Exposure to Brucella canis in Owned and Stray Dogs in Grenada, West Indies

1Alfred Chikweto, 1Keshaw, P. Tiwari, 1Sachin Kumthekar, 3Quetin Langeois, 3Jeremy Gozlan, 2Marta Lanza, 2Tara Paterson and 1Ravindra, N. Sharma

1Pathobiology Academic Program, School of Veterinary Medicine, 2Small Animal Medicine and Surgery Academic Program, St. George’s University, P.O. Box 7, Grenada, West Indies 3Ecole Veterinary Institute, Toulouse, France

Abstract: The aim of this cross sectional study was to estimate the prevalence of exposure to Brucella canis in owned and stray dogs in Grenada. Documentation of exposure to this important bacterial pathogen in dogs will facilitate instituting appropriate prevention and control measures and education of the public about potential zoonotic implications. Serum samples were collected from 255 stray and 204 owned dogs in Grenada from 2009 to 2011. Sera were initially screened with the rapid slide agglutination test and the positive samples further tested with 2-mercaptoethanol rapid slide agglutination test. Exposure to B. canis was found in 10 stray dogs but none in owned dogs.

Keywords: Brucella canis, dogs, seroprevalence

INTRODUCTION

Infections with Brucella spp have been reported worldwide in different species of domestic animals and in humans Corbel (2006). The most clinically important Brucella species, Brucella abortus, Brucella melitensis, Brucella canis and Brucella suis appear to be host specific, although infections of other animal species may occur sporadically. For example, dogs can acquire infection with B. abortus, B.melitensis or B. suis from ingesting aborted ruminant or swine fetuses and placental material. They can then excrete these bacteria which may present a serious hazard to humans and livestock (Acha and Szyfres, 2003).

Canine brucellosis, due to B. canis, was first recognized in 1966 in the USA in episodes of abortion and reproductive failure in kennels (Carmichael, 1966). Infection with B. canis is a significant cause of reproductive failure in dogs worldwide (Wanke, 2004). The infection localizes in the reproductive system where it characteristically causes placentitis with subsequent abortion and still births in pregnant bitches (Lopes et al., 2010). Typically, abortions occur in the last trimester of pregnancy. However, early embryonic deaths and resorption have been reported few weeks after mating, and may be mistaken for failure to conceive (Lopes et al., 2010). In male dogs, B. canis has been implicated in epididymitis, orchitis, poor sperm quality and loss of libido (Hollett, 2006). In most cases, many dogs remain asymptomatic and appear to be healthy, despite being infected (Behzadi and Mogheiseh, 2011).

Infection due to B. canis has been reported in different parts of the world. It is endemic in the Southern states of the USA and South America but sporadic in Europe and Asia (Corrente et al., 2010). In Africa, it has been reported in Nigeria (Adesiyun et al., 1986; Cadmusa et al., 2011). In Canada seroprevalence surveys have been undertaken in Ontario and Quebec (Bosu and Prescott, 1980; Higgins et al., 1979). Mosallanejad et al. (2009) have reported evidence of B.canis exposure in dogs from Iran.

The status of brucellosis in the Caribbean food animals has been reported for Trinidad (Adesiyun and Cazabon, 1996); Antigua, Cuba, Haiti, Honduras, Jamaica, Dominican republic, Belize, Barbados and St. Kitts (Corbel, 1997); and Grenada (Stone et al., 2012). In dogs evidence of B. canis exposure has already been reported by Brown et al. (1982) in Trinidad. We are not aware of any other published study on B. canis in dogs in the other Caribbean islands including Grenada. The objective of this study was to estimate the prevalence of antibodies to B. canis in owned and stray dogs and to compare prevalence in the two populations of dogs.

MATERIALS AND METHODS

Peripheral blood samples from 459 dogs (204 owned and 255 stray dogs) were collected from the
parishes of the tri-island state of Grenada from 2009 to 2011. Owned dogs were part of One health-One Medicine camps held by the School of Veterinary Medicine, St. George’s university. Stray dogs were captured by the Veterinary services division of Ministry of Agriculture in conjunction with the Ministry of Health of Grenada in a stray dog control program. Age, sex, breed, body condition and location were recorded for both groups of dogs. Approximately 5 ml of blood were collected by venipuncture into serum tubes and allowed to clot before centrifugation. Serum was harvested from each sample and stored at -20°C until tested. Sera were first screened with a commercial rapid slide agglutination test (RSAT, Symbiotic corporation, USA). Samples that were positive were further tested by a 2-mercaptoethanol rapid slide agglutination test (2ME-RSAT, Symbiotics corporation, USA) for detection of IgG antibodies. Testing was performed according to the manufacturer’s instructions (Symbiotics corporation, USA).

