Research Journal of Mathematics and Statistics 5(4): 32-42, 2013 DOI:10.19026/rjms.5.5803 ISSN: 2042-2024, e-ISSN: 2040-7505 © 2013 Maxwell Scientific Publication Corp. Submitted: August 31, 2013 Accepted: September 10, 2013

Published: November 30, 2013

Research Article A Modified Block Adam Moulton (MOBAM) Method for the Solution of Stiff Initial Value Problems of Ordinary Differential Equations

G.M. Kumleng, J.P. Chollom and S. Longwap Department of Mathematics, University of Jos, P.M.B. 2084, Plateau State, Nigeria

Abstract: Stiff ordinary differential equations pose computational difficulties as they present severe step size restrictions on the numerical methods to be used. Construction of numerical methods that possess suitable stability properties for the solution of such systems has been the target of many researchers. Development of methods suitable for these systems of equations has been either through the use of derivative of the solution or by introducing off-step points, additional stages or super future points. These processes have been exploited in Runge-Kutta methods or linear multistep methods. In this study, an improved class of linear multistep block method has been constructed based on Adams Moulton block methods. The improved methods are shown to be A-stable, a property desirable to handle stiff ODEs. Methods of uniform orders 10 and 11 have been constructed. The efficiency of the new methods tested on stiff systems of ODEs and the results reveal that the MOBAM methods compare favourably with results obtained using the state of the art Matlab Ode23 solver.

Keywords: Block method, initial value problems, non-linear, stability

INTRODUCTION

Stiff initial value problems of ordinary differential equations were realized in 1952 arising from the study of chemical kinetics. Since then, many researches have been involved in the study and development of suitable numerical methods to handle them. Curtiss and Hirschfelder (1952), Mitchell and Craggs (1953) and Gear (1971) developed the Backward Differential Formulae which were used to solve stiff problems arising from chemical kinetics. Intensive work done in this regard yielding several efficient numerical algorithms has appeared in the literature. Because of the severe restriction on step size placed on Adams Moulton methods for the solution of stiff ODEs, Garfinket et al. (1978) introduced the concept of Astability for linear multistep methods. This property became the minimum requirement for any linear multistep method to be used for the solution of stiff ODEs. Achieving A-stability was difficult, other stability requirements such as $A(\alpha)$ -stability and stiffly stability were considered. Chakrararti and Kamel (1983) developed stiffly stable second derivative methods with high order and improved stability regions to handle stiff problems. Several other researchers such as Samir (2013), Evelyn and Renante (2006), Song (2010), Vlachos et al. (2009) and Ali and Gholamreza (2012) developed improved and more friendly numerical methods with improved stability properties that could handle stiff ODEs with various degrees of stiffness.

In this study, we pursue the path of Adams Moulton methods by constructing A-stable block linear multistep methods of uniform order 10 and 11. These methods are obtained by modifying the Adams Moulton method of step number 9 by reducing its interpolation step number from 8 to 3. This approach is similar to that of Brugnano and Trigiante (1998) where they developed the Generalized Adams methods.

The modified methods are constructed using the concept of multistep collocation of Lie and Norsett (1989) which Onumanyi *et al.* (1994, 1999) referred to as block linear multistep methods. The block methods are arrived at by evaluating the continuous formulation of the new method at grid and off grid points to yield the discrete schemes used as block integrators. The methods are applied simultaneously producing self-starting methods thus eliminating the issue of overlap of pieces of solutions.

CONSTRUCTION OF THE NEW METHOD

The k-step general linear multistep method for numerically solving the differential equation:

$$y' = f(x, y), \quad y(x_0) = y_0, \quad x \in [a, b], \quad y \in R$$
 (1)

is described by the linear difference equation:

$$\sum_{j=0}^{k} \alpha_{j}(x) y_{n+j} = h \sum_{j=0}^{k} \beta_{j}(x) f_{n+j}$$
(2)

Corresponding Author: G.M. Kumleng, Department of Mathematics, University of Jos, P.M.B. 2084, Plateau State, Nigeria This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

Res. J. Math. Stat., 5(4): 32-42, 2013

With h being the step size, $\alpha_j(x)$ and $\beta_j(x)$ being the continuous coefficients of the method. The new improved nine step method based on the Adams Moulton method is defined as:

$$y_{n+\nu} - \alpha_{\nu-1}(x)y_{n+\nu-1} = h \sum_{j=0}^{m} \beta_j(x) f_{n+j}$$
(3)

where, $v = \frac{k-1}{2}$, α_{v-1} and $\beta_j(x)$ are the continuous coefficients of the method, m is the number of distinct collocation points, h is the step size and k = m - 1 = 3, 5, 7, 9, ...

Using the method in Onumanyi *et al.* (1994, 1999) and further studied by Kumleng *et al.* (2012) and Chollom *et al.* (2012) the method (3) for $v = \frac{k-1}{2}$ and j =0, 1... 9 sequence in the matrix form:

$$DC = I$$
 (4)

where, $D = C^{-1}$, C^{-1} being the elements of the continuous coefficients of the method.

Construction of MOBAM K = 9: This method has its general form as:

$$y(x) = \alpha_3(x)y_{n+3} + h\sum_{j=0}^k \beta_j(x)f_{n+j}, j = 0, 1, \dots, 9$$
(5)

(6)

Using the procedure in Onumanyi et al. (1999), we obtain the D matrix for (5) as:

$$D = \begin{bmatrix} 1 & x_{n+3} & x_{n+3}^2 & x_{n+3}^3 & x_{n+3}^4 & x_{n+3}^5 & x_{n+3}^6 & x_{n+3}^7 & x_{n+3}^8 & x_{n+3}^9 & x_{n+3}^{10} \\ 0 & 1 & 2x_n & 3x_n^2 & 4x_n^3 & 5x_n^4 & 6x_n^5 & 7x_n^6 & 8x_n^7 & 9x_n^8 & 10x_n^9 \\ 0 & 1 & 2x_{n+1} & 3x_{n+1}^2 & 4x_{n+1}^3 & 5x_{n+1}^4 & 6x_{n+1}^5 & 7x_{n+1}^6 & 8x_{n+1}^7 & 9x_{n+1}^8 & 10x_{n+1}^9 \\ 0 & 1 & 2x_{n+2} & 3x_{n+2}^2 & 4x_{n+2}^3 & 5x_{n+2}^4 & 6x_{n+2}^5 & 7x_{n+2}^6 & 8x_{n+2}^7 & 9x_{n+2}^8 & 10x_{n+2}^9 \\ 0 & 1 & 2x_{n+3} & 3x_{n+3}^2 & 4x_{n+3}^3 & 5x_{n+4}^4 & 6x_{n+5}^5 & 7x_{n+5}^6 & 8x_{n+2}^7 & 9x_{n+3}^8 & 10x_{n+3}^9 \\ 0 & 1 & 2x_{n+3} & 3x_{n+3}^2 & 4x_{n+3}^3 & 5x_{n+4}^4 & 6x_{n+3}^5 & 7x_{n+3}^6 & 8x_{n+3}^7 & 9x_{n+3}^8 & 10x_{n+3}^9 \\ 0 & 1 & 2x_{n+4} & 3x_{n+4}^2 & 4x_{n+4}^3 & 5x_{n+4}^4 & 6x_{n+4}^5 & 7x_{n+6}^6 & 8x_{n+5}^7 & 9x_{n+5}^8 & 10x_{n+5}^9 \\ 0 & 1 & 2x_{n+5} & 3x_{n+5}^2 & 4x_{n+5}^3 & 5x_{n+5}^4 & 6x_{n+6}^5 & 7x_{n+6}^6 & 8x_{n+6}^7 & 9x_{n+6}^8 & 10x_{n+6}^9 \\ 0 & 1 & 2x_{n+6} & 3x_{n+6}^2 & 4x_{n+6}^3 & 5x_{n+6}^4 & 6x_{n+6}^5 & 7x_{n+6}^6 & 8x_{n+6}^7 & 9x_{n+6}^8 & 10x_{n+6}^9 \\ 0 & 1 & 2x_{n+6} & 3x_{n+6}^2 & 4x_{n+5}^3 & 5x_{n+6}^4 & 6x_{n+7}^5 & 7x_{n+6}^6 & 8x_{n+7}^7 & 9x_{n+7}^8 & 10x_{n+7}^9 \\ 0 & 1 & 2x_{n+6} & 3x_{n+6}^2 & 4x_{n+7}^3 & 5x_{n+7}^4 & 6x_{n+7}^5 & 7x_{n+6}^6 & 8x_{n+7}^7 & 9x_{n+7}^8 & 10x_{n+7}^9 \\ 0 & 1 & 2x_{n+8} & 3x_{n+8}^2 & 4x_{n+8}^3 & 5x_{n+8}^4 & 6x_{n+8}^5 & 7x_{n+6}^6 & 8x_{n+7}^7 & 9x_{n+7}^8 & 10x_{n+7}^9 \\ 0 & 1 & 2x_{n+8} & 3x_{n+8}^2 & 4x_{n+8}^3 & 5x_{n+8}^4 & 6x_{n+8}^5 & 7x_{n+6}^6 & 8x_{n+7}^7 & 9x_{n+8}^8 & 10x_{n+8}^9 \\ 0 & 1 & 2x_{n+9} & 3x_{n+9}^2 & 4x_{n+9}^3 & 5x_{n+9}^4 & 6x_{n+9}^5 & 7x_{n+9}^6 & 8x_{n+9}^7 & 9x_{n+9}^8 & 10x_{n+9}^9 \end{bmatrix}$$

Using the Maple software, the inverse of the matrix (6) is obtained and represented as C, the elements of which yield the continuous coefficients $\alpha_3(x)$ and $\beta_j(x)$, j = 0, 1, ...9 of the method (5) as:

$$\alpha_3(x) = 1$$

$$\begin{aligned} \beta_{0}(x) &= \left(-\frac{359 \text{ lh}}{12800} + \mu - \frac{7129 \mu^{2}}{6048 \mu^{2}} + \frac{6515 \mu^{3}}{9072 h^{3}} + \frac{4523 \mu^{4}}{128 h^{4}} - \frac{3013 \mu^{6}}{13680 \mu^{5}} + \frac{5 \mu^{7}}{1344 h^{6}} - \frac{29 \mu^{8}}{96768 h^{7}} + \frac{\mu^{9}}{72576 h^{8}} - \frac{\mu^{10}}{3628800 \mu^{9}}\right) \\ \beta_{1}(x) &= \left(-\frac{147429 h}{89600} + \frac{9 \mu^{2}}{2h} - \frac{4609 \mu^{3}}{480 h^{2}} + \frac{14139 \mu^{4}}{4480 h^{3}} - \frac{7667 \mu^{5}}{7200 h^{4}} + \frac{7807 \mu^{6}}{34560 h^{5}} - \frac{11 \mu^{7}}{360 h^{6}} + \frac{59 \mu^{8}}{23040 h^{7}} - \frac{112 \mu^{9}}{9200 h^{8}} + \frac{\mu^{10}}{43200 h^{9}}\right) \\ \beta_{2}(x) &= \left(\frac{279 h}{1600} - \frac{9 \mu^{2}}{h} + \frac{580 \mu^{2}}{4200 \mu^{2}} - \frac{20837 \mu^{4}}{2240 h^{3}} + \frac{2490 \mu^{5}}{7200 h^{4}} - \frac{6787 \mu^{6}}{8640 h^{5}} + \frac{553 \mu^{7}}{200 h^{7}} + \frac{553 \mu^{2}}{90720 h^{8}} - \frac{432 \mu^{9}}{90720 h^{8}} - \frac{\mu^{10}}{10080 h^{9}}\right) \\ \beta_{3}(x) &= \left(-\frac{13273 h}{5600} + \frac{14 \mu^{2}}{h} - \frac{6289 \mu^{3}}{270 h^{2}} + \frac{72569 \mu^{4}}{4320 h^{3}} - \frac{4013 \mu^{5}}{600 h^{4}} + \frac{13873 \mu^{6}}{8640 h^{5}} - \frac{401 \mu^{7}}{1680 h^{6}} + \frac{31 \mu^{8}}{1440 h^{7}} - \frac{74 \mu^{9}}{6480 h^{8}} + \frac{41 \mu^{9}}{43200 h^{9}}\right) \\ \beta_{4}(x) &= \left(\frac{19107 h}{8960} - \frac{63 \mu^{2}}{4h} + \frac{6499 \mu^{3}}{2400 h^{2}} - \frac{6519 \mu^{4}}{320 h^{3}} + \frac{122249 \mu^{3}}{122240 \mu^{3}} - \frac{36769 \mu^{6}}{17280 h^{5}} + \frac{313 \mu^{7}}{1080 h^{6}} - \frac{353 \mu^{8}}{11520 h^{7}} + \frac{41 \mu^{9}}{25200 h^{8}} - \frac{\mu^{10}}{2800 h^{9}}\right) \\ \beta_{5}(x) &= \left(-\frac{73809 h}{4800} + \frac{63 \mu^{2}}{5h} - \frac{265 \mu^{3}}{120 h^{2}} + \frac{1091 \mu^{4}}{120 h^{3}} - \frac{5273 \mu^{5}}{720 h^{4}} + \frac{3773 \mu^{6}}{17280 h^{5}} - \frac{305 \mu^{7}}{1008 h^{6}} + \frac{67 \mu^{8}}{2304 h^{7}} - \frac{\mu^{10}}{4880 h^{8}} + \frac{\mu^{10}}{2800 h^{9}}\right) \\ \beta_{6}(x) &= \left(-\frac{3663 h}{5600} - \frac{7 \mu^{2}}{h} + \frac{6400 \mu^{4}}{120 h^{2}} - \frac{293 \mu^{6}}{8400 h^{4}} + \frac{132 \mu^{6}}{10279 h^{4}} - \frac{373 \mu^{7}}{8640 h^{5}} + \frac{151 \mu^{8}}{310 \mu^{6}} - \frac{53 \mu^{8}}{2880 h^{9}}\right) \\ \beta_{7}(x) &= \left(-\frac{3663 h}{11200} - \frac{18 \mu^{2}}{h} - \frac{967 \mu^{3}}{2100 h^{4}} + \frac{10579 \mu^{6}}{1200 h^{4}} - \frac{3437 \mu^{6}}{8640 h^{5}} + \frac{151 \mu^{8}}{2010 h^{6}} - \frac{19 \mu^{9}}{45360 h^{8}} + \frac{10^{10}}{45300 h^{9}}}\right) \\ \beta_$$

