Effect of Soybean Oil Supplemented Diet on Fatty Acid Level and Lipid Profile of Albino Rats

1Friday O. Uhegbu, 1Amadike E. Ugbogu, 1Kingsley C. Nwoku and 2Victor C. Ude
1Department of Biochemistry, Abia State University, PMB 2000, Uturu-Nigeria
2Department of Medical Biochemistry, College of Medicine, Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria

Abstract: This aim of this study is to evaluate the effect of soybean oil supplemented diet on the fatty acid level and lipid profile of male albino rats. Forty healthy male albino rats weighing between 96-110 g and aged 6 weeks were used. The rats were placed randomly into four groups of ten animals each. Group 1 served as control and had no soybean oil in their feed. Group 2-4 was placed on soybean oil supplemented diet 10, 20 and 30% respectively. The experiment lasted for 14 days. The results showed that the animals had significant (p<0.05) increase in body weight compared with the control. Triacylglycerol, phospholipid and total cholesterol level were also significantly (p<0.05) decreased, 80.46±3.76 to 78.46±3.22; 15.36±0.34 to 10.12±0.75; and 116.65±6.38 to 110.95±6.36 mg/dL respectively. Very Low Density Lipoprotein (VLDL) and Low Density Lipoprotein (LDL) were also significantly decreased, 15.56±2.56 to 13.45±2.76; 68.88±2.54 to 56.59±2.14 mg/dL respectively. However High Density Lipoprotein (HDL) showed significant (p<0.05) increase 60.37±1.36 to 65.75±1.89 mg/dL. Cholesterol, triacylglycerol and fatty acids are significant and independent risk factors of adverse cardiovascular events. The clinical and nutritional implication of these results is discussed.

Keywords: Arthrosclerosis, cardiovascular disease, cholesterol, lipogenesis, osteoarthritis

INTRODUCTION

Fatty acids are carboxylic acids with hydrocarbon chains ranging from 4 to 36 carbons. The fatty acids that occur in natural fats are usually straight chain derivatives containing an even number of carbon atoms (Robert and Harwood, 1988). The main pathway for de-novo synthesis of fatty acids (lipogenesis) occurs in the cytosol. This system is present in many tissues, including the kidney, liver, brain, lung, mammary gland and adipose tissue (Kim, 1997). The nutritional state of the organism regulates lipogenesis. Thus the rate is high in the well-fed animal whose diet contains a high proportion of carbohydrate. It is depressed under conditions of restricted caloric intake, especially on a fat diet or when there is a deficiency of insulin as in diabetes mellitus (Warldaw and Kessel, 2002).

Cholesterol is the major steroid found in animal tissues in the form of lipoproteins either in free forms inside the cells or combined form as esters in the blood circulation. Free cholesterol is usually converted to bile acids, while the cholesterol esters are the major storage and transport forms of cholesterol (Murray et al., 1990). Unsaturated fatty acids in phospholipids of the cell membrane are important in maintaining membrane fluidity. The transport of cholesterol to and fro the liver is mediated by Low Density and High Density Lipoproteins (LDH and HDL). HDL is called the 'good cholesterol since it can exchange it with other lipid carriers and transports it to the liver for disposal in bile (Witztum, 1994; Vance and Vance, 1996).

The majority of clinical problems related to fatty acid metabolism are associated with processes of oxidation. Triacylglycerides are the most abundant family of the lipids and the major component of depot or storage lipids in plants and animal cell. It is a combination of glycerol and fatty acids (Chow, 1992; Vessby, 1994).

