Sero Prevalence of Brucellosis in Goat in Sokoto, Nigeria

1A.U. Junaidu, 2A.I. Daneji, 1M.D. Salihu, 1A.A. Magaji, 3F.M. Tambuwal, 3M.B. Abubakar and 1H. Nawa \n1Department of Veterinary Public Health and Animal Production,
2Department of Veterinary Medicine, Surgery and Theriogenology
3Department of Veterinary Microbiology and Pathology
Usmanu Danfodiyo University, Sokoto, Nigeria

Abstract: Serum samples were collected from goats slaughtered at the Sokoto metropolis abattoir and were screened using Rose Bengal Plate Test (RBPT), the Serum Agglutination Test (SAT) and the Competitive ELISA (complisa) for brucellosis. A seroprevalence of 22.93% was recorded. The female had more prevalence (28.35%) than the male while the age band of 13-24 months had the highest prevalence of 22.46% Sokoto red was the breed with the highest prevalence of 34.12% while the hot season had the highest prevalence of 28.57%. Due to the zoonotic implications of the disease, there is the urgent need to consider the vaccination of small ruminants against brucellosis in addition to other recommendations suggested.

Keywords: Antibodies, brucellosis, ELISA, goats, Nigeria, prevalence

INTRODUCTION

Domesticated goats are found in all parts of Nigeria and goat meat is a good source of animal protein. Nigeria also derives a handsome sum of money in foreign exchange from exporting goat skin.

Brucellosis in goats has been reported in various parts of Nigeria (Falade, 1974, 1980; Bale, 1980; Ogundipe et al., 1994). Apart from the grave zoonotic consequences, the economic losses associated with the disease are enormous (Esuruoso, 1974, 1977; Oko 1980; Chukwu 1987). Seroprevalence studies estimating small ruminant brucellosis in Nigeria have been conducted by some workers in Sokoto State of Nigeria and Northern Nigeria. However, there is little or no information on brucellosis in goats from Sokoto State. This serological survey work was conducted in Sokoto State of Nigeria to assess the current situation of brucellosis in this northern part of Nigeria.

MATERIALS AND METHODS

This study was conducted between December 2008 and November 2009 in Sokoto, Sokoto state of Nigeria.

Sokoto State is situated in the Northwester part of Nigeria. It is located between longitude 11°30’ to 13°50’ East and latitude 4° to 6° North. It has a land area of 26,648 48 square kilometers. In terms of vegetation, the State falls within the Savannah zone. It is the second largest producer of livestock in Nigeria. It also has the famous Sokoto red goat whose skin is used in the production of Moroccon leather.

Blood samples (10 mls) were aseptically collected from goats at the Sokoto metropolitan abattoir. A total of 532 samples were collected during the period of the study. Out of this number 264 were male while 268 were females. Similarly 119 were below one year of age, 138 were within 1-2 years of age while 275 were above 2 year of age. On breed distribution 338 were Sokoto red, 103 Sahel while 91 were crosses of Sokoto red and Sahel breeds.

The Rose Bengal Plate Test (RBPT) and the serum Agglutination test (SAT) as well as the Competitive Elisa (complisa) were used in this study.

The Rose Bengal plate test: This was carried out using standard Rose Bengal Plate Test antigen obtained from Central Veterinary Laboratory, Weybridge U.K., according to the method of Alton et al., (1975). Equal volumes (0.03 ml) of antigen and test serum were mixed thoroughly on the glass plate of the test box using a tooth pick and the box was hand rocked for 4 min. Samples that showed signs of agglutination were recorded as positive while those with no sign of agglutination were recorded negative.

Serum agglutination Test: This test was carried out as described by Alton et al., (1975). For each of the samples

Corresponding Author: M.D. Salihu, Department of Veterinary Public Health and Animal Production, Usmanu Danfodiyo University, Sokoto, Nigeria
that was positive in the RBPT two fold dilution of test sera from 1:10 (0.05 ml serum mixed with 0.45 ml phenolized saline) to 1:1280 was made. To each 0.5ml tube of phenolized saline serum mixture was added an equal volume (0.5 m) of the diluted (1:10) antigen resulting in a double (two-fold) dilution. The tubes containing the antigen- serum mixture were covered, shaken and incubated at 37°C for 24 h. A positive reaction was one in which the serum-antigen mixture was clear with precipitate at the bottom not disrupted by gentle agitation. While a negative reaction is one in which the serum antigen mixture was turbid and gentle shaking revealed no precipitate at the bottom (Anonymous, 1981; Brisebe et al., 1993). Any serum with agglutination at a dilution of 1:40 (titre of 40) 50 international units) (Alton et al., 1975) and above was recorded as positive sample.

