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Abstract: In this study we study overlap dimensions in cyclic tessellable regular polygons. Overlap difference and 
area created by tessellable regular polygons inscribed in disks for covering play a significant role in computational 
geometry and signal interference in telecommunication network design. Regular triangles and squares are no 
exceptions except for optimality. We propose general formulae for computing the dimensions of a regular polygon 
inscribed in a disk. The study also leads to formulae for computing the overlap difference of tessellable regular 
polygons in disk covering. We realize that the cyclic regular hexagon has both optimal covering area and minimal 
overlap difference of 17.3 and 86.6% reduction over the original 100% disks size, respectively. 
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INTRODUCTION 

 
Any tessellable regular polygon inscribed in a disk 

is a cyclic tessellable regular polygon. Equilateral 
triangles, squares and hexagons are known to be the 
only tillable regular polygons (Ding, 2010). Any 
regular polygon that can tile has the property of 
covering. These tessellable regular polygons have a lot 
of geometric and algebraic properties when inscribed in 
a disk with fixed radius. The algebraic relationship may 
be formulae for their overlap difference (𝑑), area (𝐴) or 
the relationship between the radius of the disk and the 
edges of the regular polygon. The geometric 
relationship discusses the number of dimensions, the 
number of segments when inscribed in a disk, line and 
rotational symmetry among others.  
 

LITERATURE REVIEW 
 

Covering with regular polygons has been one of 
the most fundamental and yet challenging issues in 
wireless network and found many applications such as 
routing and broad casting (Xu and Whang, 2011). 
Smith (1994) defines covering of the plane with copies 
of 𝐾 as a family {𝐾𝑖} of sets congruent to 𝐾 whose 
union is the plane. A family {𝐾𝑖} which is both packing 
and covering is called tiling.  

Donkoh et al. (2014) emphasized with geometric 
proof that monohedral tilling’s by regular polygons 
have varied overlap difference formulae. But the author 
failed to investigate the relationship between their 
dimensions when inscribed in a disk with fixed radius.  

Lubachevsky and Graham (1997) computed the 
density (covering fraction) when 91 equal-size disks 
optimally packed in a hexagon to be closest to that of a 
circle with the same number of disks packed. This 
geometrically confirms the proof that hexagon 
approximates circle closely than any tessellable regular 
polygon  

Paredes et al. (1998) stated that tiling with squares 
and triangles are very useful tools to study several 
structural and thermo dynamical properties of a wide 
variety of solids. The relationship between the overlaps 
created by equilateral triangles, squares and hexagons 
inscribed in disks has not yet been studied. This 
research paper aim at this relationship as well as the 
dimensions of a regular tessellable polygon that can be 
inscribed in disks with a fixed radius 𝑅1. 
 

COMPUTATIONAL EXPERIENCE 
 

Consider the three tessellable regular polygons 
namely equilateral triangle, squares and hexagons 
inscribed in a disk of radius 𝑅1 and centre O. The 
theorem below hold. 
 
Theorem 1: In any circular disks of radius 

𝑅1, hexagonal apothem 𝑟1 and centre O, we can inscribe 
the following simultaneously: 

 

a) A hexagon of side 𝑅1, or apothem 𝑟1 =
𝑅1√3

2
 

b) A square of side 𝑠 =
2√6

3
𝑟1 or 𝑅1√2  

c) An equilateral triangle of sides 2𝑟1 or √3𝑅1 
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 Proof: Figure 1 shows a disks with radius 𝑅1 hexagonal 

apothem  𝑟1 , a square with dimensions 𝑠 and an 

 
 

Fig. 1: Tessellable regular polygons inscribed in a disk 

 

equilateral triangle with dimensions √3𝑅1 . We find a 

relatiosn ship between the variables 𝑅1,  𝑟1 and 𝑠. 
Consider the following cases. 
 

