
Research Journal of Information Technology 5(3): 72-80, 2013
DOI:10.19026/rjit.5.5790
ISSN: 2041-3106; e-ISSN: 2041-3114
© 2013 Maxwell Scientific Publication Corp.
Submitted: March 13, 2013 Accepted: April 29, 2013 Published: September 01, 2013

Corresponding Author: Waqar Mehmood, Comsats Institute of Information Technology Wah Campus, Wah Cantt, Pakistan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

72

Research Article

Versioning and Evolution Control of Models in Software Configuration
Management System

Waqar Mehmood and Nadir Shah, Ehsan Munir

Comsats Institute of Information Technology Wah Campus, Wah Cantt, Pakistan

Abstract: In this study we present an approach to address the issues of synchronization, evolution control and
version granularity in Software Configuration Management (SCM). Our approach is based on a unified model
developed during software lifecycle. The unified model consists of a set of different kinds of model and the
interlinks information between these models, such models includes Analysis and design model, Test models etc.
These models may possibly be created using different development tools in a heterogeneous environment. Our
approach is based on identifying interlinks dependencies between different model elements. By using these
interlinks information we develop our evolution control policy and perform synchronization of models elements.

Keywords: Evolution control, modeling, software configuration management, versioning

INTRODUCTION

Software Configuration Management (SCM) is a

discipline for controlling the evolution of software
systems. SCM serves two different needs (Conradi,
1998):

• As a management support discipline: By

identifying product components and their
baselines, controlling changes (establishing a
process for change) and auditing the product
(quality assurance)

• As a development support discipline: By
accurately recording the composition of versioned
software products evolving into many revisions
and variants, maintaining consistency between
inter-dependent components and reconstructing. In
this study the presented work and the discussed
approaches falls into the category of development
support discipline.

In development support discipline versioning is the

key activity. The two main types of artifacts in software
development are graphical models and textual files such
as code. Fundamentally, the main differences between
code and model versioning occur because of their
different structures. Code versioning assumes an
implicit tree structure with nodes being text files and
with no relations. In contrast, models are based on
graphs, with nodes being complex entities and arcs
(relations) containing a large part of the model
semantics. These dissimilarities clearly indicate that
code and model versioning cannot be handled in the
same way.

MDE dream is to perform SE activities only on

models. In reality Models and files co-exist and will
have to be managed together consistently. As identified
in Jacky et al. (2009, 2010) this situation requires the
definition of new evolution paradigms for software
projects that are made of a mixture of models and files.
Defining such an evolution paradigm requires on one
hand to take into account the different nature of models
and on other hand it must rely on the tools and systems
available in traditional SE. Moreover the issue of
synchronization, definition of new evolution policy and
maintaining the consistency and completeness of
composite objects need to be addressed.

In this study we present an approach to address all
the issues described above using a unified model of the
software lifecycle. Our unified model consists of a set
of different kinds of model and the interlinks
information between these models, such models
includes Analysis and design model, Test models and
System implementation model etc. These models may
possibly be created using different development tools in
a heterogeneous environment. Our approach is based on
identifying interlinks dependencies between different
model elements. By using these interlinks information
we develop our new evolution control policy and
perform synchronization of models elements.

LITERATURE REVIEW

In this section we first describe some basic

terminologies used in SCM systems (Conradi 1998;
Marcello et al., 2012). A version V represents a state of
an evolving item I. V is characterized by a pair V = (ps,
vs), where ps and vs. denote a state in the product space

Res. J. Inform. Technol., 5(3): 72-80, 2013

73

and a point in the version space, respectively. The term
item covers anything which may be put under version
control. A version model defines the object to be
versioned, version identification and organization, as
well as operations for retrieving existing versions and
constructing new versions. A version model is
expressed considering both the product space, which
represents the objects to be versioned and the version
space, which represents the way versions are organized.
Revision is often used to talk about the state of the
same element, at different points in time. The last
revision is usually better than the previous one. A
workspace is a place where revisions can be copied
from the repository and modified. A snapshot is a
repository element that is the image of a set of objects
as they were in a workspace when the snapshot was
created.

