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Abstract: The model considered has two types of discontinuities. The first parameter is a parameter of scale; the
second is a parameter of translation. The aim of study is to show that the minimum distance estimator is consistent
and asymptotically normal. The problem of estimation studied in this work is the same time singular and regular. It
is singular because the intensity is a discontinuous function and we obtains the consistency with the discontinuity
and the study of asymptotic normality is based on the regularity of the function A(6, t).
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INTRODUCTION

In many areas of everyday life we use the
inhomogeneous Poisson processes; there exists a large
literature describing the different point processes and
particularly Poisson with special attention to parameter
estimation problems.

The properties of the estimators (Maximum
Likelihood (MLE), Bayesian (BE), Minimum Distance
(MDE) are usually studied in the case of smooth w.r.t.,
parameter situation i.e., the intensity function has one
or two derivative, w.r.t. unknown parameter.

According to general theory all these estimators in
regular (smooth) case are consistent and asymptotically
normal see, Kutoyants (1998).

Moreover, the first two
asymptotically efficient in usual sense.

In non regular case, when, say intensity function is
discontinuous, the properties of estimators are quite
different. Remember that the MDE is a particular case
of the minimum contrast estimator if we consider the
function ||X() — A(Q)|| as a contrast see Le (1972) for
details. We have several possibilities of the choice of
the space H.

In the case H = L? (i) the measure p can also be
chosen in different ways continuous, discrete, etc.

Others definitions of the MDE can also be realized.
Note that the asymptotic behavior of the estimator
depends strongly of the chosen metric.

We are mainly interested in the properties of the
MDE in the case H = L* (). Particularly we show that
under regularity conditions the MDE are consistent,
asymptotically normal. For another metric this
estimator is also consistent but its limit distribution is
not Gaussian (Kutoyants and Liese, 1992).

We did a study on Regular properties of the MDE
for Non Smooth Model of Poisson Process (Ba and
Dabye, 2009).

estimators  are

We also studied the asymptotic behaviour of the
maximum likelihood estimator and the Bayesian
estimator (Ba et al., 2008).

The present study is devoted to the dimensional
case i.e., we suppose that the intensity function S(v, t)
depends to 2 dimensional parameter v = (y¥4,¥3). Our
objective is to study the Minimum Distance Estimator
(MDE) built from the norm L2. We show that the MDE
is consistent and asymptotically normal. We studied the
proprieties of the estimators using other norms and
others models. Moreover in the case not hilbertien, it
was shown in the studies of Kutoyants and Liese (1992)
that we cannot have the asymptotic normality.

STATISTICAL MODEL

We observe n trajectories
[0,T]) j=1,...,n of the Poisson process
intensity function S(v,,t) = f(6,t +6,) + A.

Here v, =(6,,0,) in the unknown parameter,
which we have to estimate, the function f and the
constant A are known and positive:

with

Eg,X; () = A(6,,t) = [, S(8,,5)ds with

Hypothesis A:

e The function f() and the constant A known and
positive.

e The function f() is continuously differentiable on
lay, 1) U (71,73) U (13, 51T + B2)], we  suppose
that B, < Ta; + a,.

e The function f() have two jumps at t{,7; €
(B, Ta; + @) with 17 <715 and f(r/+)—
f@i=-)=r+0i=1.2.
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We define this below the minimum distance
estimator of 6, and we are intereste to their properties
when n — oo,

Let  L?([0,T]) the Hilbert space with the

1/2
11RO = ( Iy hZ(t)) , then we define the minimum
distance estimator as solution of the equation:

255X = 80| = inf

1
[F2 X - A
STUDY OF THE CONSISTENCY

The following theorem ensures the consistency of
the MDE.

Theorem 1: If the Hypothesis A is satisfied, then the
estimator of the minimum distance 6, is consistent: for
all§ > 0:

. IC:
ngn){Hn -0, > 61<4 m
with (6, 6,) = infig_g 55 [|1A(6,) = A(6,,)

For the demonstration of this theorem, we need the
following lemme.

Lemme: If the Hypothesis A is satisfied, then for all
§ > 0, the function ¥(6,6,) > 0.

