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Abstract: The aim of study is to show that the minimum distance estimator is consistent and asymptotically normal
with the usual v/n rate of convergence for the intensty function of the process Poisson which have a particularty

form. We consider the problem of estimation of a multi-dimensional parameter 6, = (w?,..

w3y, vd). We

suppose that the unknown parameter is 2d dimensional and the intensity function of the process is smooth the first d
components and discontinuous the others d components of this parameter.
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INTRODUCTION

We consider the problem of parameter estimation
for a model 2d-dimensionnel of a Poisson process with
discontinuous intensity function In homogeneous
Poisson processes play on important role in applied
problems. The wide choice of intensity functions allows
obtaining a good fitting of the mathematical model to
the real phenonemas. The behavior of the MDE in this
discontinuous intensity function case is similar to that
of the regular case, i.e., the rate of convergence is vVn
and the estimator is asymptotically normal.

The properties of the estimators (Maximum
Likelihood (MLE), Bayesian (BE), Minimum Distance
(MDE) are usually studied in the case of smooth w.r.t.,
parameter situation i.e., the intensity function has one
or two derivative, w.r.t., unknown parameter.

According to general theory all these estimators in
regular (smooth) case are consistent and asymptotically
normal (Kutoyants, 1998).

Moreover, the first two
asymptotically efficient in usual sense.

In non regular case, when, say intensity function is
discontinuous, the properties of estimators are quite
different. Remember that the MDE is a particular case
of the minimum contrast estimator if we consider the
function ||[X() — A(Q)]|| as a contrast (Le, 1972) for
details. We have several possibilities of the choice of
the space H.

In the case H = L? () the measure p can also be
chosen in different ways continuous, discrete, etc.

Others definitions of the MDE can also be realized.
Note that the asymptotic behavior of the estimator
depends strongly of the chosen metric.

We are mainly interested in the properties of the
MDE in the case H = L? (). Particularly we show that

estimators  are

under regularity conditions the MDE are consistent,
asymptotically normal. For another metric this
estimator is also consistent but its limit distribution is
not Gaussian (Kutoyants and Liese, 1992).

We did a study on Regular properties of the MDE
for Non Smooth Model of Poisson Process (Ba and
Dabye, 2009).

We also studied the asymptotic behaviour of the
maximum likelihood estimator and the Bayesian
estimator (Ba and Dabye, 2008).

The present study is denoted to the
multidimensional case for the model of intensity
function:

S0pt) =Xy 9: (WP t+yP) + 2

Here, 6, = (w3,..., w3, v{,...,v§) is the unknown
parameter, which we have to estimate, the functions
g:() and the constant y are known and positive.

METHODOLOGY

Preliminaries: We observe n trajectories X; =
X;(),t €[0,T]) j=1,...,n of the Poisson process
with intensity function S(0,,t = X, g;(wit +v) +
A

Here 6, = (67,...,03,y2,...,v3) is the unknown
parameter which we have to estimate. The functions
gi( ) and the constant A are known and positive.
The parameter 6, € © =® (I'; X Q;) € R?®  where
Iy = (a;, Bi) and Q; = (@i, Biva)-

Hypothesis B,:

e The function g;() is continuously differentiable on
semi-open intervals:
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[@ir1, T U (T, Tip1) U (Ti41, BiT + Bival

We suppose that ;.1 < Ta; + ;1.
e The function g;( ) admit the finite jumps at the
points 7; with:

gi(ti+) —g(r{—) =1; > 0and g;(z]) g;(z{) > 0

By this condition all functions g; are discontinuous
on the interval of observations and these jumps take
place on disjoint intervals.

We define this below the minimum distance
estimator of 6, and we are interested to their properties.

Let L2([0,T]) the Hilbert space with the || h() lI=

(5w @)

We define the minimum distance estimator as
solution of the equation:

”%Z?:lXj _A(Br’{,.)” =
inf ”%Z}LlX,- —A(Hn,.)”

