Investigating Different ZnO Arresters Models against Transient Waves

A. Babaee, R. Ebrahimi, M. Hoseynpoor and M. Najafi
Department of Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran

Abstract: Metal oxide surge arresters have dynamic characteristics that are significant for over voltage coordination studies involving fast front surges. Several models with acceptable accuracy have been proposed to simulate this frequency-dependent behavior. In this paper, various electrical models are presented for surge arrester performance simulation against lightning impulse. The desirable model is obtained by using simulation results of the existing models and experimental tests. The IEEE proposed model is a proportional model can give satisfactory results for discharge currents within a range of time to crest for 0.5 to 45 μs but due to no existing residual voltage resulting switching current on the manufacture's datasheets decrease its performance generally. In this study the maximum residual voltage due to current impulse is analyzed too. In additional, the amount of discharged energy by surge arrester is focused.

Key words: Current impulse wave, dynamic characteristics, residual voltage, ZnO arresters

INTRODUCTION

In recent years, using metal oxide (ZnO) arresters is a common and prevalent affair for transformers, capacitance banks etc protection against impulse over voltages. Therefore, correct and accurate investigation of ZnO arresters behavior in power networks requires correct simulation in the existing transient state software. Several papers have been presented under arresters modeling title (Gupta, 1990; Ahmad, 1994; Daniel, 1985; Ravinda and Singh, 2002; Diaz et al., 2001) each has concerned different parameters in simulation process.

At the beginning, the arrester was just modeled by a nonlinear resistance due to the nonlinear feature of the varistor tablets. The leakage capacitances stand around the arrester were then under consider in transient state simulations due to high frequency bands (spectrums) existence. This was specially confirmed according to the crystal shaped structure of varistors. In investigations accomplished between the waveforms resulted by voltage residual and the arrester's discharge current, a series inductance was added to the arrester model due to a short delay exists in current peak and the voltage peak waveforms. Some other models were reported by Daniel (1985) and then with IEEE workgroup (1992) because the mentioned inductance was just properly performing in a limited range of frequencies. The IEEE model was an appropriate model from quality and quantity view point but was sensibly loosing its efficiency and was creating difficulties in modeling process due not existence of voltage switching information in majority of catalogs (according to difficulty of such test). Therefore, other models were presented to overcome such problem inspired by this model (Kim at el., 1996; Pinceti and Giannettoni, 1999). In this study, the residual voltage of the arrester of qualitative and quantitative aspects is under consider as well as the discharged energy value, unlike other papers just have investigated the maximum value of impulse caused residual voltage.

INVESTIGATING THE STRUCTURE AND GENERAL MODEL OF ARRESTER

In a power circuit, an arrester is in charge of the follows:
- Leakage Current for normal mode utilization voltages
- Discharge Current during the over voltages, and discharging the energy the transient wave (without short circuit fault creation) (Daniel, 2001)

In result, the arrester should have a high rated resistance during system’s normal utilization, posses a very low resistance during transient over voltages, and have a completely nonlinear V-I characteristics.

The crystal shaped structure of ZnO along with other metal oxides confirms the fact that it is possible to present a model comprised of a nonlinear and a parallel capacitor that is shown in Fig. 1. The V-I characteristics of a ZnO arrester is approximately as Fig. 2. Two current types pass through nonlinear resistances according to the presented waveform. The leakage current with rating of 0.1-0.8 mA is created due to the existence of steady state 50 Hz voltage on arresters and a current called discharge current passes through the arrester due to lightning and switching caused voltage waveforms.

It is not necessary to consider temperature effects to show the transient over voltages type in simulation
process since the arrester accepted current range in such investigations is more than 10mA. It is important to note that the thermal dependency is an important factor in selecting the arrester’s operation domain under steady state and temporary over voltages conditions. Therefore, the temperature effect is neglected in modeling process. The effect of environment and the arrester box pollution are usually neglected.

More precision on the results of the simulation and the experimental data well clarify the fact that there exist a difference between the waveforms obtained from the experiments and the peak residual voltage values of the arresters. The differences can be notified as follows:

- The waves obtained by experiments posses more residual voltage peak values in impulse waves with fast steep front.
- The arresters’ discharge current shows a considerable delay time compared with the residual voltage waves passing on arresters.