Demonstration: To show ¥(6,6,) > 0, proceed by
contradiction i.e., we suppose that for a § > 0, we have

Y(6,6,) =0. ’
In this case, it exist 8, # 6, such:

inf [IA(6,) = AB)I| = [IA(0'5) — A(B,)I| = 0
so forall t € [0,T]:

A(O',,t) = A(6,, 1)

since A(6,t) is continuous function in ¢.
We deduce that = A(8',t) = = A(6,,t) for all
te[0,T] ie.

fOt+6,)+ 4
f(O:1t + 6,)

= f(@llt + 9’2) + A
= f@1t+0)

with means that:
91t51 + 91 = rlgltSZ + 92 = Tz

we have:

(e 1) (@)= )

This leads to 8, =0, et 8, =6, ie., 6, =6,
which contradicts the fact that 8, # 6,,.
So the lemma is proved.

Demonstration of the theorem: We put Y, (t) =
~YIL X(8) and Zy(£) = Vi (Ya(t) = A(8,, t))which
allows to write for all § > 0:

P16 — 6,1| > 6} < B

ol [110-A@1] >
ot I O-AG)|

< BP(2112, Ol > V(8. 6,))
where, we have used the properties of the norm:

[1.0) = A@I| + |IA6,,) = AG,)]|
2 |[Ya() = A6
Y20 = AGo) I = [1A0: )] < |12 () = A6,

Using the lemma (8,6,) > 0. so, applying the
inequality of Chebychev it follows:

4Eg, || ZnOlI2
) (8,60)2

P 211Z,OINT (S, 6,) <
Because,

Eo, 11 ZnOl1?
[T Eg, (VA () — A6, )))2dt

= I} Ea, (FEICH® — A©0)) de
= [ (A8, t)dt

The latter term being bounded, which demonstrated
the theorem.

Asymptotic normality: In this section we will to prove
the Asymptotic Normality of MDE.

We define the functions F(6,t) et G(6,t) for all
t €[0,T] as:

T
F(6,t) = —6—11[[0 g (8;5 + 0,)ds — t g6yt +
62)
et G(6,t) = g(61t + 6,) — g(62)

Let us notice that the functions R(0,t) et G(6,t)
are respectively the partial derives formal of the
function A(6,t).

Letus put 4, ,(0) = fOT F(6,t)2dt:

Ay(8) = [ G(6,1)%dt
A12 = Az‘l = fOTF (9, t) G(G, t)dt
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and

C11(8) = [ J, F (8,)F (6,5)A(6,s A t) dtds
C2(0) = [ [ G (8,6)G(8,5)A(6,s A t) dtds

61,2(9) = C2,1(9) _ fOT foTF (9, t)GEZ,dSZA(e,S A t)

Let be carrees matrix of order 2:

(An(0) A (9)
A((’)‘(Am(a) Az,l(ev))

and

(C(®) Cy(0)
“9)‘(621@) cz,z(e))

the determinant of the matrix A(8) is:

det(A(6)) = f, F (8,0)%dt [ G (6,t)%dt —

2

( [ F (8,06, t)dt)
To prove the asymptotic normality, we suppose that:
Hypothesis B:

A11(0) A22(8) # (A12(6))?
Théoréme 2: If the Hypothesis A and B are satisfied
then the minimum distance estimator is asymptotically
normal i.e.:

\/5(91,; - 90) = N(O,A_1C(90)Jl_1(90))

Demonstration: We define the function H,(6) by:

T[1 2
Hn(0) = [y [ Z1 (0 = A, 0)] e

Let us remind that the minimum distance estimator
0, is a solution of the equation:

On = arg inf H,(6)

Let us note that 8, = (61,,65,) and 6 = (6,,6,)
the function H, (0) is derivable.

So the MDE 6, minimize the function H,(6) and
is consistent in 6, element of ©.
It with a probability numeric.
This estimator is a solution of system:

2 2
2o Hn(@)o=6, =0 - Hp(0)g=0, = 0

The calculation of the partial derives by report at
6, and 0, gives us:

soHn(0) = -

Iy [Jy 9 @15 + 62)d0 — tg (61t + 6)]
>3, X, - A, 0)] dt

50 Hn(0) =

— 2y 19(st + 0, =g (0] [1 X1 X0 -

N(thetat dt

thus using (3) and (4), we obtain:

T [t . . i .
17 (f£ 9 Bins + 03,)7s — tg(6int +65,))
1 *
Gz %0 - AG D) de=0

9B nt +63,) — 9(65,)]
(I, X - A1) dt =0

We can write this system as:

Jy F 03 6) (G EI0 X; (€)= A6y, £) + A6, t) —
AN(Grnx,6) dt=0

[y 6 0 t) (301 X; (£) = A8, ) + A8, 1) —
A(8rx,£) dt=0

We introduce the process us W, () define by:
1
Wi () = ZX7=1(X;(0) — A6, 1))
thus,

Jy Wi ()F (65, ) dt
=V [} F(6;, )[A(6;,t) — A(B,, 1) dt

[J W, (H)G(65, 1) dt
=V [} G(8;, O[A;,t) — A(B,,t) dt
Then,

[TA@ +h,t) = A8,8) — (b, A6, 1)
—(h,A(8,t)%dt = 6(|h|?)
Using the continuity of this functions and the

consistency of the estimator, we can write the system
as:

Jy Wo (DF (6, t)adt
= [y F(B0,t) (i, A8, t)dt + 6(1)



Res. J. Math. Stat., 6(1): 1-5, 2014

I Wy (DG (6,, t)dt
= foT G (05, t) (s, A6, 1)) dt + 6(1)

where we put u;, = (ui, u*2n)t, ui, = Vn(@*1,n—
6,) et u3, = (Vn(;, — 6,) we introduce the vector
Y, = (Yrgl)'YrEZ))T
with,

Y = [ F (6,,t) Wy(t) dt

Y@ = fOT G (6,,t) W, (t) dt we obtain

VD = A1 (0,01 0) + A1 (0p)u3 n +O(1)

erz) = Az,l(go)uz,nt) + AZ,Z(QO) + 9(1)

or under matrix shape:
An(0,) up =Y, +6(1)

From the hypothesis B, the matrix of order 2 A(8,)
is invertible thus we can write B(8,) = A(6,)71, so:

up = B(6,)Y, +6(1)

We show that nEgy (6, —6,)(6r — 6,)t =
B(6,)C(6,) B(6,)" +6(1)
We have:

[} F (00, Wy (0)dt

=Jy (le j=1(X;(©) = A(6o, t)) F(6,,0) dt

%525-21 I3 (X; () = A(B,, O)F (8, 1) dt

= %Z}Ll P with

= [, (X;(t) = A(8,, ))F (8,, t)dt

foT G(6,,t) Wy (t) dt
=y (le) 2j=1(X; () — A6, t)) F(6,,t) dt

1

= =37 Jy (X5(0) = AW, G (6, t)dt

n
- \/iﬁ S with P

T
= [ (X;(t) — A(B,, )G (6,, t)dt
Eo, V9 = C,(6,)

Let us note that the terms of the matrix are:
T (T
v® = [ (J F(Bo,5) ds) dW (MG, 1))

Y@ = [T ([T G(8,,5)ds) dW (A, 1))

We have the following relation:

Coi(85) = Eg,(Y VYD)

We obtain:
T (T 2
C11(0) = Jy (J F(Bor5) ds) S(6,,) dt
T (T 2
Co2(02) = Iy (J 6(B05) ds) 5(6,,t) dt
and,

C1,2(90) = C2,1(90) =
N [ ST F(8,,5)ds f] G (6,,7) dr] S(8,,t) dt

®
1

I
S—

L [X1(O) = A8, )] F(6,,t) dt
[T Losee[dXy (5) = S(8,,t) ds] F(6,,t) dt
I F(8,,t) dt[dX,(s) — S(B,,t) ds]

[T F(8,,0) dtdn(s)

([ |
—_— -

For 1/)1(2) we have:
2 = [y [ 60, )t dr(s)

On the other hand using:

Eg,[X1() = Ao, D][X1(s) = A(bo, 5) =
A(B,,t As]

we obtain for example:

Eg, P9 = [ [T F(8,,)G(6,,5)A(8,,t A
sds dt

Using the central theorem limit, we obtain:
Y, = N(0,C(6,))
as (6, — 6,) = B(6,) Y, + 6(1)
we deduce:
u;, = V(6 — 6,) = N (0,B(8,) C(6,) B(6,)") e
Vn(8; — 6,) = N'(0,A47(6,) C(8,) A7 (6,)")
So the asymptotic normality is proved.
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