Our goal is to study the consistency and the
asymptotic properties of MDE (Minimum Distance
Estimator) of 6,,.

Study of this consistency: We start with the following
lemma:

Lemma 1: If the hypothesis B is satisfied, then
for every &§>0 ¥(3,6,) =inflg_g,>5 IA(O,.) —
A(6,,.) II> 0.

Demonstration: To show 1(8,0,) > 0, proceed by
contradiction i.e., we suppose that for some § > 0, we
have ¥(6,60,) = 0.
In this case, it exist 8y # 6, such A(8,,t) =
A(6,,t). This leads to Y%, g; (wft+y2)+A=
4 gi (@it +y})+ A foralmost all t € [0,T] except
the points of discontinuity. The functions:

ho(®) = XL, gi (Pt +¥?) and hy(t) =
g (wit+yH

hg(t) =h(t) = XL, gi (Pt + ) — gi(wit +
yi)=0

This equality and uniqueness of the discontinuity
of each function g;( ) leads to:

gi(wlt+y?) = gi(wit +v})
Thus,
wits; + 0; = nwits; +6; =1

we have:

tSi 1) (61> _ Ti
This leads to w? = w},...
Vi ¥d = Va
So the lemma is proved.

The following theorem ensures the consistency of
the MDE.

o_ .1 0 _—
L Wg = Wg et Yi =

Theorem 2: If the condition B is satisfied then the
MDE 8;, is consistent for every § > 0 we have:

4 [T ABo,0)

Py 167 = 6,1 > 8} < 20

Proof: Let us denote Y, (t)= %Z?lej (t) and
Z,(t) = Vn(¥a(t) — A6, 1))

This allows us to write for any § > 0:

Py {165 — 6,1 > 8} < Py {infig—g,jcs I V() =
A, ) I>

infig_g, 15 11 YaO) = A8, 1= PV(Z I 2,0 1>
Vnip(8,6,)}
where, we used the properties of the norm:

IV () = A6,,) I +1 AB,,) — AB,) Il
O =A@

and,

I Y,() — AB,,) Il =l A(B,,.) — A(B,.) II=II
Y,()—=A@6, )|

and the fact that:
inf|9_90|>5 I A(eo;) - A(90f ) = 0

According to the ¥(6,0,) > 0. Therefore, by
Chebychev inequality we have:

4Eg,I1ZnOI7 _

P2 1 200 1> VR (3,0,)) < s

4] A8o.0) at
nP(8,60)?

because Eg Z2(t) = A(6,, t).
ASYMPTOTIC NORMALITY

To prove the asymptotic normality, we need the
following conditions.

Hypotheses B;: The matrix D(0) is nondegenerate
uniformly in 6 € O i.e., infgeg info|=; e’ D()e > 0.
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Theorem 3: If the hypothesis B, and B; are satisfied
then the MDE 6, is asymptotically normal:

Vn(6;, — 6,) = N (0,D7*(8,)R(6,)D~"(6,))
We need the following functions:
t
Gi(t,0) = [ [ gi(wis +v)) — gyl ds
Fi(t,0) = Z(f; gi(wis +yi)ds — t gi(wit + 1)
Note that the functions G;(6,t) and F;(0, t) are the
formal partial derivatives of the function A(6,t) with
respect to ¥; and w;, respectively.
Introduce as well the square matrix d X d:
A(0) = (A4i(0))1<0i<aB(6) = (B(i(6))1<ri<a
C(0) = (Cri(0))12sisa
Defined by their terms:
T
Ai(0) = [ Gi(t,0) Gy (¢,0) dt
T
B.i(8) = [y Fi(t,0) Gy (¢,0) dt
T
Cei(0) = [y Fe(t,0) F; (t,6) dt

And the matrices RP9(60,) = (R} (85))1<4i<aPs 4 =
1,2:

T T
REDO,) = fi fI Gi(t,0,) Gi (6,60,) A(B,,t A
s)dtds

T T
REP(0,) = [T [T Gu(t,0,) Fi (£,6,) Ay, t A
s)dtds

T T
REP(0,) = [T [T Fy(t,0,) Fi (t,6,) A8, t A
s)dtds

Finally we introduce 2d X 2d D and R:

_ (A(8,) B(6,)
D(g")‘(B(eo) 6(90))

RAV(9,) ROD(4,)
R(8,) = (R(z'l)(Ho) R(Z'Z)(90)>

We use the following lemma to prove the theorem.

Lemma 2: Under the hypothesis B, the following
relations hold:

[} Gi(t,6;) Gy (t,65) dt =
[y Ge(B0,t) Gi(8,, 1) dt +0(1)

[ Fi(t,6;) Fy (t,6) dt = [ F,(8,, t)F,(8,, t)dt +
o)

T . .
Jo Fe(t,65) Gi (t,65) dt =
T
Jy Fi(8o,1) G (8,,t) dt + 0(1)
Lemma 3: If the hypothesis B, and B; are satisfied

then there exists a constant k > 0 such that for every
h € R?4,6, + h € ©, we have:

Il AG, + h) — A(6,) I= k|.h
Lemma 4: If the B, and B, are satisfied, then for any
v € (0,1/2) we have:

. 1

P {16 -6 <5}

Introduce the process W, (-) defined by:
1

Wi() = =20 ((8) = A(B,, 1))

Lemma 5:

W, (064 (6, 6)de

JJ W, (G (t, 63)dt
J) W, (G, (t, 6,)dt
=|: +0(1)
Jy Wy ()Ga(t, 6,)dt

foT Wa (t)Fl(t, 97*1)(11,'

}OT W, (0F,4(t, 0;)de
[ W, (OF, (¢,6,)dt
=1 +0(1)
[y Wy ()F(t, 6,)dt
H,(6)

Proof of theorem: Introduce the function

defined tel que:

T[1 2
Ha(0) = Jy [FX0 %,0) = A6, 0] dt

and remind that the MDE  6; = (win, ..., Wgn,
Yins - ¥an) is givenby 8, = arg infyeg H,(0).

As the function H,(6) is smooth with respect to
6 and 6, is extreme point, thus, the MDE 6,, is
solution of the following system:
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{iHn(9)|9:9 =0

dwq

5o Hn(6)o=0, = 0 (1)
I

01lg_g,

= H,(8)g=0, = 0 )
> n

Note that as the MDE is consistent, the probability that is takes values on the border of the parameter espace is
asymptotically negligible.
The calculation of the partial derivatives of:

AGO =3, [ g(wt+y)dt+t 0<t<T
With respect to first d variables y; gives us:

= AO) = o [y [91(@as +va) = g(yD)] ds = € (6,0)

5 A©) = - J[9a(@as +7a) ~ g(ra)l ds = Ca(t,0)

The formal similar calculation for the other d variables w; leads to the relations:

w

(6%1 A(O) = y—ll (fot[gl (w1s +71) — gyl ds — tgi(wit + yl))
iaiwd/\(e) = Z_; (fot[gd(wds + )’d)dS - tgd(wdt + )/d))

d d
5o MO = R60) 5-A®) = Fu(t,0)

Note that the functions F;(t, 8) are discontinuous, but as dements of L, [0, T] they are continuous.
Introduce the vectors:

where,
u;,n = \/Z(w;,n - wi) andv;,n = \/ﬁ(yfn - Vi)
We can rewrite the (1) and (2) as:
T % * *
{fo (Wh () = Ty Vi Gi(t,65)) — By wi Fi(£,6;)Ge(65) = 0
T * * *
fo (Vyn(t) - Z?:l vi,n Gi (t' 911) - Z?:l ui,n Fi(t: en)) F{(t: en)dt =0
or,

