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Abstract: The study analyzed the algebraic properties of the Euclidean algorithm in details. The analysis included a 
detailed step by step approach in understanding the algorithm, the extended form of the algorithm, 
computation of the Greatest Common Divisor (GCD) and its algebraic properties and their applications in algebra an
d cryptography. We also showed how the Euclidean algorithm could be applied to trading for the 
maximization of returns. In our approach, we assumed that gcd[a(x); b(x)] is the monic polynomial of minimal degree 
within the set G = {s(x)a(x)+t(x)b(x): s(x), t(x) ∈ F[x]} and thus, examining all equations of the form p(x) = 
s(x)a(x)+t(x)b(x). 
 
Keywords: Algebra, algebraic properties, cryptography, division property, Euclidean algorithm, greatest common 

divisor, trading 

 
INTRODUCTION 

 
The Euclidean Algorithm, the oldest algorithm that 

has survived the test of time is a very useful tool for 
calculating the greatest common divisor of two integers 
and for those matter two polynomials. This is attained 
through the use of the algorithm and its reciprocal 
subtraction (Glasby, 1999). 

Properties of the Euclidean algorithm include the 
division algorithm, the inverse property and backward 
substitution. 

These properties are applied in finding 
multiplicative inverses of integers and matrices in 
modulo arithmetic, least common multiple (events 
occurring together in different successive time intervals), 
trading, solving linear congruence in cryptography and 
modeling population growth (Honsberger, 1976). 

The algorithm is also applied in music, agriculture, 
modeling rabbit birth rate, design of games and number 
theory (Narkiewicz, 2000). 

In the 19th century, application of the algebraic 
properties of the Euclidean algorithm led to the 
development of new number systems such as Gaussian 
and Eisenstein integers (Bashmakova, 1948; Fowler, 
1999). 

In music, there is a correspondence between ratios 
and intervals as well as a correspondence between the 
mathematical relationships of different ratios and the 
musical relationships of different intervals. For example, 
combining two musical intervals together, gives you 
another. A fourth plus a fifth is an octave; a major third 
plus a minor third is a fifth. More complicated musical 

intervals like semitones are usually defined by looking at 
the difference between some pair of more simple 
intervals, just as the tone was defined as the difference 
between a fifth and the fourth. Euclid's algorithm 
provides a way of dealing with equations of musical 
pitch, potentially helping musicians and instrument 
makers to tune musical instruments (Gerard, 1973). 

The Euclidean algorithm is also used to design the 
Euclid’s game. Playing the Euclid’s game involves the 
use of the cognitive, psychomotor and effective domains 
thereby arousing and sustaining the interest of the 
individuals in mathematics. 

The Euclidean algorithm has also been improved to 
form the lame’s theorem which was used to develop the 
Fibonacci numbers (Knuth, 1997). 

The stem Brocot tree is also an application of the 
Euclidean algorithm which enables us to find fine 
features, carry out binary encoding, continuous fraction 
on the stem Brocot tree and fractions on a binary tree. 

The analysis of the Algebraic properties of the 
Euclidean algorithm has become necessary due to its 
usefulness. By analysis of the properties of the 
algorithm, we mean the determination of good bounds 
(especially upper) for the algorithm’s consumption of 
resources such as time and space. Such bounds are 
generally expressed in terms of the size of the inputs, or 
in the case of integer inputs in terms of the inputs 
themselves. The analysis of the algorithm has become an 
important field of study in computer science and algebra. 
As Knuth (1970) post it in 1970, the advent high-speed 
computing machines which are capable of carrying out 
so faithfully has led to intensive studies of the properties 
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of the algorithm, opening a fertile field for mathematical 
investigation. In this study, we present a detailed step by 
step approach in understanding the Euclidean algorithm, 
the extended form of the algorithm, computation of the 
Greatest Common Divisor (GCD) and its applications 
for the maximization of returns in trading. Further, we 
applied the division property to find the gcd, quotient and 
the remainder of algebraic expressions in a given 
modulo. 