Case I: 𝑠 = 𝑓(𝑅1): We realize that triangle 𝑂𝑄𝑇 is 
similar to triangle 𝑂𝑀𝐵, with 𝑂𝑇 = 𝐵𝑂 = 𝑅1. From 
triangle 𝑂𝑄𝑇: 
 

𝑐𝑜𝑠300 =
𝑄𝑇

𝑅1
 

𝑄𝑇 =
√3

2
𝑅1 

 ∴ 𝐿𝑇 = 2𝑄𝑇 = √3𝑅1                                           (1) 
 

Considering triangle 𝑂𝐴𝑋: 
 

𝑅1
2 =

𝑠2

4
+

𝑠2

4
 

2𝑅1
2 = 𝑠2 

𝑅1 =
𝑠√2

2
                                                                 (2) 

 

or 𝑠 = 𝑅1√2                                                                 (3) 

 

Case II: 𝑟1 = 𝑓(𝑅1) 𝑜𝑟 𝑓(𝑠) 

Also, in ∆𝑂𝑀𝐵 which is similar to 𝑂𝑄𝑇: 

 

𝑅1
2 = 𝑟1

2 + (
𝑅1

2
)

2

 

 

3𝑅1
2 = 4𝑟1

2 

𝑅1 =
2𝑟1

√3
=

2𝑟1√3

3
 or                                               (4) 

 

𝑟1 =
𝑅1√3

2
                                                              (5) 

 

Substituting Eq. (4) into (3) we have: 

 

𝑆 =
2𝑟1√3

3
× √2 

 

𝑆 =
2√6

3
𝑟1                                                              (6) 

 

 Or 𝑟1 =
3𝑆

2√6
=

𝑆√6

4
                                           (7) 

 

Then 

 

 𝐴𝑀 = 𝑟1 −
𝑆

2
 =

𝑆√6

4
−

𝑆

2
 

 

 𝐴𝑀 =
1

4
(√6 − 2)𝑠 = 𝑓(𝑠)                                     (8) 

 

Also 𝐴𝑀 = 𝑟1 −
𝑆

2
 

 

 = 𝑟1 −
1

2
×

2√6

3
𝑟1 
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 𝐴𝑀 =
1

3
(3 − √6)𝑟1 = 𝑓(𝑟1)                            (9) 

 

Analogous to theorem 1 we generalize for all 

regular polygons as stated in theorem 2. 

 
 

(a) 𝑛 − 𝑔𝑜𝑛 Inscribed in a disk 
 

 
 

(b) Angle at the centre of an  𝑛 − 𝑔𝑜𝑛 

 
Fig. 2: Polygon inscribed in a disk 

 

Theorem 2: Given a circle of radius 𝑅1, we can 

inscribed a regular polygon of side length 

2𝑅1𝑠𝑖𝑛 (
1800

𝑛
), where 𝑛 is the number of sides of the 

regular polygon. 
 
Proof: Suppose the regular polygon has 𝑛 sides. Then 
the two successive radii connecting two internal angle 

is 
3600

𝑛
, 𝑛 ≥ 3. Consider an 𝑛-gon inscribed in a disk as 

shown in Fig. 2: 

 

Then 𝜃 =
1800−

3600

𝑛

2
 

𝜃 = (900 −
1800

𝑛
) 

 

Then, area of ∆𝐴𝑂𝐵 is equivalent to area of ∆𝑂𝐴𝐵. 
mathematically: 
 

1

2
𝑅1

2𝑠𝑖𝑛 (
3600

𝑛
) = 

1

2
𝑆𝑅1𝑠𝑖𝑛 (900 −

1800

𝑛
) 

𝑆 =

1
2 𝑅1

2𝑠𝑖𝑛 (
3600

𝑛 )

1
2 𝑅1𝑠𝑖𝑛 (900 −

1800

𝑛 )
 

 

=
𝑅1𝑠𝑖𝑛 (

1800

𝑛
+

1800

𝑛
)

𝑠𝑖𝑛900𝑐𝑜𝑠 (
1800

𝑛
) − cos 900𝑠𝑖𝑛 (

1800

𝑛
) 

 

=
2𝑅1𝑠𝑖𝑛 (

1800

𝑛 ) 𝑐𝑜𝑠 (
1800

𝑛 )

𝑠𝑖𝑛900𝑐𝑜𝑠 (
1800

𝑛 )
 

 

 𝑆 = 2𝑅1𝑠𝑖𝑛 (
1800

𝑛
) For 𝑛 ≥ 3                           (10) 

Overlap difference in cyclic tessellable regular 

polygon: Tessellable regular polygons inscribed in 

disks overlap with difference (𝑑). This overlap 

difference can be expressed in terms of 𝑅1 or 𝑟1  which 

can be compared to determine the best covering 

technique in GSM cell design or tilling in ancient or 

contemporary art. We consider the three tessellable 

regular polygons namely equi-triangular, square and 

hexagonal polygon. 

