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Abstract: The aim of this study is to study the Bayes estimation of parameter of exponential distribution under a 
bounded loss function, named reflected gamma loss function, which proposed by Towhidi and Behboodian (1999). 
The inverse Gamma prior distribution is used as the prior distribution of the parameter of exponential distribution. 
Bayesian estimators are obtained under squared error loss and the reflected gamma loss functions. Minimum risk 
equivariant estimator of the parameter is also derived. Finally, a numerical simulation is used to compare the 
estimators obtained. 
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INTRODUCTION 
 

Exponential distribution plays an important role in 
lifetime data analysis. Many authors have developed 
inference procedures for exponential model. For 
example, Kulldorff (1961) devoted a large part of book 
to the estimation of the parameters of the exponential 
distribution based on completely or partially grouped 
data. Sarhan (2003) obtained the empirical Bayes 
estimators of exponential model. Janeen (2004) 
discussed the empirical Bayes estimators of the 
parameter of parameter of exponential distribution based 
on record values. To see more details, one can see 
Balakrishnan et al. (2005) and Al-Hemyari (2009) and 
references therein. 

Suppose that X is a variable drawn from a 
exponential distribution with the Probability Density 
Function (PDF): 
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where, 0>θ  is the scale parameter. 

For a Bayesian analysis, loss function plays an 
important role in it and the squared error loss and 
LINEX loss functions used by most researchers. These 
function are unbounded and widely employed in 
decision theory due to its elegant mathematical 
properties, not its applicability to the representation of a 
true loss structure (Leon and Wu, 1992). Various 
examples illustrate that in many situations, unbounded 
loss can be unduly restrictive and suggest that instead 
we should consider the properties of estimators based on 
a bounded loss function. A bounded loss avoids the 

potential explosion of the expected loss. Moreover, the 
nature of many decision problems and practical 
arguments   require the use of bounded loss functions, 
especially in financial problems. For more details see 
Berger (1985). To overcome the shortcoming of 
unbounded loss, several bounded loss functions are 
proposed by many authors, for example, Spring (1993) 
proposed a bounded loss function named reflected 
normal loss. Towhidi and Behboodian (1999) proposed 
reflected gamma loss which is also a bounded loss 
function. Wen and Levy (2001) proposed a bounded 
asymmetric loss function called BLINEX loss function. 
To see more about the discussion of bounded loss 
function, one can reference Bartholomew and Spiring 
(2002) and Kamińska (2010). 

This study will discuss the Bayes estimation of the 
parameter of exponential distribution under the 
following reflected gamma loss (Towhidi and 
Behboodian, 1999): 
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where, q>0 is a shape parameter and k>0 is the 
maximum loss parameter. Note that we can write the 
loss (2) as a monotone function of the entropy loss 
function: 
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This can be approximated by ),ˆ(1
2 θθLkq , for 

small values of q, which is multiple of the entropy loss. 
Under the reflected gamma loss function, 

Meghnatisi and Nematollahi (2009) studied the 
admissibility and inadmissibility of usual and mixed 
estimators of two ordered Gamma scale parameters. In 
this study, we will discuss the admissibility and 
inadmissibility of parameter of exponential distribution 
under various conditions. 
 

MAXIMUM LIKELIHOOD ESTIMATION 
 
Suppose X1, X2, …, Xn is a random sample from 

exponential distribution (1).  (x1, x2, …, xn) is the 
observe value of (X1, X2, …, Xn). Then the likelihood 
function based on (x1, x2, …, xn), is given by: 
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The natural logarithm of likelihood function is 

given by:  
 

 ∑
=

−−=
n

i
ixnxL

1

1ln)|(ln
θ

θθ                  (4)  

             
Upon differentiating (4) with respect to θ and 

equating each results to zero. The MLE of θ is given by

XMLE =δ̂ , where, ∑
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MINIMUM RISK EQUIVARIANT ESTIMATION 

 
Consider a random sample X1, X2, …, Xn from 

exponential distribution (1). Let G be a group of 
transformations in the form G = {gc|gc (x1, x2, …, xn) = 
(cx1, cx2, …, cxn), c>0}. Then we can show that the 
reflected gamma loss (2) and the decision problem are 
invariant and G and the class of all scale-invariant 
estimator of θ is of the form δ(X) = δ0(X)/W(Z) , where 
δ0  is any scale invariant estimator, X = (X1, X2, …, Xn) 
and Z = (Z1, Z2, …, Zn) with Zi = Xi/Xn, i = 1, 2,…, n-1, 
Zn = Xn/|Xn|. The proof of this conclusion can be founded 
in Lehmann (1983).  

Moreover the best scale-invariant estimator, which 
also called Minimum Risk Equivariant (MRE) estimator 
δ* is given by δ*(X) = δ0(X)/w*(Z), where, w*(Z) is a 
function of Z which maximize: 
 

]|)1
)(
)(

(exp()
)(
)(

[()( 020
1

2

zZ
zw
X

q
zw
X

Ewg q =−−= =

δδ
θ

 

 
Lemma 1: If )(0 Xδ  is a finite risk scale invariant 
estimator of θ and when θ = 1, )(0 Xδ  is assumed have 

the Gamma distribution ),( βαΓ , with Probability 
Density Function (PDF): 
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where, α and β are known parameters and here α and β 
are independent of X. 