The mentioned reasons resulted in adding an inductor and a resistor where the inductor indicates the current to voltage delay time. Figure 3, shows this complete model that presented by Popov in (Popov et al., 2002). Here, the arrester faces with more residual voltage peak at the first moment in compare with the previous model, due to the existence of inductor and the resistor against the current flow. The V-I characteristics of the ZnO arrester is expressed in several forms such as $i = P(v/v_{ref})^q$ (v_{ref} is the arbitrary reference voltage) or $i = kV^\alpha$ or $U = ki^{1/k}$. This characteristic is exponential exists in the data sheets delivered by the arrester manufacturer.

SOME OF PRESENTED MODELS FOR ARRESTER SIMULATION

In this section, some popular models of arresters are presented and investigated as below:

D. W. Durbak model: The arrester model is obtained upon V-I characteristic and shows a unique resistance and
dc voltage as follows under each different V and I condition due to its nonlinear characteristic.

Based on Fig. 4, a model was presented to the IEEE impulse wave protective devices committee (W.G.3.4.11) by D. W. Durbak in 29th September 1983 in "arrester modeling techniques" meeting held in Memphis Tennessee as Fig. 5.Where:

- L: loop inductance
- C: the leakage capacitor
- R: The equivalent arrester resistance
- L_d: 10 μH/m
- R_d: 20 Ω/m
- d: Tablets column length
- n: The number of columns
- $a = 16$

In such circuit, the loop created between arrester and the protected device possesses L valued inductance. The inductance value of this loop can be obtained as follows:

$$L = 10^{-7}\left[2\ln\left(\frac{a}{r_0}\right) + j_0\right]$$ \hspace{1cm} (1)

Also the arrester loop circuit is shown in Fig. 6. If in some cases the loop inductance is not clearly mentioned, it can approximately considered as 1 μH/m. The arrester capacitor can be considered to stand in 600-4000 pF range.

IEEE workgroup model: IEEE workgroup 3.4.11 (1992) has reviewed a series of metal oxide arresters modeling methods for arrester modeling. The laboratory data of discharge voltage and accessible metal oxide arrester currents justified the group that the metal oxide arresters posses a mechanical characteristics valuable in lightning and other fast frontal waves investigation. This dynamic characteristic is shown in Fig. 7.

The model evaluated by IEEE workgroup was a frequency dependant model consists of two nonlinear A0 and A1 parts separated by a RL filter. The impedance of this filter is considerably low for the impulse waves with slow frontal, which makes two nonlinear parts to be considered as a parallel. The filter impedance is considered higher for fast frontal impulse waves in a way that the current flow through A0 is more than that of A1. Therefore, the A0 characteristic has a higher voltage level for a particular current, in compare with A1 (this can be observed in Fig. 8 and 9). According to Fig. 9, the presented model is completely synchronous with the behavior of a metal oxide arrester since it shows faster voltage discharge capability in compare with the faster frontal impulse waves. This model in its more progressive state can create more sections adding RL filters. However, just the two-part model was investigated by the IEEE workgroup because it was in good relation with laboratory data. This model shows very satisfying results for the waves with 0.5-4.5 μs frontal time.
For selecting frequency model parameters, we have:

d : the estimated arrester relation in meters
n : the number of tablets parallel column
L₁ : and R₁ : the RL filter parameters
L₀ : the magnetic field inductance around the arrester
R₀ : to guaranty the calculation program convergence
C : the external capacitor installed between two
arrester terminals

\[
L₁ = 10d / n \quad R₁ = 65d / n
L₀ = 0.2d / n \quad R₀ = 100d / n
\]
\[
c = 100n / d
\] (2)

Step 1: applying the above relations to obtain the primary values

Step 2: adapting the per unit values of A₀ and A₁ curves to achieve a proper adoption with the discharge voltages introduced by the manufacturer for current switching waves with more than 45 μs rising time.

Step 3: adapting L₁ value to achieve the arrester discharge voltages adoption for 8.2 s discharge currents accomplished through a iteration and averaging approach with error percentage acceptance.