Substituting the continuous coefficients (7) into (5) yields the continuous form of the MOBAM method (8):

$$y(x_{n} + \mu) = y_{n+3} + \left(-\frac{359\,\mu}{12800} + \mu - \frac{7129\mu^{2}}{5040h} + \frac{6515\mu^{3}}{6048\mu^{2}} - \frac{4523\mu^{4}}{972h^{3}} + \frac{19\mu^{5}}{128h^{4}} - \frac{3013\mu^{6}}{103680h^{5}} + \frac{5\mu^{7}}{1344h^{6}} - \frac{269\mu^{8}}{6768h^{7}} + \frac{\mu^{9}}{72576h^{8}} - \frac{\mu^{10}}{362880h^{9}}\right)f_{n} + \\ \left(-\frac{147429h}{89000} + \frac{9\mu^{2}}{2h} - \frac{4609\mu^{3}}{840\mu^{2}} + \frac{14139\mu^{4}}{4480h^{3}} - \frac{7667\mu^{8}}{7200h^{4}} + \frac{7857\mu^{6}}{3600h^{6}} - \frac{11\mu^{7}}{360h^{6}} + \frac{59\mu^{8}}{23040h^{7}} - \frac{11\mu^{9}}{90720h^{8}} + \frac{\mu^{10}}{403200h^{9}}\right)f_{n+1} + \\ \left(\frac{279h}{1600} - \frac{9\mu^{2}}{h} + \frac{5869\mu^{3}}{2200h^{2}} - \frac{20837\mu^{4}}{2240h^{3}} + \frac{2490\mu^{5}}{7200h^{4}} - \frac{6787\mu^{6}}{8640h^{5}} + \frac{563\mu^{7}}{5604h^{6}} - \frac{7\mu^{8}}{720h^{7}} + \frac{43\mu^{9}}{9720h^{8}} - \frac{\mu^{10}}{100800h^{9}}\right)f_{n+2} + \\ \left(-\frac{132778h}{5600} + \frac{14\mu^{2}}{h} - \frac{6289\mu^{3}}{270h^{2}} + \frac{72569\mu^{4}}{4320h^{3}} - \frac{4013\mu^{2}}{600h^{4}} + \frac{13873\mu^{6}}{8640h^{5}} - \frac{401\mu^{7}}{1680h^{6}} + \frac{31\mu^{8}}{1440h^{7}} - \frac{7\mu^{9}}{6480h^{8}} + \frac{\mu^{10}}{42200\mu^{9}}\right)f_{n+3} + \\ \left(\frac{19107h}{8960} - \frac{63\mu^{2}}{4h} + \frac{6499\mu^{3}}{220h^{3}} - \frac{6519\mu^{4}}{320h^{3}} + \frac{122249\mu^{5}}{14400h^{4}} - \frac{3773\mu^{6}}{17280h^{5}} + \frac{313\mu^{7}}{1080h^{6}} - \frac{352\mu^{8}}{11520h^{7}} + \frac{41\mu^{9}}{25200h^{8}} - \frac{\mu^{10}}{28800h^{9}}\right)f_{n+4} + \\ \left(-\frac{73809h}{44800} + \frac{63\mu^{2}}{5h} - \frac{265\mu^{3}}{12h^{2}} + \frac{1091\mu^{4}}{64h^{3}} - \frac{5273\mu^{5}}{720h^{4}} + \frac{32773\mu^{6}}{17280h^{5}} - \frac{305\mu^{7}}{1008h^{6}} - \frac{312\mu^{9}}{2580h^{7}} - \frac{\mu^{10}}{24800h^{9}}\right)f_{n+5} + \\ \left(\frac{5039h}{5600} - \frac{7\mu^{2}}{h} + \frac{6709\mu^{2}}{540h^{2}} - \frac{84307\mu^{4}}{8400h^{3}} + \frac{10279\mu^{5}}{720h^{4}} - \frac{9822\mu^{6}}{8640h^{5}} + \frac{313\mu^{7}}{1008h^{6}} - \frac{53\mu^{8}}}{2304h^{7}} - \frac{412\mu^{9}}{24800h^{8}} - \frac{\mu^{10}}{28800h^{9}}\right)f_{n+5} + \\ \left(-\frac{3663h}{11200} - \frac{18\mu^{2}}{h} - \frac{967\mu^{3}}{540h^{4}} + \frac{10279\mu^{5}}{8640h^{5}} - \frac{9822\mu^{6}}{34560h^{5}} + \frac{313\mu^{7}}{1080h^{6}} - \frac{53\mu^{8}}{2380h^{7}} + \frac{13\mu^{9}}{12800h^{8}} - \frac{\mu^{10}}{43200h^{9}}\right)f_{n+7} + \\ \left(\frac{909h}{12800} - \frac{9\mu^{6}}{h^{4}} + \frac{3307\mu^{2}}{33360h^{2}} - \frac{1$$

where, $\mu = x - x_n$ and $\mu \in [0, 9h]$. Evaluating the continuous scheme (8) at the following points $\mu = 0, h, 2h, 4h, 5h, 6h, 7h, 8h, 9h$ yields the MOBAM method (9) for k = 9 used in block for the solution of ODEs:

$$\begin{aligned} y_{n+3} - y_n &= \frac{h}{8900} (25137 f_n + 147429 f_{n+1} - 15624 f_{n+2} + 212368 f_{n+3} - 191070 f_{n+4} + \\ & 147618 f_{n+5} - 80624 f_{n+6} + 29304 f_{n+7} - 6363 f_{n+8} + 625 f_{n+9}) \\ y_{n+1} - y_{n+3} &= \frac{h}{113400} (729 f_n - 38938 f_{n+1} - 156340 f_{n+2} - 18742 f_{n+3} - 28234 f_{n+4} + \\ & 24266 f_{n+5} - 13492 f_{n+6} + 4910 f_{n+7} - 1063 f_{n+8} + 104 f_{n+9}) \\ y_{n+2} - y_{n+3} &= \frac{h}{257600} (-10625 f_n + 163531 f_{n+1} - 3133688 f_{n+2} - 5597072 f_{n+3} + 2166334 f_{n+4} \\ & - 1295810 f_{n+5} + 617584 f_{n+6} - 206072 f_{n+7} + 42187 f_{n+8} - 3969 f_{n+9}) \\ y_{n+4} - y_{n+3} &= \frac{h}{257600} (-3969 f_n + 50315 f_{n+1} - 342136 f_{n+2} + 3609968 f_{n+3} + 4763582 f_{n+4} - \\ & - 1166146 f_{n+5} + 462320 f_{n+6} - 141304 f_{n+7} + 27467 f_{n+8} - 2497 f_{n+9}) \\ y_{n+5} - y_{n+3} &= \frac{h}{113400} (-23 f_n + 334 f_{n+1} - 2804 f_{n+2} + 46378 f_{n+3} + 139030 f_{n+4} + 46378 f_{n+5} - \\ & 2804 f_{n+6} + 334 f_{n+7} - 23 f_{n+8}) \\ y_{n+6} - y_{n+3} &= \frac{h}{89600} (-49 f_n + 603 f_{n+1} - 3960 f_{n+2} + 42352 f_{n+3} + 95454 f_{n+4} + 95454 f_{n+5} + \\ & 42352 f_{n+6} - 3960 f_{n+7} + 603 f_{n+8} - 49 f_{n+9}) \\ y_{n+7} - y_{n+3} &= \frac{h}{89600} (-425 f_n + 4675 f_{n+1} - 25400 f_{n+2} + 171760 f_{n+3} + 247150 f_{n+4} + \\ & 5494 f_{n+7} - 224 f_{n+8} + 13 f_{n+9}) \\ y_{n+8} - y_{n+3} &= \frac{h}{1400} (9f_n - 90 f_{n+1} + 396 f_{n+2} - 598 f_{n+3} + 3798 f_{n+4} - 1494 f_{n+5} + \\ & 3980 f_{n+6} - 306 f_{n+7} + 2313 f_{n+8} + 392 f_{n+9}) \\ \end{cases}$$

Construction of Hybrid MOBAM K = 9, $\mu = \frac{17}{2}$: This is the hybrid form of the MOBAM family for k=9. An off step point is inserted in (5) to give its general form as:

$$y(x) = \alpha_3(x)y_{n+3} + h\sum_{j=0}^k \beta_j(x)f_{n+j} + h\beta_u(x)f_{n+u}, j = 0, 1, \dots, 9, \mu = \frac{17}{2}$$
(10)

Following a similar procedure as in above section gives the matrix:

$$D = \begin{bmatrix} 1 & x_{n+3} & x_{n+3}^2 & x_{n+3}^3 & x_{n+3}^4 & x_{n+3}^5 & x_{n+3}^6 & x_{n+3}^7 & x_{n+3}^8 & x_{n+3}^9 & x_{n+3}^{10} & x_{n+3}^{11} \\ 0 & 1 & 2x_n & 3x_n^2 & 4x_n^3 & 5x_n^4 & 6x_n^5 & 7x_n^6 & 8x_n^7 & 9x_n^8 & 10x_n^9 & 11x_n^{10} \\ 0 & 1 & 2x_{n+1} & 3x_{n+1}^2 & 4x_{n+1}^3 & 5x_{n+1}^4 & 6x_{n+1}^5 & 7x_{n+1}^6 & 8x_{n+1}^7 & 9x_{n+1}^8 & 10x_{n+1}^9 & 11x_{n+1}^{10} \\ 0 & 1 & 2x_{n+2} & 3x_{n+2}^2 & 4x_{n+2}^3 & 5x_{n+2}^4 & 6x_{n+2}^5 & 7x_{n+2}^6 & 8x_{n+2}^7 & 9x_{n+2}^8 & 10x_{n+2}^9 & 11x_{n+2}^{10} \\ 0 & 1 & 2x_{n+3} & 3x_{n+2}^2 & 4x_{n+3}^3 & 5x_{n+4}^4 & 6x_{n+3}^5 & 7x_{n+2}^6 & 8x_{n+2}^7 & 9x_{n+3}^8 & 10x_{n+2}^9 & 11x_{n+2}^{10} \\ 0 & 1 & 2x_{n+4} & 3x_{n+4}^2 & 4x_{n+3}^3 & 5x_{n+4}^4 & 6x_{n+3}^5 & 7x_{n+4}^6 & 8x_{n+4}^7 & 9x_{n+3}^8 & 10x_{n+3}^9 & 11x_{n+3}^{10} \\ 0 & 1 & 2x_{n+4} & 3x_{n+4}^2 & 4x_{n+3}^3 & 5x_{n+5}^4 & 6x_{n+5}^5 & 7x_{n+5}^6 & 8x_{n+5}^7 & 9x_{n+3}^8 & 10x_{n+4}^9 & 11x_{n+4}^{10} \\ 0 & 1 & 2x_{n+4} & 3x_{n+4}^2 & 4x_{n+5}^3 & 5x_{n+5}^4 & 6x_{n+5}^5 & 7x_{n+5}^6 & 8x_{n+5}^7 & 9x_{n+5}^8 & 10x_{n+5}^9 & 11x_{n+5}^{10} \\ 0 & 1 & 2x_{n+6} & 3x_{n+6}^2 & 4x_{n+5}^3 & 5x_{n+6}^4 & 6x_{n+6}^5 & 7x_{n+6}^6 & 8x_{n+6}^7 & 9x_{n+6}^8 & 10x_{n+6}^9 & 11x_{n+6}^{10} \\ 0 & 1 & 2x_{n+6} & 3x_{n+6}^2 & 4x_{n+3}^3 & 5x_{n+6}^4 & 6x_{n+6}^5 & 7x_{n+6}^6 & 8x_{n+6}^7 & 9x_{n+6}^8 & 10x_{n+6}^9 & 11x_{n+6}^{10} \\ 0 & 1 & 2x_{n+8} & 3x_{n+8}^2 & 4x_{n+8}^3 & 5x_{n+8}^4 & 6x_{n+8}^5 & 7x_{n+8}^6 & 8x_{n+6}^7 & 9x_{n+8}^8 & 10x_{n+9}^9 & 11x_{n+7}^{10} \\ 0 & 1 & 2x_{n+8} & 3x_{n+8}^2 & 4x_{n+8}^3 & 5x_{n+8}^4 & 6x_{n+8}^5 & 7x_{n+8}^6 & 8x_{n+8}^7 & 9x_{n+8}^8 & 10x_{n+8}^9 & 11x_{n+8}^{10} \\ 0 & 1 & 2x_{n+8} & 3x_{n+8}^2 & 4x_{n+8}^3 & 5x_{n+8}^4 & 6x_{n+8}^5 & 7x_{n+8}^6 & 8x_{n+8}^7 & 9x_{n+8}^8 & 10x_{n+9}^9 & 11x_{n+9}^{10} \\ 0 & 1 & 2x_{n+9} & 3x_{n+9}^2 & 4x_{n+9}^3 & 5x_{n+9}^4 & 6x_{n+9}^5 & 7x_{n+9}^6 & 8x_{n+9}^7 & 9x_{n+9}^8 & 10x_{n+9}^9 & 11x_{n+9}^{10} \\ \end{bmatrix}$$