Graphs are well suited to represent the organization
of a versioned object base, even if the corresponding
system is not graph-based. E.g Subversion, SCCS, RCS
are file-based but the version space of a text file may be
represented naturally as a version graph. Version
granularity refers to the size of a version. In SCM
literature version granularity are at three levels i.e.,
Component versioning, Total versioning and Product
versioning. Component versioning means that only
atomic objects (not the composite one) are put under
version control. Each object has its own version space,
modeled for example by a version graph. Total
versioning applies to all levels of the composition
hierarchy (if there are more than one composite object,
each one has its own version space). Product versioning
differs from total versioning be arranging versions of all
objects in a uniform, global space (one version for
whole models/files). The difference between two
models is known as delta. Delta granularity refers to the
size of those units in terms of which deltas are
recorded. Two ways to calculate delta between two

versions of a model are state based delta and operation
based delta (Maximilian et al., 2010).

In state-based approach only the state
representations of different versions are stored, possibly
using compression or sharing of common parts (Koegel
et al., 2010). Deltas are reconstructed using a
differencing algorithm that compares the different state
representations. In contrast, in operation-based
approach, changes are described by using the original
sequence of editor operations that caused the changes.
It records a sequence of change operations op1, …, opn
which, when applied to one version v1, yields another
version v2.

MATERIALS AND METHODS

Domain specific Meta models: Figure 1 shows the
basic structure of the Telling Test Stories artifacts (Breu
et al., 2007). The artifacts are categorized along two
orthogonal classifications: Model and Implementation
on the one side and System Artifact and Test Artifact
on the other side. The System Model describes the
system requirements at a business oriented level. An
important assumption in TTS framework is that System
Model and System Implementation are traceable. The
System Implementation is the executable system under
test. We assume the implementation to be structured
based on the notion of (software) components. The Test
Model specifies test cases developed in a step by step
process. This process includes the specification of
scenarios (sequences of system service calls, where we
name these service calls in the sequel actions), the
specification of assertions (conditions to be checked
during the test) and the description of data pools and
system configurations. For describing test cases we use
sequence diagrams and tabular representations of data
and objects. The Test Implementation is generated from
the Test Model which has interlinks dependencies with
System Model and System Implementation.

Fig. 1: Basic artifacts

Res. J. Inform. Technol., 5(3): 72-80, 2013

74

Fig. 2: Metamodel

Meta model for heterogeneous environment: Meta
modeling is a common technique for conceptualizing a
domain by defining the abstract syntax and static
semantics of a DSML (Yuehua et al., 2007). It defines a
set of modeling elements and their valid relationship
that represent certain properties for a specific domain.
The basic artifacts described above are constructed in a
heterogeneous environment. For System Model and
System Implementation one can use System modeling
tools and for Test Model and Test Implementation,
Testing tools can be used. Moreover, there are
interlinks between different types of models, such as
between System Model and Test Model etc. Such a
heterogeneous modeling environment is depicted in
Fig. 2. In Fig. 2, a Development Model consists of
different types of model developed during system life
cycle and the interlinks between those Models. Each
Model itself consists of set of elements (entities) which
has some attributes and association (intralinks) between
them.
We can formally define the concepts as:

Let E be the universe of Model Entities. A Model
is a tuple M = (EM, RELM), where,

• E = { e1, e2, ..., en} is a finite set of entities and

EM⊆ E,
• RELM⊆ EM×EM is the intra-model relation between

Model entities.