Soybean is a frost sensitive annual herb belonging to the family fabacea with diploid number of chromosomes (Hymowitz and Newell, 1981). It is grown commercially in over thirty-five countries of the world, with about 90% of the current world production coming from USA, Brazil, China and Argentina (Brown et al., 1985). As a garden plant, soybean can be eaten green shelled (though they are not easy to separate from the pods), salted, roasted or dried. More commonly, soybean are used in human food as flour,
incorporated with wheat flour to round out the protein content in bread, cakes, cookies and crackers. It is also used in soups and as an extender in potted meats, confectionaries and butter (Cowman, 1973). Soybean as a nutritional supplement is very essential; it is the only plant source that offers all eight essential amino acids in the amount needed. It has more non-essential amino acids than animal proteins (Cowman, 1973). The soybean seed is composed of 50.0±0.94% water, 44.6 to 50.3% protein, 13.5 to 24.2% fat, 14 to 23.9% carbohydrate, 2.8 to 6.3% fiber and 3.3 to 6.4% ash. The soybean accounts for approximately 50% of the production of oil seed crops in the world.

Soybean oil is produced from the seeds of the soybean plant. Its seed provides approximately 60% of the world supply of vegetable protein and 30% of the oil (Brown et al., 1985). On crushing the mature beans, around 18% oil could be obtained, the rest being the oil cake or meal, which forms the prime source of protein in animal feeds (Ostland Jr, 2002).

Soybean oil is 61% polyunsaturated fat and 24% monounsaturated fat which is comparable to the total unsaturated fat content of other vegetable oils (~85%). Like other vegetable oils, soybean oil contains no cholesterol. Soybean oil is a highly concentrated source of feed energy. Its caloric value is the major reason for its increased use. The special processing method of soybean oil provides a fat source that is resistant to rancidity (Walter and George, 1922; Murray, 1993).

Liquid soybean oil is low in saturated fat, contains no trans fat and is high in poly- and monounsaturated fats. It is also the principal source of omega-3 fatty acids in the United State diet and the primary commercial source of vitamin E as well. Soybean oil is also used as a nutritional supplement in intravenous feedings (Zhang et al., 1997; Ostland Jr, 2002).

The present study investigated the effects of soybean oil supplemented diet on fatty acid levels and lipid profile of Albino rats.

MATERIALS AND METHODS

Animals: Forty healthy male albino rats weighing between 96-110 g and aged 6 weeks were used for this study. The rats were placed randomly into 4 groups of 10 animals each.

Group 1 served as control and had no soybean oil in the feed.

Groups 2 to 4 was placed on the soybean oil supplemented diet 10, 20 and 30%, respectively for 14 days (Table 1). They were allowed feed and water ad libitum. All processes involved in the handling and the experiment was carried out according to standard protocols approved by the animal ethics committee of the faculty of Biological and Physical Sciences, Abia State University, Uturu.

RESULTS

The effect of soybean oil supplemented diet on the body weight of the experimental animals (Table 2)

Table 1: Dietary composition of soybean oil supplemented feed

<table>
<thead>
<tr>
<th>Diet composition</th>
<th>Control diet (control) g</th>
<th>Soybean oil supplemented diet (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>69.0</td>
<td>59.0</td>
</tr>
<tr>
<td>Fish meal</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Groundnut</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Bone meal</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Palm oil</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>-</td>
<td>10.0</td>
</tr>
<tr>
<td>Vitamin</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Corn starch</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2: Effect of soybean oil supplemented diet on animal weight (g)

<table>
<thead>
<tr>
<th>Soybean oil supplemented diet</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>97.86±0.56</td>
<td>101.56±1.53</td>
<td>101.64±1.74</td>
</tr>
</tbody>
</table>

Values are Mean±S.D. of 10 (n = 10)
shows that there was a significant \(p<0.05 \) increase in body weight of the animals compared to control. The increase seems to be percentage soybean oil dependent. Fatty acid levels decreased significantly \(p<0.05 \) in test animals compared to control, while HDL increased significantly compared to control (Table 3). The effect seems to be percentage soybean oil dependent.

DISCUSSION

The experimental animals gained weight which was significant \(p<0.05 \) compared to the control (Table 2). The significant increase in weight of the animals may have been caused by the soybean oil. Soybean oil is rich in polyunsaturated fatty acids, including the two essential fatty acids, linoleic and linolenic, that are not produced in the body. Linoleic and linolenic acids aid the body's absorption of vital nutrients and are required for human health. These two essential acids are also precursors to hormones that regulate smooth muscle contraction, blood pressure and the growth of healthy cells (Ostland Jr, 2002). The soybean oil is a vegetable oil whose fats are more digestible than animal fats. Specially processed soybean oil is used to treat osteoarthritis (Murray, 1993).