 

MATERIALS AND METHODS 

 

Description of the Euclidean algorithm: Let F be a 

Field and a(x), b(x) be two polynomials such that a(x), 

b(x) ∈ F[x], then the Euclidean algorithm constructs 

gcd[a(x); b(x)] explicitly. The basic method is simple. If 

q(x) is any polynomial, then gcd[a(x), b(x)] = gcd[a(x)- 
q(x) b(x); b(x)].   

In particular, a(x)
 
can be replaced in the calculation 

by its remainder r(x) upon division by b(x) Assuming 

that a(x)
 
has degree as big as that of b(x), the remainder 

r(x) will have smaller degree than a(x); so the gcd of the 

original pair of polynomials will be equal to the gcd of a 

new pair with smaller total degree. We can continue by 

decreasing the degree of the remainder at each stage until 

the process stops with remainder 0 and at this point the 

gcd becomes clear. 

In our study we assume that gcd(a(x); b(x)) is the 
monic polynomial of minimal degree within the set: G = 

{s(x)a(x)+t(x)b(x): s(x), t(x) ∈ F[x]}. Thus, we examine 

all equations of the form p(x) = s(x)a(x)+t(x)b(x). 

Looking for one in which nonzero p(x) has minimal 

degree. The unique monic scalar multiple of this p(x) is 

then equal to gcd(a(x), b(x)). If we have two suitable 

equations: 

 

m(x) = e(x)a(x) + f(x) b(x)                                    (1) 

 

n(x) = g(x)a(x) + h(x) b(x)                                    (2) 
 

Then we can find a third with left hand side of 

smaller degree. Assume that the degree of m(x) is at least 

as big as that of n(x). By the Division Algorithm A.2, 

there are q(x) and r(x) with m(x) = q(x)n(x)+r(x) and 

deg(r(x)) <deg n(x)). Subtracting q(x) times Eq. (2) from 

Eq. (1) we have the desired: 

 

r(x) = m(x)-q(x)n(x) = (e(x) -q(x) g(x))  

a(x) + (f(x)-q(x)h(x)) b(x)                                     (3) 

 

Next, we divide r(x) into n(x) and, using Eq. (2) and 
(3), further reduces the degree of the left hand side. 

Continuing as before, we must ultimately arrive at an 

equation with 0 on the left. The left hand side of the 

previous equation will then have the desired minimal 

degree. The benefit of this method of calculation is that, 

the appropriate polynomials s(x) and t(x) are produced at 

the same time as the greatest common divisor (gcd). 

To succeed with this approach we must have two 
equations to begin with. 
These are provided by:  
 

a(x) = 1× a(x) + 0 × (bx)                                      (4) 
 
b(x) = 0× a(x) + 1 × b(x)                                      (5) 
 
  Assume that deg(a(x))≥deg (b(x)) with a(x) ≠ 0. At 

Step i we construct the equation: 
 

        :: xbxtxasxrE iiii 
 

 
Equation Ei

 
is constructed from Ei-1

 
and Ei-2, the 

appropriate initialization being provided by (4) and (5): 
 

     

    :1;0;

:0;1;

000

111



 

txsxbr

txsxaxr
 

 
Step i: Starting with ri-2(x) and ri-1(x), use the Division 
algorithm A.2 to define qi(x) and ri(x): Ri-2(x) = qi(x)ri-1 

(x)+ ri(x) with deg(ri(x)) <deg(ri-1(x)).  
Next define si(x) and ti(x) by: 

 

);()()()( 12 xsxqxsxs iiii    

       xtxqxtxT iiii 12    

 
We then have the equation: 
 

)()()()()(: xbxtxaxsxrE iiii 
 

 

Begin with i = 0. If we have ri(x) ≠ 0, then proceed 

to Step i+1. Eventually there will be an i with ri(x) = 0. 

At that point halt and declare gcd(a(x); b(x)) to be the 

unique monic scalar multiple of the nonzero polynomial 

ri-1(x). 