Competitive elisa: (compelisa). The competitive Elisa kit was obtained from Veterinary Laboratory Agency, Weybridge, United Kingdom. The reagents in the kit were reconstituted as directed by the manufacturers. These included diluting buffer, washing solution, stopping solution, conjugate and control sera. The test procedure was carried out as per the manufacturer’s protocol.

RESULTS

Out of the 1,327 slaughtered goats during the period of study, 532 goats were screened, out of the 532 screened samples all together a total of 122 samples were positive for brucella (Abortus and melitensis). 64(12.03%) were positive for *Brucella abortus* while 58 samples (10.90%) were positive for *Brucella melitensis*. Results of the SAT indicated that 29 samples had a titre of 1:160, 21 samples had a titre of 1:80 while 13 samples had a titre of 1:40.

Table for the titres indicating *B. abortus* and *B. melitensis*.

On sex distribution, 46 male samples (17.92%) out of 264 samples screened were positive while 76 (28.35%) female samples were positive out of the 268 screened. There was a significant association between brucella infection and sex (Table 1a, b).
Table 4a: Season Distribution of Brucella infection in goats. (Brucella abortus)

<table>
<thead>
<tr>
<th>Season</th>
<th>Total number</th>
<th>RBPT</th>
<th>SAT</th>
<th>Compelisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>211</td>
<td>24 (11.37%)</td>
<td>24 (11.37%)</td>
<td>24 (11.37%)</td>
</tr>
<tr>
<td>Hot</td>
<td>126</td>
<td>14 (11.11%)</td>
<td>14 (11.11%)</td>
<td>14 (11.11%)</td>
</tr>
<tr>
<td>Wet</td>
<td>195</td>
<td>26 (13.35%)</td>
<td>26 (13.35%)</td>
<td>26 (13.35%)</td>
</tr>
<tr>
<td>Total</td>
<td>532</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 4b: Season Distribution of Brucella infection in goats. (Brucella melitensis)

<table>
<thead>
<tr>
<th>Season</th>
<th>Total number</th>
<th>RBPT</th>
<th>SAT</th>
<th>Compelisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>211</td>
<td>21 (9.55%)</td>
<td>21 (9.55%)</td>
<td>21 (9.55%)</td>
</tr>
<tr>
<td>Hot</td>
<td>126</td>
<td>15 (11.90%)</td>
<td>15 (11.90%)</td>
<td>15 (11.90%)</td>
</tr>
<tr>
<td>Wet</td>
<td>195</td>
<td>22 (11.29%)</td>
<td>22 (11.29%)</td>
<td>22 (11.29%)</td>
</tr>
<tr>
<td>Total</td>
<td>532</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
</tbody>
</table>

On age, 42 (21.10%) out of 119 screened samples were positive in the age band of 0-12 months. In the age band of 13-24 months 31 (22.46%) out of 138-screened samples were positive while 49 (17.81%) out of 275 samples were positive in the age band of goats above 24 months of age. There was no association between brucella infection and age (Table 2a, b).

On breed distribution, Sokoto red recorded the highest prevalence with 86 positive (34.12%) out of 338 samples. This was followed by Sahel with 26 positive samples (25.24%) out of 103 screened. Crossbreed recorded 10 positive (10.98%) out of 91 screened samples. There was no association between brucella infection and breed (Table 3).

On seasonal variation, samples screened during hot season recorded the highest prevalence of 28.57% with 34 out of 126 screened samples testing positive, in the wet season a prevalence of 24.61% was recorded while in the dry season a prevalence of 21.32% was observed. There was no association between brucella infection and season (Table 4a, b).

DISCUSSION

The prevalence of *Brucella abortus* in goats obtained in this study may be attributed to the grazing habit in this part of the country where cattle graze with sheep and goats and are housed together. This close contact may likely aid in the transmission of *Brucella abortus*.

The detection of higher antibody titre in does than in bucks suggests that female animals are generally more susceptible to brucella infection than the males (Keppie et al., 1965).

The economic loss resulting from bovine brucellosis in Nigeria as at 1979 was put at $223.2 million (Esuruoso, 1977). With the prevalence of brucellosis in goats and other small ruminants, the high economic loss and public health implications could be enormous. This therefore calls for he introduction of mass vaccination for small ruminants. Large-scale sero monitoring exercise of ruminants and human beings at risk should also be done to assess the level of infection and diseases in both animals and humans in Nigeria.

REFERENCES