A Development Model is a tuple DM = (M, CON),
where,

• M = { M1, M2, ..., Mn } is a finite set of Models and

∀ Mi, Mj∈ M, i ≠ j

• CON ⊆∪Ei×∪ Eiis the inter-relationship between
different modelelements. i.e., ei∈Mi, ej∈ Mj i ≠ j

Mapping Set: A mapping set MS can be defined as MS
= {M,S,T} where,

• S ∈ M represent the source model
• T ∈ M represent the target model
• M: S → T is a partial function from S to T, such

that given s ∈ S, M return t ∈ T, where (s,t) ∈
CON

To include the configuration management

information we further extend the Meta model in Fig. 2
and added Configuration Component as part of the
Development Model in fix 3.0. The Configuration
Component consists of four kind of information i.e.,
version granularity, interlink dependencies, evolution
policy and consistency and completeness information.
Further detail about these terms is given in next
sections (Fig. 3).

Version model: We specify our version model in
Fig. 4. It constitutes product space and version space. A
version space defines the items to be versioned, the
common properties shared by all versions of an item
and the deltas, i.e., the differences between them.
Furthermore, it determines the way version sets are
organized. It defines whether a version is characterized
in terms of the state it presents or in terms of some
changes relative to some baseline. It selects a suitable
representation for the version set (e.g., version graph)
and it also provides operations for retrieving old
versions and constructing new versions. Each

Res. J. Inform. Technol., 5(3): 72-80, 2013

75

Fig. 3: Meta model extended

Fig. 4: Version model

Res. J. Inform. Technol., 5(3): 72-80, 2013

76

Fig. 5: Instance model

Configuration item is composed by versions. A specific
attribute differentiate versions that were deleted by the
user. Versions are queried or created by transactions.
These includes both read-only and read-write
transactions, such as history, checkout, check in, update
etc. Versions have relationships to model elements that
cross version model border. This relationship connects
versioning model with product model, which is a UML,
E Core or Domain Specific Meta Model (DSMM). In
our case it is DSMM.

Product space describes the structure of a software
product without taking versioning into account. It can
be represented by a product graph whose nodes and
edges correspond to software objects and their
relationship. The product space in Fig. 4 contains a
Development Model. Due to space limitation we just
show System Analysis and Implementation Model as
part of our Development Model for TTS framework.
However it also consists of Test Model and Test
Implementation as we seen above, an instance of all
Model is given in Fig. 5. The System Model is a
description of the functional system requirements at
business level based on the following three core
concepts. A (system) service describes the basic
functionality the system provides to the outside. We use
the notion of service instead of use case since many of
the systems which are target of our method are modeled
as service oriented architecture. Services may be

hierarchically structured. Services have input
parameters and an output parameter. All parameters are
either basic data types or of a Class type. Finally, actors
are representations of the roles that interact with the
system. At implementation level we rely on the two
approved notions of components and classes.

EVOLUTION CONTROL POLICY

In this section we describe the issues of

Synchronization, Evolution control and Version
granularity.

Synchronization: Software Engineering involves many
entities of different natures, including various models
and multiple files. In addition, one must consider the
fact that Software Engineers typically work on these
entities simultaneously, be they model or file entities.
Model transformations began to be used for
maintaining consistency between model and software
artifacts when the application code is fully derived from
a model (Jacky et al., 2009). In that case, users only
work on the model, while artifacts are (re) generated
when needed; in other words, the model is a high-level
source code. In general, models do not contain enough
details to be executable. This is why developers work
on model and code at the same time. Usually, code
skeletons are generated from the model, but the model

Res. J. Inform. Technol., 5(3): 72-80, 2013

77

cannot be reconstructed from artifacts and vice versa.
Hence, we fall into synchronization issues where
modifications on model and artifacts must be
reconciled. Few MDE tools support permanent
synchronization both ways between model and artifacts.

We maintain synchronization between artifacts
with the help of interlinks information. Our assumption
is that development model artifacts at different levels
are interconnected with interlinks. If any entity which is
in the set of interlink entities is modified, all its
interlinked entities need to be considered for
synchronization. For instance, in Fig. 5. The entity
Submit Paper in the System model is an interlink entity
with the Submit Paper of Test Model and Submit Paper
of System Implementation. Thus any change in Submit
Paper in the System Model requires synchronization
with Submit Paper of Test Model and System
Implementation.