 

Proof: For each i,        xrxqxrxr iiii 12   ; so 
iE  

holds. This also shows that: 

 

         

         xbxaxrxr

xrxrxrxr iiii

,gcd,gcd

...,gcd,gcd

01

121









 
 

As long as i ≥ 0 and ri(x) = 0; deg(ri-1(x))< deg(ri(x)). 

Thus in at most deg(b(x)) steps ri(x) = 0 is reached. Then 

gcd(ri-1(x),0) = gcd(a(x),b(x)) is the unique monic 

multiple of ri-1(x), completing verification of the 

algorithm. Alternatively given a(x) and b(x)  being two 

non-zero polynomials such that deg(a(x)) deg(b(x)) we 

can use finite division to get the greatest common divisor 

(gcd). The process is as follows: 
 

         xrxrxgxbxa deg;   xbdeg  

         xrxrxgxrxb 111 deg;   xrdeg  
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         xrxrxgxrxr 2221 deg;   xr1deg  

 …  … … … … ….. ….. ….. ….. ….  

…. …. …. …. …. …. …. …. …. ….  

       xrxgxrxr kkkqk   1
 ;  xrkdeg   xrk 1deg 

 

     xgxrxr kkk 11  
 

 

Note that rk(x) differ from the required greatest 

common divisor (gcd) by only a constant factor in F. 

By reversing the above process we obtain 

polynomial: 

 

)()()()()(:)(),( xbxsxaxrxdxsxr   

 

Example: In computing the gcd (776, 544), we apply the 

Euclidean Algorithm as follows: 

First,  

 

5447762321544776 11  banda  

232544802232544 22  banda  

8023272280232 33  banda  

7280817280 44  banda  

87209872 55  banda  

 

So, 

 

  )..(8544,776gcd remainderzerononlasttheie   

 

RESULTS AND DISCUSSION 

 

Finding events that occur together: Events that occur 

at successive time interval can be solved using the 

ordinary Least Common Multiple (LCM). If these events 

occur at a larger time interval, the LCM computation 

becomes tedious. The Euclidean algorithm then becomes 

the best alternative. Thus, given two events occurring at 

very large time intervals a and b respectively, we will 

have: 

 

 ba

ba
LCM

,gcd




 
 

This application is very useful when dealing with 

the production of the same commodities by different 
manufacturers. The fact is that, as the supply of the 

commodity increases, the demand reduces and prices go 

down. Manufacturers when aware of this occurrence will 

put the necessary measures in place to reduce losses. 

Again, this will help farmers avoid post-harvest losses.  

 

Example: If two factories a and b manufactures a 

mowing machine every 299 and 221 days respectively, 

The number of days it will take for them to manufacture 

at the same time is calculated as follows: 
First, for the gcd(299, 221).

  

We have: 
 

782211299   
65782221   

1365178   
013565   

   13221,299gcd   

 

Using,   

 

 
5083

13

66079

13

221299

,gcd








ba

ba
LCM  

 

This means that on the 5083 day, the two factories 

will manufacture a mowing machine each.  

 

Finding the remainder: The finite division algorithm is 

used in the remainder theorem to find the remainder of 

algebraic expressions in a given modulo. This 

application is useful when sharing things. In higher 

levels, we use it to share a thing in a given number of 

parts (referred to as modulo). 

 

Example: We can find the remainder if 𝑥5 + 2𝑥3 +
4𝑥2 + 𝑥 − 1 is divided by 𝑥3 − 4𝑥2 + 3𝑥 − 5 in 𝑍7(𝑋) 

as follows: 

 

14

43

534

13

6524

124

534

142534

2

2

23

23

234

234

2345

23523

















xx

remainderxx

xxx

xx

xxxx

xxxx

xxxx

xxxxxxx

 
 

NB: All workings are performed in 𝑍7(𝑋) appropriately. 

 

Theorem 1: Let G be a group, then for all 𝑎 𝐺 there 

exist 𝑎−1 𝐺 such that (𝑎−1)-1 = 𝑎. 