Total cholesterol level was significantly decreased \(p<0.05 \) in the experimental animals (Table 3). Soybean oil is low in saturated fat and high in polyunsaturated fatty acids. Pure soybean oil is about 50% linoleic acid and 8% linolenic acid. Soybean oil works to lower cholesterol levels by decreasing cholesterol absorption in the gut. A high ratio of polyunsaturated fatty acids to saturated fatty acids in the diet is a major factor in lowering plasma cholesterol concentrations and is considered to be beneficial in preventing coronary heart disease (Brown and Goldstein, 1984; Anderson et al., 1995). Specific processed parts of soybean oil called unsaponifiables may have a beneficial effect on joints (Murray, 1993). In both clinical trials and population studies, polyunsaturated fats in the diet have been shown to actively lower serum cholesterol levels (Austin and Hokanson, 1994; Glew, 2006; Ayoola et al., 2008).

Nutrition experts recommend limiting total fat consumption to 30% or less of the total daily calories and limiting saturated fats to 10% or less. Saturated fatty acids raise blood cholesterol which can thicken arterial walls and increase the risk of heart disease (Kwiterovich, 2000; Steinberg, 2006).

Phospholipid and Low Density Lipoprotein (LDL) were significantly decreased in the animals (Table 3). The soybean oil supplemented diet may have LDL lowering activity in the animals, hence the significant decrease in phospholipid and LDL. Plant sterols, chemicals derived from soybean oil, are used to lower total cholesterol and “bad” Low-Density Lipoprotein (LDL) cholesterol (Potter, 1995; Ostland Jr, 2002; Holzbeierlein et al., 2005). There was significant \(p<0.05 \) increase in High Density Lipoprotein (HDL). The increase may be due to the presence of omega-3 fatty acid. Canola oil; obtained from rapeseeds, flaxed seed oil and soybean oil contain high levels of omega-3 fatty acid which lowers the risk and predisposition to cardiovascular diseases (Arterburn et al., 2008). But it has been generally agreed among nutritionists that edible oils such as coconut and peanut oils should be avoided due to high content of saturated fatty acids (Enig, 1996). Excessive intake of any fat is undesirable. Other research collected over many years from around the world has shown that populations with diets low in saturated fats have the lowest death rates. As a result, the replacement of saturated fats with reasonable amounts of polyunsaturated fats, such as those found in soybean oil, is recommended. Cholesterol, triacylglycerol and fatty acids are significant and independent risk factors of adverse cardiovascular events (Wierzbicki and Mikhailidis, 2002; Cromwell and Otvos, 2004).

The results of the present study showed that consumption of soybean oil can help in reducing the risk of hyperlipidemia and atherosclerosis which is in agreement with the report of Luc and Fruchart (1991) and Poveda et al. (2005).

Considering the reported reduction in complications of cardiovascular diseases with lowering of plasma lipids concentrations, the use of this oil especially in resource-poor economies by an impoverished populace should be strongly promoted. There may also be need to encourage food processing industries to incorporate this important seed oil in their products.
CONCLUSION

The present study observed that soybean oil supplemented diet caused a significant (p<0.05) decrease in TC, LDL, VLDL, TG and phospholipid and a significant (p<0.05) increase in the level of HDL compared with the control. The results show that the effect of the soybean supplemented diet on the lipid profile of the animals is dose dependent. In conclusion, soybean oil supplemented diets have blood cholesterol and triacylglycerol lowering effect, which may be of clinical benefit to individuals at risk of cardiovascular disease.

ACKNOWLEDGMENT

The authors wish to thank Prof. Chibuzo Ogbaru, Vice Chancellor, Abia State University, Uturu, Nigeria for his financial support. We also appreciate the input of Mr. C. Asumugha for carrying out some of the analysis.

REFERENCES