RESULTS

Four hundred fifty nine dog sera from 204 owned and 255 stray dogs were tested for antibodies against *B. canis* antigen. Out 459 samples, 14 stray dogs and 5 owned dogs tested positive for the Rapid Slide Agglutination Test (RSAT). On the subsequent test of 2-mercaptoethanol rapid slide agglutination test (2-ME-RSAT), 10 stray dogs tested positive but none of the owned dogs was positive (Table 1). Therefore, the overall prevalence calculated based on dogs that tested positive to both tests is 2.2%. There was a highly significant difference between stray and owned dogs in terms of infection or exposure to *B. canis* (p = 0.0062, Fishers exact test). The 10 stray dogs that tested positive were from the parishes St. George (3), St. Andrew (6) and St. Mark (1). They comprised 5 males and 5 females (Table 2).

DISCUSSION

The Rapid Slide Agglutination Test (RSAT) has high sensitivity but low specificity; it is rare for false negatives but as many as 50-60% false positives do occur (Hollett, 2006). RSAT is not definitively diagnostic since cross reaction occurs with *B. ovis*, Bordetella, Pseudomonas, Moraxella-type organisms, and other Gram-negative bacteria (Wanke, 2004). It therefore becomes necessary to retest the RSAT positive samples with a more specific test, hence the use of a subsequent 2 ME-RSAT in this study. The modified RSAT (2ME-RSAT) adds 2-Mercaptoethanol (2-ME) drops to inactivate IgM thereby increasing the specificity of the test.

Based on the criterion mentioned above, we found a prevalence of 2.2% for *B. canis*. All the positive sera were from stray dogs. A study in stray dogs in Trinidad, a neighboring island of Grenada found a prevalence of 5.3% (Brown et al., 1982). The difference in prevalence between Grenada and Trinidad was not significant (p>0.05, X²). In the Southern states of the USA, Brown et al. (1976) found an overall prevalence of 5% for *B. canis* antibodies in both owned and stray dogs. Of these, 9 were stray dogs and one was a pet dog. Similar to our findings, the difference between stray and owned dogs was significant (p<0.05, X²). Another study in Memphis, USA got a prevalence of 8.3% for *B. canis* and in stray dogs only but none in owned dogs (Lovejoy et al., 1976). This was similar to our study, though the prevalence was relatively higher than what we found. In another geographic region, southwest Nigeria, results showed that 5.46% and 0.27% of the dogs screened were seropositive to *B. abortus* and *B. canis*, respectively. The prevalence for *B. canis* was significantly lower than in our study. Although we only screened dogs for *B. canis*, it would be suggested to screen them for *B. abortus* and *B. melitensis* as well to determine if dogs in Grenada are also exposed to these organisms.

Although the prevalence of 2.2% we found is relatively low, there is continuous need for a stray dog control program and surveillance in owned and stray dogs. Despite this low prevalence, the potential zoonotic risk exists especially in the stray dog population in Grenada. Public health education on the danger of canine brucellosis is therefore recommended. This study has for the first time estimated the

Table 1: Dog category and test result for RSAT and 2-ME-RSAT

<table>
<thead>
<tr>
<th>Dog type</th>
<th>RSAT</th>
<th>2-ME-RSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Tested</td>
<td>Positive</td>
</tr>
<tr>
<td>Owned</td>
<td>204</td>
<td>5</td>
</tr>
<tr>
<td>Stray</td>
<td>255</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>459</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 2: Number of dogs tested according to parish/region and prevalence for each

<table>
<thead>
<tr>
<th>Parish/region</th>
<th>Tested</th>
<th>Owned</th>
<th>Stray</th>
<th>No. positive</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. George</td>
<td>286</td>
<td>166</td>
<td>120</td>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>St. David</td>
<td>33</td>
<td>5</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St. Andrew</td>
<td>29</td>
<td>0</td>
<td>29</td>
<td>6</td>
<td>20.7</td>
</tr>
<tr>
<td>St. John</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St. Patrick</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St. Mark</td>
<td>58</td>
<td>0</td>
<td>58</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Carriacou</td>
<td>33</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
prevalence of *B. canis* in dogs from Grenada. Future studies should focus on isolation of the organism and to determine if other *Brucella* spp are affecting dogs in Grenada.

ACKNOWLEDGEMENT

This study was supported by a grant from the small research initiative fund, St. George’s University.

REFERENCES

