Average Stem Biomass of *Campanula propinqua* in Shanjan Rangelands, East Azerbaijan, Iran

Ghassem Habibi Bibalani
Department of Agriculture, Shabestar Branch, Islamic Azad University, Shabestar, Iran

Abstract: Plants can be used for animal grazing, in wind erosion control, to reduce water flow rates, and to increase evaporation and transpiration. In the NW of Iran (East Azerbaijan Province), rangelands previously used to animal grazing were changed to agricultural land use; this vegetation is unsuitable vegetation coverage. We studied *Campanula propinqua* to determine its stem biomass characteristics. Data were collected using an accidental sampling methodology (1*1 m). In total, 4 plots were identify and 20 samples were collected for this research. In the minimum, maximum and mean stem biomass for this plant were found to me 0.8, 2.1 and 1.5 g, respectively.

Key words: *Campanula propinqua*, Iran, rangeland, stem Biomass

INTRODUCTION

Rangeland ecosystem stabilizing, optimum and continual utilization of the range without studding and knowing the influencing factors on its segments and animal pasturage are of special importance (Bibalani et al., 2011a, b; Mozaffarian, 2007; Shadkami-Tili, 2010). There are different methods of evaluating rangelands and all of them have advantages and disadvantages. Factors such as vegetation species composition, annual production, area coverage, plant density, soil surface coverage, constitution, and presence of succulence plants were used (Bidlock et al., 1999; Mogaaddam, 2001) but estimation of these parameters are time consuming and expensive.

Fresquez et al. (1990) reported an increase in vegetative production and forage quality of Blue Grama (Mata-Gonzalez et al., 2002). Benton and Wester (1998) reported an increase in Tobosagrass (Hilaria mutica) yield following applications of biosolids at levels of 7, 18, and 34 dry Mg/ha in the Chihuahuan Desert. Although dormant season applications of biosolids seem to be more beneficial for plant growth than growing season applications during the year of biosolids application (Benton and Wester, 1998), explanations for this phenomenon have not been documented (Mata-Gonzalez et al., 2002).

Most evidence is related to its negative effect on aboveground vegetative and reproductive plant biomass (Hutchings and John, 2003; Milchunas and Lauenroth, 1993), changes in the spatial patterning of plant canopies and soil resources (Adler et al., 2001; Bertiller and Coronato, 1994; Callaway, 1995; Schlesinger et al., 1990), the reduction of soil seed banks (Bertiller, 1996; 1998), the decrease in the availability of safe micro sites for plant reestablishment (Bisigato, 2000; Oesterheld and Sala, 1990), and the invasion of woody plants (Hedlund et al., 2003; Milchunas and Lauenroth, 1993; Schlesinger et al., 1990).

Aboveground defoliation can modify the partitioning of assimilates between belowground and aboveground organs and consequently the root growth of defoliated plants (Belsky, 1986; Coppin and Richards, 1990; Hedlund et al., 2003; Snyder and Williams, 2003).

In this research we have studied the amount of above ground biomass and occurrence of *Campanula propinqua* (Gharaman, 2003) (Fig. 1) at the rangeland area of Shanjan village, Shabestar district, NW Iran. This parameter needs more attention, but it is one of the determining Factors of rangeland ecosystem.

MATERIALS AND METHODS

The research area is part of Shanjan rangeland in Shabestar district with distance about 5 km from Shabestar city. The terrain in this area is hilly and we carried out the study on a site with a northerly aspect (Bibalani et al., 2011a, b) (Fig. 1). This region is component of Iran-Turan Flora with elevation between 1700-1850 m (Bibalani et al., 2011b).

Campanula is one of several genera in the family Campanulaceae with the common name bellflower. It takes its name from their bell-shaped flowers—*campanula* is Latin for "little bell". The genus includes over 500 species and several subspecies (Wikipedia, 2011), CAMPANULA PROPINQUA (Table 1, Fig. 2) is one annual plant of them, that have been studied in this research.
In this research, Stem biomass has been sampled in May and June, 2010. For sampling, we used an accidental sampling methodology (1*1 m plot) in this research and selected 20 (4 plots with 5 sub sample for each of them) samples in total (Xiaoyan et al., 2001) (Fig. 3).

After sapling from studding area, they have been scaled fresh weight of above ground part of plant with sensitive scale then dried by Avon set in 80°C during 24 h (Xiaoyan et al., 2001) and scaled dried weight separately. This study have been work in Shanjan rangeland at Shabestar district in East Azerbaijan, Iran in summer 2010.

RESULTS

Results from this study showed that the maximum, minimum and medium stem biomass of *Campanula propinqua* in the study area were 0.8, 2.1 and 1.5 g, respectively (Fig. 4).
Stem height *Campanula propinqua* was unsteady from 50 to 95 mm, that average of it is about 65 mm.

CONCLUSION

In total of 4 plots were identified and 20 amples were studied in this research work. From 20 samples about 66.7% of stem weight was lost when samples were dried.

Vegetation species can have an effect on soil chemical and physical properties (Ardekani, 2000). Increasing *Campanula propinqua* species in the study area could cause specific biological qualification, and as this species increasing density of above ground Biomass will increase, and also the amount of Soil protection and stabling will increase specially with wind erosion and soil lost with runoff (Bibalani et al., 2011a, b; Shadkami-Tili, 2010). Study on this plant over ground biomass is so much important information especially for medicinal plant. Joudi and Bibalani (Bibalani et al., 2010) have been studied and recognized some medicinal plant of Ilkhji region, Eastern Azerbaijan Province (Northwestern Iran).

In this study we examined the biomass of this plant and results suggest that changes in the above ground cover of this plant affect by grazing or soil compaction with animal at this area as found in other studies (Abdi et al., 2010; Bibalani, 2011a, b, c; Bibalani et al., 2011a, b; Hedlund et al., 2003; Shadkami-Tili, 2010) and The difference of wet weight and biomass of this plant would be expected in this area (Abdi et al., 2010; Bibalani, 2011a, b, c; Bibalani et al., 2011a, b; Shadkami-Tili, 2010).

This study has revealed and quantified the stem biomass of the *Campanula propinqua* in the Shanjan rangelands, the plant has good biomass in this research area and probably also in other areas where the *Campanula propinqua* is growing that need studding separately in another areas. It is a pioneer study, and the results have given estimations of the stem biomass of the *Campanula propinqua* for the first time in Shanjan rangeland. It is needed for studying this and other shrub species in the area and could be used in identifying plants best suited for rangeland ecosystem stability and specifically for stabilizing surface soil layers especially from water and wind erosion.

ACKNOWLEDGMENT

The authors greatly acknowledge the scientific support from the Islamic Azad University- Shabestar Branch, to the first author in this study. This study is a part of a project entitled "Study on Root development forbs and shrubs on Shanjan Range of the Shabestar area, and their effects on soil surface and subsurface erosion" with project number 51955880630001. The authors also express their sincere appreciation to the anonymous reviewer(s) for their help to improve the paper quality.

REFERENCES