 

Type I: Equi-triangular Polygon 

Consider triangle 𝑂𝑄𝑇 in Fig. 1 which is congruent to 

triangle 𝑂𝑀𝐵. Then 𝑀𝐵 = 𝑂𝑇 =
𝑅1

2
 and𝑂𝑀 = 𝑄𝑇 =

𝑟1 . Thus, Eq. (4) and (5) holds: 

 

𝑅1
2 = (

𝑅1

2
)

2

+ (𝑟1)2 

3

4
𝑅1

2 = 𝑟1
2 

𝑅1 =
2

√3
𝑟1 =

2√3

3
𝑟1 

 

Case I: 𝑑 = 𝑓(𝑅1) 

 

𝑑 = 2 (𝑅1 −
𝑅1

2
) 

𝑑 = 𝑅1                                                       (11) 

 

Case II: 𝑑 = 𝑓(𝑟1) 

 

𝑑 =
2𝑟1

√3
=

2√3

3
𝑟1                                         (12) 

 

Case III: 𝑑 = 𝑓(𝑅1, 𝑟1): 

 

 𝑑 = 2 (𝑅1 −
𝑅1

2
) But 𝑅1 =

2√3𝑟1

3
 as in Eq. (5): 

 

= 2 (𝑅1 −

2√3𝑟1

3
2

) 

𝑑 = 2 (𝑅1 −
√3

3
𝑟1) 

 

𝑑 =
2

3
(3𝑅1 − √3𝑟1)                                         (13) 

 

Type II: Square polygon: Consider square 𝑈, 𝑋, 𝑌, 𝑍 

in Fig. 1 with centre 𝑂 and dimension 𝑠 by 𝑠. We 
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compute the overlap difference for this polygon and 

study the occupying difference ratio to that of a disk: 

 

Case I: 𝑑 = 𝑓(𝑅1, 𝑟1) 
 

 𝑑 = 2(𝑅1 − 𝑂𝐴) = 2𝐴𝑀 

= 2 (𝑅1 −
𝑆

2
) 

= 2 (𝑅1 −
1

2
×

2√6

3
𝑟1) 

𝑑 =
2

3
(3𝑅1 − √6 𝑟1)                                             (14) 

 

Case II: 𝑑 = 𝑓(𝑅1): 

𝑑 =
2

3
(3𝑅1 − √6 𝑟1) 

  =
2

3
(3𝑅1 − √6 × 𝑅1√3) 

𝑑 = (2 − √2)𝑅1                           (15) 

Case III: 𝑑 = 𝑓(𝑠): 

 

𝑑 = (2 − √2)𝑅1 

= (2 − √2) ×
𝑆

√2
 

𝑑 = (√2 − 1)𝑆                                         (16) 

 

Case IV: 𝑑 = 𝑓(𝑟1): 

 

𝑑 =
2

3
(3𝑅1 − √6 𝑟1) 

=
2

3
(3 ×

2𝑟1

√3
− √6 𝑟1) 

𝑑 =
2

3
(2√3 − √6)𝑟1                                              (17) 

 

Type III: Hexagon: Consider 𝐵𝐶𝐷𝐸𝐹𝐺 in Fig. 1 with 

radius𝑅1. It is observed that triangle 𝑂𝑀𝐵 is similar to 

triangle 𝑂𝑄𝑇. Thus Eq. (4) and (5) holds. We consider 

the following cases:  

 

Case I: 𝑑 = 𝑓(𝑅1, 𝑟1) = 2(𝑅1 −  𝑟1)                         (18) 

 

Case II: 𝑑 = 𝑓(𝑟1): 

 

𝑑 = 2 (
2√3𝑟1

3
− 𝑟1) 

 

𝑑 =
2

3
(2√3 − 3)𝑟1                                         (19) 

 