The continuous coefficients of the method (10) are similarly obtain from the inverse of (11) as:

$$\begin{split} a_{1}(x) &= 1 \\ \beta_{+}(x) &= \left(-\frac{4851629}{16755200} + \mu - \frac{126233}{8560} \frac{\mu^{+}}{h} + \frac{610807}{91036} \frac{\mu^{-}}{h^{+}} - \frac{366199}{1618960} \frac{\mu^{+}}{h^{+}} + \frac{1205177}{9168960} \frac{\mu^{+}}{h^{+}} + \frac{1205177}{9162560} \frac{\mu^{+}}{h^{+}} + \frac{1777}{1762560} \frac{\mu^{+}}{h^{+}} + \frac{1777}{1618960} \frac{\mu^{+}}{h^{+}} + \frac{1205177}{1362560} \frac{\mu^{+}}{h^{+}} + \frac{107}{1762560} \frac{\mu^{-}}{h^{+}} + \frac{107}{1762560} \frac{\mu^{-}}{h^{+}} + \frac{107}{139204} \frac{\mu^{-}}{h^{+}} - \frac{107}{1392040} \frac{\mu^{+}}{h^{+}} + \frac{120}{15020} \frac{\mu^{-}}{h^{-}} - \frac{107}{12920} \frac{\mu^{+}}{h^{+}} - \frac{1017}{12920} \frac{\mu^{+}}{h^{+}} - \frac{1017}{12920} \frac{\mu^{+}}{h^{+}} - \frac{12937}{12200} \frac{\mu^{+}}{h^{+}} - \frac{12937}{12200} \frac{\mu^{+}}{h^{+}} - \frac{12937}{12200} \frac{\mu^{+}}{h^{+}} - \frac{12123}{1220} \frac{\mu^{+}}{h^{+}} + \frac{1201}{12920} \frac{\mu^{+}}{h^{+}} - \frac{115181}{12920} \frac{\mu^{+}}{h^{+}} + \frac{121}{12920} \frac{\mu^{+}}{h^{+}} - \frac{115181}{12920} \frac{\mu^{+}}{h^{+}} + \frac{121}{12920} \frac{\mu^{+}}{h^{+}} - \frac{115181}{12920} \frac{\mu^{+}}{h^{+}} + \frac{1212}{1220} \frac{\mu^{+}}{h^{+}} - \frac{115181}{12920} \frac{\mu^{+}}{h^{+}} + \frac{1212}{1220} \frac{\mu^{+}}{h^{+}} - \frac{115181}{1220} \frac{\mu^{+}}{h^{+}} + \frac{1212}{1220} \frac{\mu^{+}}{h^{+}} - \frac{111220}{12020} \frac{\mu^{+}}{h^{+}} - \frac{11220}{1210} \frac{\mu^{+}}{h^{-}} - \frac{11220}{1310400} \frac{\mu^{+}}{h^{+}} + \frac{1211}{12200} \frac{\mu^{+}}{h^{+}} - \frac{111220}{1220} \frac{\mu^{+}}{h^{+}} - \frac{11192}{1200} \frac{\mu^{+}}{h^{-}} - \frac{1112}{1200} \frac{\mu^{+}}{h^{+}} - \frac{111953}{1220} \frac{\mu^{+}}{h^{+}} - \frac{111953}{1210} \frac{\mu^{+}}{h^{-}} - \frac{1103}{12800} \frac{\mu^{+}}{h^{-}} - \frac{15111}{12900} \frac{\mu^{+}}{h^{+}} - \frac{1110}{1200} \frac{\mu^{+}}{h^{-}} - \frac{1101}{12500} \frac{\mu^{+}}{h^{-}} - \frac{1110}{1200} \frac{\mu^{+}}{h^{+}} + \frac{1111053}{1210} \frac{\mu^{+}}{h^{-}} - \frac{1110}{12800} \frac{\mu^{+}}{h^{+}} - \frac{1110}{1210} \frac{\mu^{+}}{h^{-}} - \frac{110}{120} \frac{\mu^{+}}{h^{-}} - \frac{110}{1200} \frac{\mu^{+}}{h^{+}} - \frac{110}{1200} \frac{\mu^{+}}{h^{-}} - \frac{110}{120} \frac{\mu^{+}}{h^{-}} - \frac{110}{1200} \frac{\mu^{+}}{h^{-}} - \frac{110}{1200} \frac{\mu^{+}}{h^{-}} - \frac{110}{1200} \frac{\mu^{+}}{h^{-}} - \frac{110}{1200} \frac{\mu^{+}}{h$$

(12)

$$\beta_{\frac{17}{2}}(x) = \left(-\frac{3046144}{4679675} + \frac{65536}{12155} - \frac{116801536}{11486475} \frac{\mu^3}{h^2} + \frac{1334272}{153153} \frac{\mu^4}{h^3} - \frac{148209664}{34459425} \frac{\mu^5}{h^4} + \frac{9728}{7293} \frac{\mu^6}{h^5} - \frac{3085312}{11486475} \frac{\mu^7}{h^6} + \frac{256}{7293} \frac{\mu^8}{h^7} - \frac{59392}{20675655} \frac{\mu^9}{h^8} + \frac{512}{3828825} \frac{\mu^{10}}{h^9} - \frac{1024}{379053675} \frac{\mu^{11}}{h^{10}}\right)$$

$$\beta_9(x) = \left(\frac{22423}{197120} - \frac{17\mu^2}{18h} + \frac{4499}{2520} \frac{\mu^3}{h^2} - \frac{556819}{362880} \frac{\mu^4}{h^3} + \frac{345019}{453600} \frac{\mu^5}{h^4} - \frac{24581}{103680} \frac{\mu^6}{h^5} + \frac{83\mu^7}{1728} \frac{437\mu^8}{69120} + \frac{71\mu^9}{136080} \frac{89\mu^{10}}{h^8} - \frac{89\mu^{10}}{3628800} \frac{\mu^9}{h^9} + \frac{\mu^{11}}{1995840} \frac{1}{h^{10}}\right) f_{n+9}$$