Then the MRE estimator of θ under reflected 
gamma loss (2) is given by:  
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Proof: When θ = 1 and )(0 Xδ  has the Gamma 
distribution ),( βαΓ , then ( )g w  is also be written as: 
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And ),,( 2qc βα  is a function of 2,, qβα . By the 
equation 0)( =′ wg  and because of 0)( >′ wg . Then 
we can easily show that w* = α/β  maximizes the 
function g(w). Hence, the Lemma 1 is proved. 
 
Remark 1: Let X1, X2, …, Xn be a random sample from 
exponential distribution (1), then under the reflected 
gamma loss (2), the estimator ∑

=

=
n

i
iXX

1
0 )(δ  is an 

equivariant estimator which has Г (n, 1) distribution 
when θ = 1 and it follows from Basu’s theorem that 

)(0 Xδ  is independent of Z. Hence, the MRE estimator 
of θ is:  
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BAYES ESTIMATION 

 
In this section, we consider the Bayes estimation of 

the scale parameter θ in exponential distribution (1), in 
which the complete sufficient statistics 

XnXX
n
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0 )(δ  has the distribution ),( 1−Γ θn . 

Assume that the conjugate family of prior 
distributions for 1−= θλ  is the family of Gamma 
distribution ),( βαΓ . Note that the limiting case 
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0, →βα  gives the usual non-informative prior 
1)( −∝ λλπ . The posterior distribution of λ is 

))(,( 0 Xn δβα ++Γ  and the Bayes estimate of θ is a 
function )( Xδ  which maximize the function: 
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or the function: 
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Then the Bayes estimator of θ, denoted by Bδ̂  is 

given by the solution of the equation 0)(
=

δ
δ

d
dg  

 

Hence, we can show that Bδ̂  is given by:  
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Remark 2: For the non-informative prior 1)( −∝ λλπ , 
the posterior distribution of λ  is ))(,( 0 Xn δΓ  and we 
obtain the generalized Bayes estimator: 
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EMPIRICAL BAYES ESTIMATION 

 
In the former discussion, the Bayes estimator in (7) 

is seen to depend on the parameter β. When the prior 
parameter β is unknown, we may use the empirical 
Bayes approach to get its estimate. From (3) and (5), we 
calculate the marginal PDF of X, with density: 
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Based on m(x|β), we obtain an estimator, β̂  of β. 

The MLE of β is XX
n

n

i
i ααβ == ∑
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ˆ . 

Now, by substituting β̂  for β in the Bayes estimator 
(8), we obtain the empirical Bayes estimator as: 
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NUMERICAL SIMULATION 

  
To compare the different estimators of the 

parameter θ of the exponential distribution, the risks 
under squared error loss of the estimates are considered. 
These estimators are obtained by maximum likelihood 
and Bayes methods under reflected gamma loss 
function:  

 
(i) Based on the given value θ = 1.0, a sample of size n 

is then generated from the density of the 
exponential distribution (1), which is considered to 
be the informative sample. 

(ii) The MLE and Bayes estimators are calculated 
based on Section 2 and q =1.0. 

(iii) Steps (i) to (ii) are repeated N = 2000 times and the 
risks under squared error loss of the estimates are 
computed by using: 
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where, 

îθ  is the estimate at the thi  run.  
 

CONCLUSION 
 

The estimated values of the parameter and ER of 
the estimators are computed by the Monte-Carlo 
Simulation from the exponential distribution (1) with θ 
= 1.0. It is seen that for small sample sizes (n<50), 
estimators under reflected gamma loss function have 
smaller ER when choosing proper parameters α and β. 
But for large sample sizes (n>50), all the estimators 
have approximately the same ER. The obtained results 
are demonstrated in the Table 1. 
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Table 1: Estimated value and corresponding ER ( )  

n Criteria MLE 

Bayes estimate 
--------------------------------------------------------------------------------------
α = 0, β = 0.5 α = 0.5, β = 1 α = 1.0, β = 1.5 

10 Estimated value 0.9992 1.0492 1.0469 1.0447 
ER ( ) 0.1031 0.1056 0.0957 0.0872 

25 Estimated value 1.0023 1.0223 1.0218 1.0214 
ER ( ) 0.0405 0.0410 0.0394 0.0379 

50 Estimated value 0.9998 1.0098 1.0097 1.0096 
ER ( ) 0.0193 0.0194 0.0190 0.0186 

75 Estimated value 0.9974 1.0041 1.0041 1.0040 
ER ( ) 0.0135 0.0135 0.0133 0.0131 

100 Estimated value 1.0020 1.0070 1.0070 1.0069 
ER ( ) 0.0099 0.0099 0.0098 0.0097 

125 Estimated value 0.9962 1.0002 1.0002 1.0002 
ER ( ) 0.0082 0.0081 0.0081 0.0080 

150 Estimated value 0.9974 1.0007 1.0007 1.0007 
ER ( ) 0.0068 0.0068 0.0067 0.0067 
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