analysis algorithm. Compared with Continuous Wavelet Transform and Discrete Wavelet
Transform, the IWT is not only computationally faster and more memory efficient but also more suitable in
lossless image compression applications. IWT of an
image provides the decomposition of the original image
into a set of integer coefficients, from which by making
use of the inverse IWT the original image can be
recovered without any loss. The problem of encoding the
original image can therefore be transferred to encoding
the wavelet coefficients, which provide a time-frequency
description of the original image. Encoding of wavelet
coefficients instead of the original image is very
attractive, since the separation of the image into a time-
frequency representation allows to cope up separately
with different image features and events.

We use arithmetic coding to encode the wavelet
coefficients. Unlike Huffman coding, arithmetic coding
doesn't use a discrete number of bits for each symbol to
compress. It reaches for every source almost the optimum
compression in the sense of the Shannon theorem and is
well suitable for adaptive models.

Compression of Non_ROI: Non_ROI is compressed
using Discrete Cosine Transform (DCT) (Gonzalez et al.,
2004).

DCT based image compression relies on two
techniques to reduce the data required to represent the
image. The first is quantization of the image's DCT
coefficients; the second is entropy coding of the quantized
coefficients. Quantization is the process of reducing the
number of possible values of a quantity, thereby reducing
the number of bits needed to represent it. At this stage the
basic losses are introduced into compressed image. Larger
Quantization Step (QS) provides larger Compression
Ratio (CR) and simultaneously it leads to larger losses.

Entropy coding is a technique for representing the
quantized data as compactly as possible. An entropy
encoder further compresses the quantized values
losslessly to give better overall compression. DCT
exhibits excellent energy compaction for highly correlated
images. By inverse DCT, the image can be recovered with
minimum loss.

Hybrid coding-b:

Compression of ROI: Hybrid coding B also involves
compressing the ROI by means of integer wavelet
transform as like hybrid coding A. The wavelet
transformed coefficients are further encoded by means of
arithmetic encoder. Arithmetic coding is a form of
variable-length entropy encoding used in lossless data
compression.

Compression of Non_ROI: Hybrid coding B involves
compressing the Non-ROI by using fractal compression
(Selim et al., 2009). Fractal compression relies on the
presence of self-similarity of the image. The image is
represented by codes instead of pixels. Although the
fractal encoding is computationally expensive, the
decoding is simple and quite faster. Fractals are
independent of scale and they possess no characteristic
size. A general model of fractal image compression
system (Wong, 2001) is as shown in Fig. 3.

In the encoding phase, an image is partitioned into
number of disjoint range blocks of size B*B and a number
domain blocks of size 2B*2B. For each range block, the
best matching domain block is searched in the domain
pool so that a given metric, say root mean square is
minimized. Data compression is achieved by storing only
the fractal codes which contains necessary information to
reconstruct the image.

Fig. 3: Generic model of fractal compression
Encoding: Decoding process is performed by iterating the set of transformations on an arbitrary initial image and the quadtree partitioning is used to determine the ranges in the image. For each range block, the matched domain block size is reduced by two via 2*2 pixel averaging. The pixel values of the reduced domain block are then placed in the location in the range determined by the orientation information after scaling and offsetting. Computing all the range blocks amounts to one iteration. After several iterations, the reconstructed image (approximated image) will be very close to the original image.

RESULTS

Hybrid code A: ROI image and its compression using the IWT have been shown in Fig. 4a and b, respectively. Non-ROI image and its compressed version using the DCT have been shown in Fig. 4c and d, respectively.

Hybrid code B: Hybrid code B involves the ROI to be compressed by IWT as that of code A. Hence, ROI image and its compression using IWT are shown in Fig. 5a and b, respectively. Non-ROI image and its compressed version using the fractal compression have been shown in Fig. 5c and d, respectively.

![Fig. 4: (a) ROI image, (b) ROI compressed image using IWT, (c) Non-ROI image, (d) Non-ROI compressed image using DCT](image1)

![Fig. 5: (a) ROI image, (b) ROI compressed image using IWT, (c) Non-ROI image, (d) Non-ROI compressed image using fractal](image2)

![Fig. 6: Comparison in terms of CR](image3)

![Fig. 7: Comparison of hybrid A & JPEG2000 in terms of PSNR](image4)
Comparison of hybrid codes A and B with the JPEG2000: From the analysis we could observe that hybrid compression schemes, can thus achieve higher CR comparable to standard lossless compression technique. Figure 6 and Table 1 depicts that Hybrid code B produce higher CR than both hybrid A and JPEG 2000. Figure 7 and 8 shows the comparison in terms of PSNR. Hence hybrid coding proves to be more efficient for compression of MRI brain images.

CONCLUSION AND FUTURE WORK

There are many possible directions for future investigation. In order to obtain better compression ratio, experiments can be done on different hybrids of lossless and lossy compression techniques.

REFERENCES