Substituting the continuous coefficients (12) into (10) produces the continuous form of the new MOBAM method for k = 9, $\mu = \frac{17}{2}$ as:

$$y(\mu + x_{\star}) = y_{\star,\star} + \left(-\frac{4851629}{1675200} + \mu - \frac{125233}{8560} + \frac{\mu}{h} + \frac{610807}{91080} + \frac{\mu}{h} + \frac{36199}{168960} + \frac{\mu}{h} + \frac{105177}{66886} + \frac{\mu}{h} + \frac{105177}{66886} + \frac{\mu}{h} + \frac{105177}{166256} + \frac{\mu}{h} + \frac{\mu}{1} + \frac{105}{7} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{105}{100} + \frac{\mu}{h} + \frac{102}{100} + \frac{\mu}{h} + \frac{102}{1000} + \frac{\mu}{h} + \frac{102}{1000} + \frac{\mu}{h} + \frac{102}{1000} + \frac{\mu}{h} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{102}{1000} + \frac{\mu}{h} + \frac{102}{1210} + \frac{\mu}{h} + \frac{102}{1210} + \frac{\mu}{h} + \frac{102}{1000} + \frac{\mu}{h} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{\mu}{1} + \frac{105}{1121} + \frac{\mu}{1} + \frac{105}{1121} + \frac{\mu}{1} + \frac{106}{1210} + \frac{\mu}{h} + \frac{102}{1210} + \frac{\mu}{h} + \frac{\mu}{1} +$$

Res. J. Math. Stat., 5(4): 32-42, 2013

$$\left(\frac{22423 \ h}{197120} - \frac{17 \ \mu^2}{18 \ h} + \frac{4499 \ \mu^3}{2520 \ h^2} - \frac{556819 \ \mu^4}{362880 \ h^3} + \frac{345019 \ \mu^5}{453600 \ h^4} - \frac{24581 \ \mu^6}{103680 \ h^5} + \frac{83 \ \mu^7}{1728 \ h^6} - \frac{437 \ \mu^8}{69120 \ h^7} + \frac{71 \ \mu^9}{136080 \ h^8} - \frac{89 \ \mu^{10}}{3628800 \ h^9} + \frac{\mu^{11}}{1995840 \ h^{10}}\right) f_{n+9}$$

where, $\mu = x - x_n$ and $\mu \in [0, 9h]$. Evaluating the continuous scheme (13) at the following points $\mu = 0, h, 2h, 4h, 5h, 6h, 7h, 8h, \frac{17}{2}h, 9h$ yields the discrete members of the Modified Block Hybrid Adams Method (MOBHAM) used as block integrators as:

$$y_{x}y_{x-3} = -\frac{1}{2000} (655172947 f_{x}+4115957703 f_{x-3}+9159108530 f_{x-3}+9159108530 f_{x-3}+9159108530 f_{x-3}+9159108530 f_{x-3}+915920818530 f_{x-3}+915920818530 f_{x-3}+915920818530 f_{x-3}+915920818530 f_{x-3}+915920818530 f_{x-3}+915920818530 f_{x-3}+91592081728 f_{x-3}+27551565 f_{x-9})
$$y_{x+1}y_{x-3} = \frac{1}{9000} (500 f_{0}f_{x-3}-462284706 f_{x-3}-413983242 f_{x-4}+4401077538 f_{x-5}-3373129188 f_{x-3}+2030152410 f_{x-7}-1312470159 f_{x-8}+735182848 f_{x-2}-128011598 f_{x-9})
$$y_{x+2}y_{x-3} = -\frac{1}{92226444800} (607643465 f_{x}-1062274313 1 f_{x-1}+23328428 f_{x-4}+233126886 4 f_{x-4}+339940 90 f_{x-5}-3373129188 f_{x-6}+6645579969 6 f_{x-7}-4082743193 1 f_{x-8}+2243126886 4 f_{x-4}+3341935383 f_{x-9})
$$y_{x-4}y_{x-3} = -\frac{1}{92226444800} (188536777 f_{x-7}-22107334657 1 f_{x-8}+119035682 4 f_{x-4}+232126886 4 f_{x-4}+2332914334 18 f_{x-5}-3373129188 f_{x-6}+235286484 (188536777 f_{x-7}-2207334657 1 f_{x-8}+119035682 4 f_{x-4}+232912741949 84 f_{x-7}-2207334657 1 f_{x-8}+119035682 4 f_{x-4}+2329207444439 f_{x-9})
$$y_{x-5}y_{x-3} = -\frac{1}{2000} (1460399 f_{x-2}-22958364 f_{x-1}+190356582 4 f_{x-4}+2329207444439 f_{x-9})
$$y_{x-5}y_{x-3} = -\frac{1}{2000} (146039 f_{x-2}-220733657 1 f_{x-8}+3065498754 f_{x-5}-3373129188 f_{x-5}-3703306034 f_{x-4}-2358687474 f_{x-5}-333330 f_{x-9})
$$y_{x-5}y_{x-3} = -\frac{1}{2000} (17320 f_{x-2}+2703306034 f_{x-4}-2358687474 f_{x-5}-3373129176 f_{x-9}-2393269320 f_{x-9}-39329276 f_{x-9}+312526320 f_{x-7}-113048793 f_{x-8}+58064896 f_{x-1}-95425921 f_{x-9}-959021 f_{x-9})
$$y_{x-5}y_{x-3} = -\frac{1}{2000} (17320 f_{x-2}+31372289776 f_{x-4}+2258687474 f_{x-5}-3333990 f_{x-5}-333849344 f_{x-6}-476918442 f_{x-7}+325259817 f_{x-1}+32522928776 f_{x-7}-2265828917 f_{x-9}+325228915 f_{x-9})
$$y_{x+7}y_{x-3} = -\frac{1}{2000} (1800 848359 f_{x-7}-2265828917 f_{x-1}+488330990 f_{x-5}-33324148 f_{x-6}-4709185773 2 f_{x-5}-2265428139 7 f_{x-6}-2707870363 14 f_{x-5}-2270995902 36 f_{x-5}-33327663 f_{x-5}-33324148 f_{x-6}-470318374 4 f_{x-7}-276873636 14 f_{x-5}-33270631 f_{x$$$$$$$$$$$$$$$$$$