A₀ and A₁ nonlinear resistances values presented in Fig. 9 are used to determine the primary values in a way that the discharge voltage value of each nonlinear resistance is obtained by follows:

\[
\text{Discharge kV} = IR \times V_{n/16}
\] (3)

Pinceti and Giannetoni model: This model is achieved by simplifying the IEEE model and is presented in Fig. 10. The elements values are obtained through the following relations:

\[
L₁ = \frac{1}{4} \frac{V_r \cdot 1 / T₂ - V_r \cdot 8 / 20}{V_r \cdot 8 / 20} \cdot V_n
\] (4)

\[
L₀ = \frac{1}{12} \frac{V_r \cdot 1 / T₂ - V_r \cdot 8 / 20}{V_r \cdot 8 / 20} \cdot V_n
\] (5)

where

- \(V_n\) : nominal arrester voltage
- \(V_r \cdot 1/T₂\) : the residual voltage of 10 kA current impulse 1/T₂ μs
- \(V_r \cdot 8/20\) : the residual voltage of 10 kA current impulse 8.20 μs,
- R : is considered about 1 MΩ to avoid numerical calculation oscillations

Diaz-Fernandez suggested model: In (Diaz et al., 2001) Diaz and Fernandez presented a simplified IEEE model which faces with less than 4.5% residual peak voltage error for current waves with 1-30 μs frontal to overcome the problems exist in calculation and parameters regulation of IEEE frequency model such as iterative try and error processes and essential information lack. The proposed model is shown in Fig. 11. According to the suggested model, the parameters in Fig. 11, obtain by following stages:

Stage 1: A₀ and A₁ characteristic values are initially determined for lightning discharge currents using residual voltages (using γ = 0.02 for I₀ in a way that I₀ and I₁ are the currents passing through A₀ and A₁ respectively which results in I₀+I₁ = 18/20). It is important to note that the γ = 0.02 assumption entails good accuracy (Fernandez, 2001).
Stage 2: The residual voltage increase percentage for arrester nominal current is calculated through the followings:

$$\Delta V_{res} = \frac{U_{in,T1} - U_{in,8/20}}{U_{in,8/20}} \times 100$$

where,

- $U_{in,T1}$: residual voltage for discharge current with T1 suggested time and nominal amplitude
- $U_{in,8/20}$: residual voltage for lightening discharge current with nominal amplitude and 8.2 μs time interval

Stage 3: Roper L1 amount is selected using $\Delta V_{res} %$, T1 and two following curves (Fig. 12).

Stage 4: According to the fact that the above curves are obtained for 1 kV varistors, the L1 correct value is obtained using the following:

$$n = \frac{U_{in,8/20}}{U_{in,8/20}} \text{ for a complete arrester}$$

$$= \frac{U_{in,8/20}}{U_{in,8/20}} \text{ for a 1KV block}$$

The data of fraction of Eq. (7) is achieved by Table 1 which shows the residual peak voltage in 1 kV varistor.

Stage 5: The terminal capacitor, C_0, is achieved as follows:

$$C_0 = \frac{100}{d} \text{[pF]}$$

where d is total arrester height.

Stage 6: Finally, R is chosen as 1 MΩ for medium voltage arresters, and 10 MΩ for higher voltage levels. This resistance is chosen to avoid numerical calculations oscillations of computer program and is not significantly important.

SIMULATION RESULTS

A Toos arrester factory (In Iran) varistor is simulated in PSCAD (2003) and is qualitatively and quantitatively, compared with the actual wave form for the discharge test (according to IEEE C62.11 standard (1992)). The practical test circuit and the simulation in PSACD/EMTDC are well shown in Fig. 13 and 14. The overall characteristics of the considered varistor are as follows:

- Nominal current: 10kA
- Dimension: diameter x height (dmm x hmm): 50 x 30
- The residual voltage of 8.59/20.1 μs and 10.04 kA is 11.47 kV
- The residual voltage of 4.31/10.5 μs and 9.97 kA is 12.14 kV
- The residual voltage of 250/2500 μs, 75A switching wave is 6.8 kV

The complete test circuit characteristics are as follows:

<table>
<thead>
<tr>
<th>Circuit Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>220 V/80 V, 10 kVA, 50 Hz transformer</td>
</tr>
<tr>
<td>D</td>
<td>200kV, 4 200mA rectifier bridge</td>
</tr>
<tr>
<td>R1, R2</td>
<td>200 MΩ and 20 kΩ dc voltage dividers</td>
</tr>
<tr>
<td>R01</td>
<td>12kΩ charge resistance</td>
</tr>
<tr>
<td>R02</td>
<td>10kΩ discharge resistance</td>
</tr>
<tr>
<td>K1</td>
<td>discharging switch to ground</td>
</tr>
<tr>
<td>C</td>
<td>122μF* pulse capacitor</td>
</tr>
<tr>
<td>R</td>
<td>1, 1.5 and 2 Ω adoption resistances</td>
</tr>
<tr>
<td>L</td>
<td>adoption inductance consists of 10 coils</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lightening discharge</th>
<th>Current 8/20 [A]</th>
<th>Peak voltage [KV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_i</td>
<td>I</td>
<td>10 KA block</td>
</tr>
<tr>
<td>1470</td>
<td>30</td>
<td>1500</td>
</tr>
<tr>
<td>2940</td>
<td>60</td>
<td>3000</td>
</tr>
<tr>
<td>4900</td>
<td>100</td>
<td>5000</td>
</tr>
<tr>
<td>9800</td>
<td>200</td>
<td>10000</td>
</tr>
<tr>
<td>19600</td>
<td>400</td>
<td>20000</td>
</tr>
<tr>
<td>39200</td>
<td>800</td>
<td>40000</td>
</tr>
</tbody>
</table>

Table 1: The residual peak voltage in 1 KV varistor
Fig. 13: Practical test circuit

Fig. 14: Simulating the test circuit in PSCAD (2003)

G : the gap
O : under test device
S : 100 kA (1.4436 mΩ), (2.5838 Ω) measurement shunt resistance
R3, R4 : 1.5 and 8 Ω discharge voltage divider
S1, S2 and S3 : measuring cable(75Ω impedance)

OSC: TDS3012B type oscilloscope. The test and the simulation resulted waves are presented in Figs. 15 to 19. In test obtained curve, the current waveform time scale is two times more than that of the voltage waveform (2.5 μs/Div versus 5 μs/Div). In addition, the current waveform in the practical test is reversely plotted. In this paper, only the 8/20 μs current impulse caused waveforms are illustrated. The obtained waveforms are investigated from quality and quantity viewpoints through the following definitions.

Ip[kA] : peak impulse current
t[μs] Ur[kV] : peak residual voltage
t1[μs] : voltage wave frontal time
t2[μs] : voltage wave rear time
Δ : Delay time of the current peak to the voltage peak
td[μs] : Voltage wave oscillations attenuation time
f[MHz] : Voltage wave oscillations frequency
e% : Error percentage of each parameter
w : density of error according to the importance of which for current and voltage peak values is considered as 1, and is assumed to be 0.001 for attenuation time and oscillations frequency, and equals to 0.1 for other parameters.
Er% : total error percentage calculated as follows as the same as the definition presented in (Penchenat, 1992):

\[Er% = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (w \times e_j)^2 } \] (9)

Also, in continue, each model is investigated from discharged energy amount or on the other hand from the voltage and current under curve area point of view. The comparison and results obtained by discharged energy
The following experimental relation presented in (Penchenat, 1992) is applied to calculate the discharged energy amount since it is difficult to calculate the under curve area:

\[W = k \times V_{\text{max}} \times I_{\text{max}} \text{ [Joules]} \]

(10)
Table 2: Comparison of real result by simulated results for 8/20 μs wave

<table>
<thead>
<tr>
<th>Arrester model</th>
<th>I_p [kA]</th>
<th>U_r [kV]</th>
<th>t_1 [μs]</th>
<th>t_2 [μs]</th>
<th>Δ [μs]</th>
<th>t_d [μs]</th>
<th>f [MHz]</th>
<th>Er%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>10.69</td>
<td>11.30</td>
<td>7.50</td>
<td>25</td>
<td>3.50</td>
<td>2.50</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>-0.46</td>
<td>1.80</td>
<td>-1.18</td>
<td>0.2</td>
<td>1.67</td>
<td>-1.01</td>
<td>-0.07</td>
<td>1.05</td>
</tr>
<tr>
<td>Diaz</td>
<td>10.47</td>
<td>11.63</td>
<td>9.00</td>
<td>25</td>
<td>3.00</td>
<td>3.00</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>-2.51</td>
<td>4.77</td>
<td>0.59</td>
<td>0.2</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.06</td>
<td>5.27</td>
</tr>
<tr>
<td>Durbak</td>
<td>10.32</td>
<td>11.70</td>
<td>6.00</td>
<td>25</td>
<td>6.00</td>
<td>12.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>-3.91</td>
<td>5.40</td>
<td>-2.94</td>
<td>0.2</td>
<td>10.00</td>
<td>0.34</td>
<td>-0.04</td>
<td>4.68</td>
</tr>
<tr>
<td>Pinceti</td>
<td>10.68</td>
<td>11.32</td>
<td>6.50</td>
<td>25</td>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>w×e%</td>
<td>-0.56</td>
<td>1.98</td>
<td>-2.35</td>
<td>0.2</td>
<td>3.33</td>
<td>-1.00</td>
<td>-0.11</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Table 3: Comparison of real result by simulated results for 4/10 μs wave