Evolution policy at entity level: Evolution control
refers to the criteria by which new versions of an object
are created (Jacky et al., 2009). In most systems, only
the versioning mechanism exists, while the evolution
policy remains undefined and relies on the good will of
developers. Depending on the change importance,
versioning may mean:

• Update the object in the repository
• Create a new revision of the object
• Create a new object

The entities in our development models can be
categorized as:

• Entities which have interlink dependencies
• Entities which has interlink dependencies
• Entities which has both inter- and intra-link

dependencies. Based on these dependencies the
evolution properties assigned to an Entity are:

Evolution Properties = {Mutable, Immutable}

where, a Mutable entity is of type 2 and Immutable
entity is of type 1 and 3. The evolution properties are
based on Inter/intra dependency information rather than
attributes of the entity as given in Jacky et al. (2009).
We can define a mapping function M: E P, such
that:

Mutable if E ∈RELM
M (E) = Immutable if E ∈CON

Based on the above information we can define our

Evolution Policy as follows:
If an immutable entity is changed than a new

version of the entity (or model) will be created in the
repository. However, if a mutable entity is changed then
entity (or model) will be updated in the repository. We
can query a model entity to check its property i.e.,

M.e. get EP = (Mutable | Immutable)

Version granularity: Version granularity refers to the
size of a version, whereas delta granularity refers to the
size of those units in terms of which deltas are
recorded. E.g. in SVN, CVS (2012) and Pilato (2004)
version granularity (UOV) and delta granularity (UOC)
are at the level of text files and text lines, respectively.
In this case, the delta granularity is much finer than the
version granularity. In case of class model, if class is
both UOV and UOC then a conflict will be notify if two
or more user edit the same class, even if they are
working in different parts of the class (Murta et al.,
2008).

There are three possibilities of version granularity
in our approach:

• Versioning at Development Model level (Product

Versioning)
• Versioning at Model level (Total Versioning)
• Versioning at Entity Level (Component

Versioning)

Versioning at development model level: If the UOV
is the development model, which in our case a unified
model as we can see in Fig. 5 then the entire model has
global versioning. In global or product versioning all
elements of the model has unique version identity. In
such a case completeness and consistency issues
doesn’t exist since we have a unified model in our
workspace which is complete and consistent. A new
version will be created based on evolution policy
defined.

Versioning at model level: The second possibility is
that we have the UOV at Model level i.e., each sub
model has its own versioning information. In such a
case the completeness issue is resolved since working
on a sub model requires that complete sub model will
be in the workspace. However, consistency issue needs
to be resolved. To resolve the consistency issue we
need synchronize the model entities with the rest of
model entities, which can be done with the help of
interlink information. This is a form of Total
versioning.

Versioning at entity level: The third possibility is that
the UOV is at entity level i.e., the each entity of a
model has its own versioning information. If the entity
has inter/intra dependencies with rest of the entities
then the synchronization issue need to be resolved. The
completeness and consistency issues can be resolved
using a similar approach as in Jacky et al. (2009),
(2010).

RESULTS AND DISCUSSION

Eduardo et al. (2009) presents an approach for

SCM model developed for scientific workflows, which
includes both version control and diff/merge

Res. J. Inform. Technol., 5(3): 72-80, 2013

78

algorithms. The focus of this work is on the
development support characteristics of software
configuration management. With this concern, a
workflow definition can be stored in a large number of
formats and can be composed via different strategies.
Although there are a few Workflow Management
Systems (WfMS) that only support textual definitions
composed by hand, using a plain text editor, it has
become a tendency in WfMS to support graphical
interface. WfMS with graphical interface model a
workflow as a directed graph. This graph representation
simplifies the understanding of the workflow. Almost
all WfMS with graphical interface store the workflow
definition in a XML format.