 

Proof: (𝑎−1)-1 𝑎−1 = 𝑒(𝑎) = 𝑎  Post multiplying by 𝑎, 

we obtain:     

                                              

[(𝑎 −1)-1 (𝑎−1)]𝑎  

= 𝑒(𝑎)𝑎 … … … … … … … … … …                (6) 

 

From the L.H.S  (𝑎−1)-1(𝑎−1𝑎) = (𝑎−1)-1 

𝑒(𝑎) = (𝑎−1)-1𝑒(𝑎−1) = (𝑎−1)-1𝑒[(𝑎−1)-1]  

= (𝑎−1 )-1                                                                                                (7) 

 

Hence from (1) and (2) (𝑎−1)-1   = 𝑎 
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Finding inverses by the extended Euclidean 

algorithm (multiplicative inverse): When we are 

working in modular arithmetic, we often need to find the 

inverse of a number relative to an operation. When we 

are looking for an additive inverse it is relative to an 

addition operation and when a multiplicative inverse it is 

relative to a multiplication operation. Here, we mainly 

used the extended Euclidean algorithm to find the 

multiplicative inverse of b in Zn when n and b are given 

and the inverses exists. To show this, take two integers 

0<b<a and consider the Euclidean Algorithm equations 

which yield gcd(a, b) = rj. Rewrite all of these equations 

except the last one, by solving for the remainders: 

 

𝑟1 = 𝑎 − 𝑏𝑞1, 
𝑟2 = 𝑏 − 𝑟1𝑞2, 
𝑟3 = 𝑟1 − 𝑟2𝑞3, 
… … … … … .. 
𝑟𝑗−1 = 𝑟𝑗−3 − 𝑟𝑗−2𝑞𝑗−1, 

𝑟𝑗 = 𝑟𝑗−2 − 𝑟𝑗−1𝑞𝑗 

 

Then, in the last of these equations, 𝑟𝑗 = 𝑟𝑗−2 −

𝑟𝑗−1𝑞𝑗, replace 𝑟𝑗−1 with its expression in terms of 

𝑟𝑗−3 and 𝑟𝑗−2  from  the  equation  immediately  above it. 

Continue this process successively, replacing 

 𝑟𝑗−2, 𝑟𝑗−3, … … .., until you obtain the final equation: 

 

𝑟𝑗 = 𝑎𝑥 + 𝑏𝑦 

 

With x and y integers. In special cases that gcd(a, b) 

= 1, the integer equation reads: 

 

1 = 𝑎𝑥 + 𝑏𝑦 

 

Therefore we deduce: 

 

aby mod1   
 

So that (the residue of) y is the multiplicative inverse 

of b mod a. 

Thus, the integer a ∈ Zn
 
has a multiplicative inverse 

a-1 if and only if gcd(n, a) ≡ 1(mod n). 

 

Example: Find the multiplicative inverse .19 45Zinof   

Solution: 

 
1)19,45gcd(   

12.25

25.17

57.219

719.245









 

 

Extended: 

1919

45.819.19

19.1645.819.3

)19.245(819.3

7.819.3

7.27.619.3

7.2)7.219(3

7.25.3

5.27.25.1

)5.17(25.1

2.25.11

1 























 

 
Solving systems of congruencies: The inverse property 
of the Euclidean algorithm can be applied in solving 
certain systems of congruencies in cryptography that 
involves the arrangement of things in a given number of 
ways (referred to as modulo) and thus, battle problems. 
 
Example: If a group of academic scholars in a 
conference can be fitted to 3 rows leaving 2 left, in 5 
rows leaving 4 left and 7 rows leaving 6 left then the total 
number of scholars who attended the conference can be 
found as follows. 