Case III: 𝑑 = 𝑓(𝑅1): 

 

𝑑 = 2 (𝑅1 −
√3

2
𝑅1) 

 

𝑑 = (2 − √3)𝑅1                                         (20) 

 

Overlap area in cyclic tessellable regular polygon: 

Similarly, the areas of regular tessellable polygons 

inscribed in disks can be expressed as a function of the 

disk radius 𝑅1, hexagonal apothem 𝑟1  and overlap 

difference 𝑑. We consider the three regular tessellable 

polygons namely equi-triangular, square and hexagonal 

polygon: 

Case I: Equi-triangular polygon: From ∆𝑄𝐿𝑇 in Fig. 

1 we can calculate the area to be: 

 

𝐴𝑇 =
1

2
× Base × perpendicular height 

 

=
1

2
× √3𝑅1 × (𝑅1 +

𝑅1

2
) 

 =
3√3

4
𝑅1

2                                                              (21) 

 

But in Eq. (4) 𝑅1 =
2𝑟1√3

3
, implies: 

 

  𝐴𝑇 = √3 𝑟1
2                                                       (22) 

 

But from Eq. (12) 𝑑3 =
2𝑟1

√3
=

2√3

3
𝑟1 , implies 𝑟1 =

3𝑑3

2√3
: 

 

𝐴𝑇 = √3 ×
9𝑑3

2

6
 

 

 𝐴𝑇 =
3√3

4
𝑑3

2                                                         (23) 

 

Case II: Square polygon: From square 𝑈𝑋𝑌𝑍 in Fig. 

1, we can calculate the area to be: 

 
𝐴𝑠 = 𝑠 × 𝑠 
 

= 𝑅1√2 × 𝑅1√2 
 

 𝐴𝑠  = 2𝑅1
2                                                           (24) 

 

Recall from Eq. (4) 𝑅1 =
2𝑟1√3

3
, then: 

  

  𝐴𝑠 =
8

3
𝑟1

2                                                          (25) 

 

Also, Eq. (14) indicates that 𝑑4 =
2

3
(2√3 − √6)𝑟1 

which means 𝑟1 =
(2√3+√6)

4
𝑑4. 

Thus, our new area can be written in the form: 

  

 𝐴𝑠 =
8

3
×

(2√3 + √6)
2

16
𝑑4

2 

 

  𝐴𝑠 = (3 + 2√2)𝑑4
2                                                   (26) 

 

Case III: Hexagonal polygon: Consider hexagon 

𝐵𝐶𝐷𝐸𝐹𝐺𝑈 as shown in Fig. 1. We have the area to be: 
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𝐴𝐻 = 6 ×
1

2
× 𝑅1 × 𝑅1 × 𝑠𝑖𝑛600 

 

𝐴𝐻 =
3√3

2
𝑅1

2                                                       (27) 

 

Recall from Eq. (4) 𝑅1 =
2𝑟1√3

3
, then: 

 
 

Fig. 3: Equi-triangular tilling in disks 

 

𝐴𝐻 =
3√3

2
×

2𝑟1√3

3
 

 

 𝐴𝐻 = 2√3 𝑟1
2                                                       (28) 

 

Also, in Eq. (19) 𝑑6 =
2

3
(2√3 − 3)𝑟1, implies 𝑟1 =

(2√3+3)

2
𝑑6 where 𝑑6 is the overlap difference of 

hexagon inscribed in a circle. Then: 

 

𝐴𝐻 = 2√3 ×
(2√3 + 3)

2

4
𝑑6

2 

 

 𝐴𝐻 =
3

2
(12 + 7√3)𝑑6

2                                          (29) 

 

Theorem 2: Disks have an overlap difference of 2𝑅1 or 
4√3

3
𝑟1  for covering since it does not tile. The area and 

overlap difference are respectively 𝜋𝑅1
2 =

4

3
𝜋𝑟1

2 and 
𝜋

4
𝑑∞

2 . 

 

Proof: From Fig. 1, we know that equi-triangular 

polygon has an overlap difference of 𝑅1 as in Eq. (11). 

But the diameter of the disks is 2𝑅1 which is twice that 

of the overlap difference of an equi-triangular polygon. 

Figure 3 illustrates equi-triangular tile. 