<table>
<thead>
<tr>
<th>Arrester model</th>
<th>I_p [kA]</th>
<th>U_r [kV]</th>
<th>t_1 [μs]</th>
<th>t_2 [μs]</th>
<th>Δ [μs]</th>
<th>t_d [μs]</th>
<th>f [MHz]</th>
<th>Er%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>65.64</td>
<td>15.79</td>
<td>3.00</td>
<td>9.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>7.36</td>
<td>-6.7</td>
<td>-1.43</td>
<td>-3.33</td>
<td>3.33</td>
<td>0.00</td>
<td>-0.07</td>
<td>4.20</td>
</tr>
<tr>
<td>Diaz</td>
<td>64.47</td>
<td>18.7</td>
<td>15.0</td>
<td>9.00</td>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>5.45</td>
<td>1026</td>
<td>-5.71</td>
<td>-3.33</td>
<td>16.67</td>
<td>-0.1</td>
<td>-0.10</td>
<td>8.08</td>
</tr>
<tr>
<td>Durbak</td>
<td>65.4</td>
<td>17.22</td>
<td>15.0</td>
<td>10.00</td>
<td>3.50</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>6.97</td>
<td>15.3</td>
<td>-5.71</td>
<td>-2.59</td>
<td>13.33</td>
<td>-0.1</td>
<td>-0.10</td>
<td>6.19</td>
</tr>
<tr>
<td>Pinceti</td>
<td>65.52</td>
<td>15.84</td>
<td>2.50</td>
<td>9.00</td>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>w× e%</td>
<td>7.16</td>
<td>-6.6</td>
<td>-2.86</td>
<td>-3.33</td>
<td>10.00</td>
<td>-0.1</td>
<td>-0.10</td>
<td>5.53</td>
</tr>
</tbody>
</table>

Table 4: Discharged energy to ground in each model [Jules]

<table>
<thead>
<tr>
<th>Arrester model</th>
<th>Wave</th>
<th>Er%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/10 μs</td>
<td>4/10 μs</td>
</tr>
<tr>
<td>IEEE</td>
<td>2512</td>
<td>10779</td>
</tr>
<tr>
<td>e%</td>
<td>1.33</td>
<td>-0.05</td>
</tr>
<tr>
<td>Diaz</td>
<td>2532</td>
<td>12538</td>
</tr>
<tr>
<td>e%</td>
<td>2.14</td>
<td>16.26</td>
</tr>
<tr>
<td>Durbak</td>
<td>2511</td>
<td>11712</td>
</tr>
<tr>
<td>e%</td>
<td>1.29</td>
<td>8.61</td>
</tr>
<tr>
<td>Pinceti</td>
<td>1514</td>
<td>10793</td>
</tr>
<tr>
<td>e%</td>
<td>1.41</td>
<td>0.08</td>
</tr>
</tbody>
</table>

where, I_{max} and V_{max} are the peak discharge current (in kA) and peak discharge voltage (in kV) respectively and k is considered as 20.8 and 10.4 for 8/20 and 4/10 μs waves, respectively. The results are shown in Table 4.

CONCLUSION

The followings are generally resulted from the tables and simulations: The IEEE 3.4.11 workgroup presented model is the best model from quality and quantity points of view and presents better voltage-current waveforms against fast steep front waves.

The IEEE model encounters with problem in obtaining L1 amount, and A1 and A0 nonlinear resistances regulation if the residual voltage value caused by switching impulse current is not determined properly. The Diaz-Fernandez model is not significantly accurate specially in 4/10 μs impulse wave despite it is well accurate in 8/20 μs waves residual voltages.

The Pinceti model is well accurate in the mentioned time range according to its related algorithm and due to its emphasis on particular front time. Therefore, the Diaz-Fernandez model has a good accuracy just in 8/20 μs wave range.

The Pinceti model does not detect the oscillations of residual voltage waveform rear because of capacitor neglecting in the model structure.

REFERENCES

Diaz, R., F. Fernandez and J. Silva, 2001. Simulation and Test on Surge Arrester in High-Voltage Laboratory, IPST.