We translate it into the following system of 
congruencies:  
 

)7(mod6

)5(mod4

)3(mod2







x

x

x

 
 
Next,  
 

105

753

321





 mmmm

 

 
Further: 
 

)7(mod115
7

105

)5(mod121
5

105

)3(mod235
3

105

33

3

2

2

1

1







m

m

m

m
M

m

m
M

m

m
M

 
 
Next, we use Euclidean algorithm to compute: 

 

1

)7(mod15

)7(mod

1

)5(mod21

)5(mod

2

)3(mod35

)3(mod

,Im

)(mod

1

1

33

1

1

22

1

1

11

1



































My

My

My

plies

mMy iii
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Finally, 
 

104

)105(mod314

9084140

115612142352

)(mod

333222111

3

1














yMayMayMax

myMax
i

iii

 
 

Therefore, there were 104 scholars at the conference 

 

Euclidean algorithm in trading: The Euclidean 

algorithm could also be applied to trading so as to 

maximize returns. In trading, retailers normally bid for 

reduction in prices of goods since they have to resell the 

commodities and make profit. They therefore price the 

goods in groups. Most often, some are added free to the 

retailers. In case there are more retailers, we can simplify 

their bid into linear congruence, applying the division 

and inverse property in determining the best bid so as to 

maximize profit. 

 

Example: A wholesaler sells cartons of biscuits. Three 

retailers agree to buy the cartons in groups. 

Retailer one agrees to buy them at every three for ₵ 
55.00 of which two will be left and added free to the 

retailer. Retailer two agrees to buy them at every seven 

for ₵ 125.00 of which four will be left and given him 

free. Retailer three agrees to buy it in tens for ₵ 175.00 

for which six will be left and added free. 

To estimate how many cartons are to be sold we use 

linear congruence with the application of Euclidean 

algorithm: 

 

ii maX mod
 

 3mod2X  
 7mod4X  
 10mod6X  

 

So, 

 

𝑚1 = 3, 𝑚2 = 7, 𝑚3 = 10, 𝑎1 = 2, 𝑎2 = 4, 𝑎3 = 6 
 

We first compute: 

 

2101073321  mmmM
 

 
Next,  

 

70
3

210

1

1 
m

M
M

 

30
7

210

2

2 
m

M
M

 

21
10

210

3

3 
m

M
M

 
 
Next, compute: 
 

 iii mMy mod
1


 

 1

1

11 mod mMy


  
 3mod70 1

1

y  
 
From the Euclidean algorithm, we have: 
 

132370   
0313   

  13,70gcd   
 
Further, from the extended Euclidean algorithm: 
 

3237011   
  13mod70 1 

 
 
Hence, 𝑦1 = 1. 
Again, 
 

 2

1

22 mod mMy


  
 7mod30 1

2

y  
 
Similarly: 
 

27430   
1237   

0212   
  17,30gcd   

 
Thus, 

 

23711   
 7430171   

71230371   
303713   

  4737mod30 1  

 
 

Hence, 𝑦2 = 4 

Next, 

 

 3

1

33 mod mMy



 

 10mod21 1

3

y
 

 

Implies,  

 

110221   
010110   

  110,21gcd   
1022111   

  110mod21 1 

 
𝑦3 = 1 
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By Chinese remainder theorem, we compute finally; 

𝑥 = ∑ 𝑎𝑖𝑀𝑖𝑦𝑖
𝑟
𝑖=1  (𝑚𝑜𝑑 𝑀): 

 

=[(𝑎1𝑀1𝑦1) + (𝑎2𝑀2𝑦2) + (𝑎3𝑀3𝑦3)]𝑚𝑜𝑑 𝑀 

       210mod121643041702   
  210mod126480140   

 210mod746  
116  

 
Hence, there are 116 cartons. 

Again, if the wholesaler agrees to sell to retailer one, 

he can sell six times of such cartons in a month. If he 
agrees to sell for retailer two, he can sell ten times of 

such cartons in a month. If he also agrees to sell for 

retailer three, he can sell sixteen times of such cartons in 

a month. To find which of these retailers the wholesaler 

should choose to make the maximum profit in a month 

and assuming the cost price of a carton of the biscuit is 

₵ 15.00 with selling price of ₵ 20.00 per carton, we look 

for the profit on each retailer. 
Thus, the total number of cartons is 116. 
For agreement with retailer one: 
 

Total sales = 116/3 = 38 with remainder of 2  
The selling price in a month is, 

38655 = ₵ 12,540.00 

Cost price = 151166  ₵ 10, 440.00 
00.100,200.440,1000.540,12Pr ofit  

 

Hence, the profit is ₵2,100.00. 