With side𝑠, apothem 
𝑅1

2
 inscribed in a disk with 

radius 𝑅1. 
Figure 3 six (6) equal segments completely cover a 

disks circumscribed on equi-triangular tilling whereas 3 

equal segments completely covers each equi-triangular 

tile. So the relationship between their overlap difference 

in covering will be 2𝑅1 is to 𝑅1 respectively. Thus 

disks cover with overlap difference of 2𝑅1.  

It follows from Eq. (4) that 𝑅1 =
2𝑟1√3

3
. Hence 

diameter of circle (overlap difference of regular 

polygon of n sides as n approaches infinity), 𝑑∞ is: 

 

 𝑑∞ = 2 ×
2𝑟1√3

3
 

 

 𝑑∞ =
4√3

3
𝑟1                                                        (30) 

Similarly, the area of circle is:  

 

𝐴𝑐 = 𝜋𝑅1
2 

 𝐴𝑐 =
4𝜋

3
𝑟1

2                                                         (31) 

 

From Eq. (30) 𝑟1 =
3𝑑∞

4√3
 then: 

 

𝐴𝑐 =
4𝜋

3
×

9𝑑∞
2

48
 

 

𝐴𝑐 =
𝜋

4
𝑑∞

2                                                        (32) 

 

Ratio of overlap difference and area for tesselable 

regular polygons inscribed in disks: Table 1 shows 

the relationship between the overlap difference and area 

for three tessellable regular polygons inscribed in a disk 

with radius 𝑅1, hexagonal apothem 𝑟1  and their 

occupying ratio or covering fraction to that of the disks. 

From Table 1 as radius increases overlapped area 

decreases according to inverse square law because 

curvature of circular shape of signal gets larger and 

larger. We deduce that for a hexagon (𝐻), square (𝑆) 

and equi-triangular (𝑇) polygon, the following 

inequality holds for their overlap difference terms of: 

  

a) Radius of disks(𝑅1): 𝐻(2−√3)𝑅1
< 𝑆(2−√2)𝑅1

< 𝑇𝑅1
 

b) Radius of disks and apothem (𝑅1, 𝑟): 𝐻2(𝑅1− 𝑟1) <

𝑆2
3⁄ (3𝑅1−√6 𝑟1) < 𝑇2

3⁄ (3𝑅1−√3𝑟1)  

c) Apothem (𝑟): 𝐻2

3
(2√3−3)𝑟1

< 𝑆2

3
(2√3−√6)𝑟1

< 𝑇2√3

3
𝑟1

. 

 

Thus, (a), (b) and (c) implies that the hexagon has 

the least overlap width and therefore is best suited for 

geometric covering using polygons. Hexagonal tiling 

with least overlap difference implies least overlap area 

or wide non overlapping area. It is expected that the 

hexagonal covering define in terms of the overlap area 

will be greater than that of a square and an equi- 

triangular polygon. This coverage area defined in terms 

of:  

 

d) Radius of disks (𝑅1): 𝐻3√3

2
𝑅1

2 > 𝑆2𝑅1
2 > 𝑇3√3

4

.  
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e) Overlap difference (𝑑): 𝐻3

2
(12+7√3)𝑑2 >

𝑆(3+2√2)𝑑2 > 𝑇3√3

4
𝑑2

  

 

It is evident that regular hexagon has the maximum 

coverage area 82.7% of disk area or least overlap 

difference 13% of disk difference and is therefore the 

best geometric object for optimal disk covering in a 

plane. 
Table 1: Each overlap difference, area and their ratio for cyclic tessellable regular polygons   

Tessellable regular Polygon Vrs. Disks Disks (𝐷) Triangle (𝑇) Square (𝑆) Hexagon (𝐻) 

𝑑 = 𝑓(𝑅1 , 𝑟1) non 2

3
(3𝑅1 − √3𝑟1) 

2

3
(3𝑅1 − √6 𝑟1) 

2(𝑅1 −  𝑟1) 

 

𝑑 = 𝑓(𝑅1) = 𝑔(𝑟1) 