STABILITY ANALYSIS OF THE NEW BLOCK METHODS

The block method (9) is represented by a matrix finite difference equation in block form as:

$$A^{(1)}Y_{w+1} = A^{(0)}Y_w + hB^{(1)}F_w$$
(15)

where,

$$Y_{w+1} = (y_{n+1}, y_{n+2}, y_{n+3}, y_{n+4}, y_{n+5}, y_{n+6}, y_{n+7}, y_{n+8}, y_{n+9})^T$$

$$Y_w = (y_{n-8}, y_{n-7}, y_{n-6}, y_{n-5}, y_{n-4}, y_{n-3}, y_{n-2}, y_{n-1}, y_n)^T$$

$$F_w = (f_{n+1}, f_{n+2}, f_{n+3}, f_{n+4}, f_{n+5}, f_{n+6}, f_{n+7}, f_{n+8}, f_{n+9})^T$$

for w = 0, ... and n = 0, 9, ..., N-9 and the matrices $A^{(1)}, A^{(0)}, B^{(1)}$ being 9 by 9 matrices whose entries are given by the coefficients of (9) and are as defined in equation (16) below:

	-								_		-								-		
	0	0	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	1		
	1	0	- 1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		
	0	1	- 1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		
	0	0	- 1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0		
$A^{(0)} =$	0	0	- 1	0	1	0	0	0	0	$A^{(1)} =$	0	0	0	0	0	0	0	0	0		
	0	0	-1	0	0	1	0	0	0		0	0	0	0	0	0	0	0	0		
	0	0	- 1	0	0	0	1	0	0		0	0	0	0	0	0	0	0	0		
	0	0	-1	0	0	0	0	1	0		0	0	0	0	0	0	0	0	0		
		0	_1	0	0	0	0	0	1			0	0	0	0	0	0	0			
	Lo	0	1	0	U	0	0	0	1		Lo	0	0	0	0	0	0	0	0]		
	E 1.4	740	0		270			122	72	10	107		72	000			-02	2	2002	000	25
	14/429		- 279		132/3		- 19	- 19107		/3809			- 5039		9	3663	- 909	25			
	89600		1600		5600		8960			44800			5600		2	11200	12800	3584			
	- 1	-19409		- /81/		- 93/1		$\frac{-14117}{-5(700)}$		-	12133			$\frac{-3373}{28250}$		5	491	$\frac{-1003}{112400}$	15		
	163531		- 391711		- 349817		1083167			-129581			28350 38599)	-25759	42187	- 7			
	7257600		907200		453600		3628800			725760			453600			907200	7257600	12800			
	10063		- 42/6/		225623		2381791			- 583073			5/19			-1/663	2/46/	- 2497			
$B^{(1)} =$	1451520		20	907200 - 701		453600 23189		3628	3628800		3628800			90720 - 701			907200	7257600 - 23	7257600		
	56700		<u> </u>	28250		56700		$\frac{13903}{11240}$			56700			28350			56700	112400	0		
	603			- 99			2647			477	47727			47727			647	,	- 99	603	- 7
	89600			2240			5600			448		44800			5600		-	2240	89600	12800	
	13		- 32		5494		176	17632		2174			17632			5494	- 32	13			
	14	14175		2025		14175		141	14175		2835			14175			14175	2025	14175		
	4_4	4675		- 3175		10735		1235	123575		190775			11575		-	48425	101635	- 25		
	290304			36288			18144			1451	145152			145152			144	ł	36288	290304	3584
	-	- 7				- 299		189	1899		- /4/			179			-133	2313	/		
	L	. 140		350				70	0	70	700			700			70		700	1400	25

where, $w = 0, 1, 2, \dots 9$ and n is the grid index.

Zero-stability: Zero-stability is concerned with the stability of the difference system (15) as h tends to zero. Thus, $as h \rightarrow 0$, the method (15) tends to the difference system:

$$A^{(1)}Y_{w+1} = A^{(0)}Y_{w}$$
(17)

(16)

whose first characteristic polynomial $\rho(\lambda)$ is given by:

$$\rho(\lambda) = \left| \lambda \mathbf{A}^{(0)} - A^{(1)} \right| \tag{18}$$

Substituting $A^{(0)}$, $A^{(1)}$ from (16) into the characteristics polynomial $\rho(\lambda)$ (18) gives:

$$\rho(\lambda) = \left| \lambda \mathbf{A}^{(0)} - A^{(1)} \right| = \lambda^8 (\lambda - 1) \tag{19}$$

By Fatunla (1991), the block method (9) is zero-stable since in (19), $\rho(\lambda) = 0$ satisfies $|\lambda_j| \le 1, j = 1,...$ and for those roots with $|\lambda_j| = 1$, the multiplicity does not exceed 1. The block method is therefore convergent according to

Fig. 1: Absolute stability regions of the MOBAM methods

Fig. 2: Solution of example 1 using (10) and ode23

Henrici (1962). Since the MOBAM method is both consistent and zero-stable, it is convergent. Using the same procedure, the MOBHAM method in (14) is also zero-stable and consistent, hence convergent.

Order of the MOBAM methods: The orders and error constants of the new block methods are obtained using Chollom *et al.* (2007).

The block method (10) is of uniform order (10,10,10,10,10,10,10,10,10)^T with error constants:

$$\begin{split} \boldsymbol{\mathcal{C}}_{11} &= \big(-\frac{11899}{1971200}, -\frac{5609}{7484400}, \\ \frac{171137}{479001600}, \frac{90817}{479001600}, \frac{263}{7484400}, \\ \frac{443}{1971200}, -\frac{62}{467775}, \frac{18665}{19160064}, -\frac{179}{30800} \big)^T \end{split}$$

while the block method (15) is of uniform order $(11, 11, 11, 11, 11, 11, 11, 11, 11)^T$ with error constants:

Absolute stability region of the MOBAM methods: Following Chollom *et al.* (2007) and Butcher (1985), the block methods (9) and (14) are reformulated as General linear methods and the region of absolute stability of the method was plotted using the matlab program and is shown in Fig. 1.

Figure 1 reveals that the MOBAM methods are A-stable.

NUMERICAL EXPERIMENTS

In this section, the MOBAM methods (9) and (14) are tested on linear and nonlinear stiff initial value problems of ODEs. The solution curves obtained for the MOBAM methods are compared with the well-known MATLAB ODE 23 solver.