For agreement with retailer two: 

 

.416
7

116
ofremainderwithsalesTotal 

 
 

The selling price in a month is: 

 

1016125 = ₵20, 000.00 

Cost price = 1161510 = ₵ 17, 400.00 
00.600,21740020000Pr ofit  

 

Hence, the profit is ₵2, 600.00. 

For agreement with retailer three: 

 

Total sales 11
10

116
  with remainder of 6 

 
The selling price in the month is: 
 

 1751611  ₵30, 500.00 

The cost price = 1516116   ₵ 27, 840.00 

Profit = 2784030500  = ₵ 2, 960.00 

 

Hence the wholesaler should agree to do business 

with retailer three so as to maximize profit for that 

month. 

Backward substitution and the general difference 

equation formula: Backward substitution is also 

another important property of the Euclidean algorithm. 

This is seen when we try to make the greatest common 

divisor (gcd) the subject, carry out series of substitutions 

until the multiplicative inverse is obtained. This 

important property is useful in generating the general 

term of a number of mathematics formulae involving 

series. It can be applied also in statistics when finding the 

dual of an autoregressive process. Besides, it can be 

applied in difference equations to find composite 

formula when modeling population growth. 

In modeling population growth, this property is very 

useful. Let x0 be the initial population of an area,  be the 

growth rate of the population and xn be the general term 

then: 

 

𝑥1 = 𝑥0 

𝑥2 = 𝑥1 
………. 

..…...... 

𝑥𝑛 = 𝑥𝑛−1 
 

By backward substitution: 
 

Step 1: 𝑥𝑛 = 𝑥𝑛−1 𝑏𝑢𝑡 𝑥𝑛−1 = 𝑥𝑛−2 

Step 2: 𝑥𝑛 = 2𝑥𝑛−2 𝑎𝑔𝑎𝑖𝑛 𝑥𝑛−2 = 𝑥𝑛−3 

Step 3: 𝑥𝑛 = 3𝑥𝑛−3 𝑎𝑙𝑠𝑜 𝑥𝑛−3 = 𝑥𝑛−4 

Step 4: 𝑥𝑛 = 4𝑥𝑛−4 
……………… 

.…………….. 

Step n: 𝑥𝑛 = 𝑛𝑥𝑛−𝑛 = 𝑛𝑥0 
 

By obtaining the composite formula, we can find the 

population at any time t without wasting time to calculate 

the preceding populations.   

 
Example: Suppose the population of bats increases at a 

constant rate of 2% each year and the initial population 

of the bats is 100: 

 

 Deduce a formula to model the population of the 

bats in subsequent years. 

 What will be the population of the bats in 30 years’ 

time? 

 

Solution: 

 

 Let 𝑥0 = 100 and rate of increase  = 1.02 

 

𝑥1 = 1.02𝑥0 = 1.02(100) 

𝑥2 = 1.02𝑥1 = 1.02(1.02(100)) = (1.02)2(100) 

𝑥3 = 1.02𝑥2 = (1.02)(1.02)2(100) 

= (1.02)3(100) 

………………………………………………………………………………….. 

𝑥𝑛 = (1.02)𝑛𝑥0 = (1.02)𝑛100 
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 Let 𝑛 = 15 and 𝑥0 = 100 then 

 

𝑥15 = (1.02)15𝑥0 = (1.02)15100 

𝑥15 = (1.02)15100 = 135 𝑏𝑎𝑡𝑠 

 

CONCLUSION 

 

The study identified the inverse as an algebraic 

property of the Euclidean algorithm. This property has 

been applied in trading to maximize profit and used to 

find the inverse of numbers and matrices in a given 

modulo and further in cryptography to solve linear 

congruence problems. 

Further, we applied the division property to find the 

gcd, quotient and the remainder of algebraic expressions 

in a given modulo. It was also used to find when two 

events occurring at successive time interval will occur 

together so as to prepare for their occurrences. Finally, 

the study provided an easier way of proving the 

Euclidean algorithm. 
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