T . T . . T . ;
{fo W (£)Gi(t, 6;)dt = Xy vin [ Gy (£,6,)Ge(t, 0;)dt + Xy wiy, [ F (t,6;)Gell(t, 67)dt = 0

T . T . . T . .
fo W (O)F;(t, 0p)dt = Z?:l Vin fo G (t, 6p)F(t, 6)dt + Z?:l Uin fo Fi (t,6n)F,1L(E, 65)dt = 0

Let us define the vectors:
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Yl(i) y(l)

1 2 1 L 2
Y, = [ v, vy = ” ) = o
Yd,n Yd,n

where,

Y$) = [ Wa(O)G (¢, 6;)dt
Y(l) Jy Wa(D)G(t, 6,)dt
Y(” Jy Wo(OF (8, 6;)dt Y2 = [T Wa(t)F(t,6,)

Thus,
Y = A(6,)v: + B(6,)ug, + 0(1)

Y® = B(8,)v; + C(6,)u; + 0(1)
(€9)

P () = (;Z)) +0(1)

By hypothesis B; the matrix D(6,) is invertible thus we can write (Z’l) =K(6,)Y, + 0(1) where K(6,) =
n

D(6,)™
Now we can finish the proof of the theorem.
We have:

n EBO (91,; - 90)(91,; o)t EGO [(K(eo)yn)(K(go)Yn) ] + 0(1) = K(eo)[EBO (Ynyrf)] K(HO)T + 0(1)
Introduce as well:

T T

Li(s) = [, Ge(t,6,)dt  M((s) = [, Fi (t,6,)dt

On the other hand:

Jy W (0Go(2,6,)dt = [ Go (6,6,) =Xy fy Lo<e (dX;() = S(6,, 5)dsat
Jy G (t,65)15,dt)(dX;(s) = S(6,,5)ds

ZJ b ——Z] o Lz(S)ﬂ,(dS)—— (R

where,

m;(t) = X;(t) — A(0,,t) and by the similar way we obtain:
fy Wa (OF(6,6,)dt = =37, [ My ($)m;(ds) = =271

Using the properties of the stochastic integral with respect to the Poisson process, we can write:
Eg, [ X;(t) = A8, D)][X;(s) — A(8,,5)] = A(B,,t A s)

and obtain, for example:

T T
Eo, b ) = f fGs(90,t)Fz(Ho,S)A(Bo,S)A(BO,t/\S)dsdt
0 0

10
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We note that the random vectors ¥; = (1/)(1)

e
the following monents Eg_ 1; = 0 and:

.....

) L ()Li(5)S (80, 5)ds  forp=q =1

®), (@ _
Eﬂolpsu lzbﬁij -

T
Jo M (5)S(8,,5)ds
Hence,
E l!)(p)l!}(q) — RPVQ(Q ) =12
0o Ei}' Eij A o p’q -

where, the terms of the matrix R(6,) can be written as:

Jy L (5)Mi(5)S(6,,5)ds forp=gq =2
forp=q=2

T T T
RV 00) = g[S Ge (80,5)ds J[| Gi (86, 7)dr] S(8,, )t

R 00) = fy I Ge (80,5)ds J] Gy (6, 7)dr| (6, 1)t

[ Fi (8,,5)ds [ Gy (6,,7)drS(8,,t)dt

2,1 T
REV(6,) = [

RED0,) = [y |17 Fe 0o, 5)ds [ Fi (85, 7)drS(6,, t)dt

By applying the central limit theorem, we get Y, = N(0,R(6,)).
As (Z") = VR(0; — 8,) = K(8,)Y, + 0(1), it follows that:

\/ﬁ(er’; - 90) = N(O'K(GO)R(GO)Kt(Ho) ie.,
Vn(6; = 6,) = N (0, D7 (8,)R(6,)D7*(8,))
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