2𝑅1  𝑅1  (2 − √2)𝑅1  (2 − √3)𝑅1  

 4√3

3
𝑟1    2√3

3
𝑟1 

2

3
(2√3 − √6)𝑟1  

2

3
(2√3 − 3)𝑟1  

Overlap difference ratio 𝑑∗ = (
𝐷

𝐷
:

𝑇

𝐷
:

𝑆

𝐷
:

𝐻

𝐷
) 100% 50% 29.3% 13.4% 

Area = 𝑓(𝑅1) = 𝑔(𝑟1) 𝜋𝑅1
2 3√3

4
𝑅1

2 
2𝑅1

2 3√3

2
𝑅1

2 

 4

3
𝜋𝑟1

2 
√3𝑟1

2 8

3
𝑟1

2 
√3𝑟1

2 

Overlap  area  ratio   

𝑑0 = (
𝐷

𝐷
:

𝑇

𝐷
:

𝑆

𝐷
:

𝐻

𝐷
) 

100% 41.3% 63.7% 82.7% 

𝐴𝑟𝑒𝑎 = 𝑓(𝑑) 

 

𝜋

4
𝑑∞

1  3√3

4
𝑑3

2 
(3 + 2√2)𝑑4

2 3

2
(12 + 7√3)𝑑6

2 

 
DISCUSSION OF RESULTS 

 
Three tessellable regular polygons with hexagonal 

apothem 𝑟1  were inscribed in a disk of radius 𝑅1 
resulted in a hexagon of dimension 

𝑅1  (or apothem 
𝑅1√3

2
), a square with side 

2√6

3
𝑟1 (or 𝑅1√2) or an equi-triangular polygon with side 

2𝑟1 (or √3𝑅1). This was generalize to regular polygons 

with dimension 2𝑅1𝑠𝑖𝑛 (
1800

𝑛
) for 𝑛 ≥ 3. We computed 

the overlap difference for these regular polygons. As a 

result hexagon overlap with a difference of 
2

3
(2√3 − 3) 

r1 (or (2-√3)R1), square overlap with 
2

3
(2√3 − √6)𝑟1 (or 

(2-√2)R1) and an equilateral triangle overlap with 

difference of 
2√3

3
𝑟1 (𝑜𝑟 𝑅1). We realize that hexagon 

occupies the least overlap difference of 13.4% as 
compared to 29.3% for a square and 50% for a regular 

triangle. Overlap area calculated to be 
3√3

2
𝑅1

2 for 

hexagonal tessellation is 82.7% approximate to the area 
of a disks. That of square and equi-triangular polygon 
approximate at 63.7 and 41.3% respectively. These 
values could be used to judge the honeycomb 
conjecture that hexagon is the most efficient way to 
tessellate the plane in terms of the total perimeter per 
area coverage. Overlap area expressed as a function of 
the difference could not be uniquely formulated for all 
regular polygons since there is no rule connecting the 
number of sides and the overlap difference. 

 

CONCLSUION 
 

Calculation of amount of overlapping coverage 

area is important in cellular system as the total amount 

of   signal  interference   depends   on  the   overlapping  

coverage area. This amount of signal interference plays 
an important role in making the decision of handover. A 
closed form of an optimal tessellable hexagonal 

coverage with overlap difference of (2 − √3)𝑅1 is 

presented in this study and the calculation of minimum 

overlapping coverage area 
3√3

2
𝑅1

2 as compared to that of 

a square or equi-triangular tile in Table 1. We use 
geometry of regular tessellable polygons inscribed in 
disks to obtain the optimality and it is the first study 
that combines the three tessellable regular polygons 
inscribed in a single disk to arrive at the least overlap 
difference or optimal coverage area. The study also 

shows that in a disk of radius 𝑅1 and hexagonal 

apothem 𝑟1  we can inscribe a regular polygon of 

dimension 2𝑅1𝑠𝑖𝑛 (
1800

𝑛
). This formula helps 

geometrically in least time complexity for inscribing a 
regular polygon in a disk. Specifically, a hexagon of 

side 𝑅1 𝑜𝑟 (or apothem 𝑟1 =
𝑅1√3

2
) a square of side 

2√6

3
𝑟1 (or 𝑅1√2) or an equilateral triangle of sides 2𝑟1 (or 

√3𝑅1) could be obtain. 
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