Fig. 3: Solution of example 1 using (15) and ode23

Fig. 4: Solution of example 2 using (10) and ode23

Fig. 5: Solution of example 2 using (15) and ode23

Res. J. Math. Stat., 5(4): 32-42, 2013

Fig. 6: Solution of example 3 using (10) and ode23

Fig. 7: Solution of example 3 using (15) and ode23

Example 1: We consider a well -known classical system experimented in Baker (1989), Stabrowski (1997), Vigo-Aguiar and Ramos (2007) and Akinfenwa *et al.* (2011), in the range $0 \le t \le 10$:

$$y'_1 = 998 y_1 + 1998 y_2, y_1(0) = 1$$

 $y'_2 = -999 y_1 - 1999 y_2, y_1(0) = 1$

Its exact solution is given by the sum of two decaying exponential components:

$$y_1 = 4e^{-t} - 3e^{-1000t}, \quad y_1 = -2e^{-t} + 3e^{-1000t}$$

The stiffness ratio is 1:1000, h = 0.1 (Fig. 2 and 3)

Example 2: Consider the stiffly nonlinear problem which was proposed by Kaps *et al.* (1981) in the range $0 \le t \le 10$.

 $y'_1 = -(\varepsilon^{-1} + 2)y_1 + \varepsilon^{-1}y_2^2, \quad y_1(0) = 1$ $y'_2 = y_1 - y_2 - y_2^2, \quad y_1(0) = 1$

The smaller is the ε , the more serious the stiffness of the system. Its exact solution is given by (Fig. 4 and 5):

$$y_1 = y_2^2, y_2 = e^{-t}, h = 0.1, \varepsilon = 10^{-8}$$

Example 3: Consider the stiff problem; see Brugnano and Trigiante (1998):

$$y'_1 = -2y_1 + y_2 + 2\sin x, \quad y_1(0) = 2$$

 $y'_2 = 998y_1 - 999y_2 + 999(\cos x - \sin x), \quad y_1(0) = 3$

The stiffness ratio of the problem is 1000. h = 0.1, $0 \le x \le 10$. Its exact solution is given by (Fig. 6 and 7):

 $y_1(x) = 2e^{-x} + \sin x, \ y_2(x) = 2e^{-x} + \cos x$

CONCLUSION

New MOBAM methods have been proposed and implemented as self-starting methods for the solution of stiff ordinary differential equations. The MOBAM methods are A-stable making them suitable for the numerical solution of stiff problems. The accuracy and efficiency of the new block methods have been demonstrated on both linear and non-linear stiff problems as can be seen in Fig. 2 to 7. The authors in the next work will address the theoretical aspect and implementation strategies of the MOBAM class.

REFERENCES

- Akinfenwa, O., S. Jato and N. Yoa 2011. An eight order backward differentiation formula with continuous coefficients for stiff ordinary differential equations. Int. J. Math. Comput. Sci., 7: 4.
- Ali, K.E. and H. Gholamreza, 2012. Third derivative multistep methods for stiff systems. Int. J. Nonlin. Sci., 14(4): 443-450.
- Baker, L.C., 1989. Tools for Scientists and Engineers. McGraw-Hill, New York.
- Brugnano, L. and D. Trigiante, 1998. Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam.
- Butcher, J.C., 1985. General linear methods: A survey. Appl. Num. Math., 1: 273-284.
- Chakrararti, P.C. and M.S. Kamel, 1983. Stiffly stable second derivative multistep methods with high order and improved stability region. BIT. Num. Math., 23(1): 75-83.
- Chollom, J.P., I.O. Olatunbasun and S. Omagu, 2012. A class of a-stable block explicit methods for the solution of ordinary differential equations. Res. J. Math. Stat., 4(2): 52-56.
- Chollom, J.P., J.N. Ndam and G.M. Kumleng, 2007. On some properties of the block linear multistep methods. Sci. World J., 2(3): 11-17.
- Curtiss, C.F. and J.O. Hirschfelder, 1952. Integration of stiff equations. Proc. Nat. Acad. Sci. USA, 38: 235-243.
- Evelyn, B. and W. Renante, 2006. Improved linear multistep methods for small noise ODE's. PAMM. Proc. Appl. Math. Mech., 6: 661-662.
- Fatunla, S.O., 1991. Block method for second order differential equations. Int. J. Comput. Math., 41: 55-63.

- Garfinket, D., C.D. Morbachi and N.Z. Shapiro, 1978. Stiff differential equations. Ann. Rev. Biophys. Bioeng., 6: 525-542.
- Gear, C.W., 1971. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ.
- Henrici, P., 1962. Discrete Variable Methods in Ordinary Differential Equations. John Wiley, New York, pp: 407.
- Kaps, P., G. Dahlguist and R. Jeltsch, 1981. Rosenbrock-type Methods. In: Berich, G.D. and R. Jeltsch (Eds.), Vol. 9, Numerical Methods for Stiff Initial Value Problems. For Geometric and Practical Mathematic, the RWTH Aachen, Germany.
- Kumleng, G.M., U.W. Sirisena and J.P. Chollom, 2012. Construction of a class of block hybrid implicit multistep methods for the solution of stiff ordinary differential equations. Niger. J. Pure Appl. Sci., 5.
- Lie, I. and S.P. Norsett, 1989. Super convergence for multistep collocation. Math. Comput., 52(185): 65-79.
- Mitchell, A.R. and J.W. Craggs, 1953. Stability of difference relations in the solution of ordinary differential equations. Math. Comput., 7: 127-129.
- Onumanyi, P., D.O. Awoyemi, S.N. Jator and U.W. Sirisena, 1994. New linear multistep methods with continuous coefficients for first order initial value problems. J. Niger. Math. Soc., 13: 37-51.
- Onumanyi, P., U.W. Sirisena and S.N. Jator, 1999. Continuous finite difference approximations for solving differential equations. Int. J. Comput. Math., 72: 15-27.
- Samir, K., 2013. Improved accuracy of linear multistep methods. App. Math. Inf. Sci., 7(2): 491-496.
- Song, M.H., 2010. The improved linear multistep methods for DE with piecewise continuous arguments. Appl. Math. Comput., 217(8): 4002-4009.
- Stabrowski, M.M., 1997. An efficient algorithm for solving stiff ordinary differential equations. Simul. Pract. Th., 5(4): 333-344.
- Vigo-Aguiar, J. and H. Ramos, 2007. A family of astable runge-kutta collocation methods for higher order for initial value problems. IMA J. Numer. Anal., 27(4): 798.
- Vlachos, D.S., Z.A. Anastassi and T.E. Simos, 2009. A new family of multistep methods with improved phase-lag characteristics for the integration of orbital problems. Astronom. J., 138(86).