In workflows, like in software, in order to support
configuration management, it is necessary to have the
following properties:

• A repository of workflows with access control, in

which it is possible to store workflows and to
register what are the stable and under development
versions

• A mechanism to represent and store versions for
the activities being used in a workflow composition

• The presence of the workspace concept to support
the modeling of a workflow during both creation
and maintenance phases. The workspace must also
support the workflow publication in the repository

Two basic concurrency control mechanism are

adopted during a check-out, change and check-in cycle.
The first is the optimistic approach, in which the
workflow is not locked and two or more users can
modify it in parallel (Conradi, 1998). The second is the
pessimist approach, in which the workflow is locked for
commit and only the user that first performed check-out
of the workflow can commit changes to its Conradi
(1998). Nevertheless, other users can check-out the
workflow, work on it in the workspace and wait until
the locking user commits his work. Maximilian and
Jonas (2009) and Maximilian (2008) present a SCM
approach for software engineering artifacts that is able
to manage change in graph-structured artifacts and
supports traceability. The approach is based on
operation-based deltas, change packages and product
versioning. The approach is based on the claim that SE
models are essentially graphs. The authors identified
two different types of links in an integrated model,
Intra-model links and Inter-model links. Intra-model
links connect model elements within one model, such
as a use case model. In a use case model a link from a
use case to a participating actor is an intra-model link.
Inter-model links connect model elements of different
models. A link from a use case in the use case model to
an open issue in the issue model is an inter-model link.
Jacky et al. (2009, 2010) presents the solution for
providing consistent support for model and code co-
evolution. It is shown that it requires to:

• Define, what evolution policy is to be applied
• Closely synchronize ways, the model entities and

the computer artifacts
• Enforce consistency constraints and evolution

policies during the commit and check-out of both
model elements and their corresponding artifacts.
Traceability links can be defined between the
model and the artifacts. These links translate the
operations performed on the model to
modifications performed on artifacts and vice-
versa. It is possible, for example, to define that the
concept of service defined in a Meta model should
be mapped to an Eclipse java project with a
specific structure and specific files (e.g., metadata
information and templates). The synchronization
ensures that each time a service is defined in a
model the corresponding Eclipse project is created.
Conversely, changes in some files (metadata) are
translated into attributes and relationships in the
model. To define an Evolution policy at an Entity
level assigns properties to its attributes as Mutable,
Immutable, Transient and Final. Compare to this
approach, we in our approach address all these
issues through interlinks. Dimitrios et al. (2009)
provide an overview of the existing Model
Matching approaches. Model differencing consists
of three main steps i.e., identifying Match
Elements, Different Elements and Visualization of
the results.
Matching approaches are categorized into:

• Static identity-based matching
• Signature-based matching
• Language-Specific Matching Algorithms

Static identity-based matching: The approach is based
on Universally Unique Identifiers (UUID) assigned to
model element upon its creation. Therefore, a basic
approach for matching models is to identify matching
model elements based on their corresponding identities.
The main advantages are that these approaches are fast
and require no configuration from the user perspective.
The disadvantage is these approaches can’t be applied
on Models constructed independently from different
sources and Model representation technologies that do
not support UUID.

Signature-based matching: The approaches fall in this
category are based on defining a signature for model
elements. A signature calculated dynamically from the
values of elements features by means of a user-defined
function. An advantage of these approaches is that it
compares models that have been constructed
independently of each other. The disadvantage is that
configuration effort is required and developers need to
specify a series of functions that calculate the identities
of different types of model elements.

Res. J. Inform. Technol., 5(3): 72-80, 2013

79

Language-specific matching algorithms: This
category involves matching algorithms tailored to a
particular modeling language such as UML. The
advantage is that it can incorporate the semantics of the
target language in order to provide more accurate
results and also drastically reduce the search space too.
For instance, when comparing UML models, two
classes or data types with the same name always
constitute a match regardless of their location in the
package structure, while the same does not hold for
other types of elements (such as parameters or
operations). Similarly compare two operations if the
classes they belong to are already known to match. The
disadvantage is that it needs to specify the complete
matching algorithm manually, which can be a
particularly challenging task. While for previously
discussed approaches developers need to spend little
(e.g., provide a configuration or write signature
generators) or no effort at all (e.g., identity matching).

CONCLUSION

In this study we presented an approach for SCM.

Our approach is based on defining a Meta model for
heterogeneous environment. We then specify that in
such an environment there exist intra and interlinks
between different model elements. We address the
issues of synchronization, evolution control and version
granularity. Our approach is based on identifying
interlinks information between different model of a
unified model developed during software lifecycle. By
using these interlinks information we develop our
evolution control policy and perform synchronization of
models elements. We have shown that there are three
possibilities of version granularity in our approach first,
Versioning at Development Model level, second
Versioning at Model level and third Versioning at
Entity Level. Each possibility has its own pros and
cons. Then we give an overview of the related in this
area which enables us to compare our work with the
rest of the approaches.

REFERENCES

Breu, R., J. Chimiak-Opoka and C. Lenz, 2007. A novel

approach to model-based acceptance testing.
Proceeding of the 4th MoDeVVa Workshop.
Model-Driven Engineering, Verification and
Validation, Nashville, TN, USA.

Cvs Project, 2012. Retrieved from: URL http://www.
nongnu.org/cvs.

Conradi, B.W., 1998. Version models for software
configuration management. ACM Computing
Surveys, 30(2): 232-282.

Dimitrios, S.K., D.R. Davide, P. Alfonso and F.P.
Richard, 2009. Different models for model
matching: An analysis of approaches to support
model differencing. Proceeding of the 2009 ICSE
Workshop on Comparison and Versioning of
Software Models, IEEE Computer Society
Washington, DC, USA.

Eduardo, O., R. Pablo, M. Leonardo, W. Claudia and
M. Marta, 2009. Comparison and versioning of
scientific workflows. Proceeding of the 2009 ICSE
Workshop on Comparison and Versioning of
Software Models, IEEE Computer Society
Washington, DC, pp: 25-30.

Jacky, E., L. Thomas and V. German, 2009. Evolution
control in MDE projects: Controlling model and
code co-evolution. Proceeding of the 3rd IPM
International Conference on Fundamentals of
Software Engineering, Springer-Verlag Berlin,
Heidelberg, pp: 431-438.

Jacky, E., L. Thomas and V. German, 2010. Defining
and supporting evolution strategies for model
driven software projects LIG-IMAG, 220, rue de la
ChimieBP53,38041GrenobleCedex9,2010 France
{Jacky.Estublier,Thomas.Leveque}@imag .fr

Koegel, M., M. Herrmannsdoerfer, Y. Li, J. Helming
and J. David, 2010. Comparing state- and operation
based change tracking on models. Proceeding of
the 14th IEEE International Enterprise Distributed
Object Computing Conference, IEEE Computer
Society, Washington, DC, USA.

Murta, L., C. Corrêa, J.G. Prudêncio and C. Werner,
2008. Towards odyssey-VCS 2: Improvements
over a UML-based version control system.
Proceeding of the International Workshop on
Comparison and Versioning of Software Models,
ACM, Leipzig, Germany, pp: 25-30.

Maximilian, K., 2008. TIME - tracking intra- and inter-
model evolution. Proceeding of the Software
Engineering Conference - Workshop, München,
Germany.

Maximilian, K. and H. Jonas, 2009. Operation-based
conflict detection and resolution. Proceeding of the
ICSE Workshop on Comparison and Versioning of
Software Models, IEEE Computer Society
Washington, DC, pp: 43-48.

Maximilian, K., H. Markus, L. Yang, H. Jonas and D.
Joern, 2010. Comparing state- and operation-based
change tracking on models. Proceeding of the 14th
IEEE International Enterprise Distributed Object
Computing Conference, Washington, DC, USA,
pp: 163-172,

Marcello, L.R., D. Marlon, U. Reina and M.D. Remco,
2012. Business Process Model Merging: An
Approach to Business Process Consolidation.
ACM Transactions on Software Engineering and
Methodology (TOSEM), Retrieved from: http://
eprints.qut.edu.au/38241/.

Res. J. Inform. Technol., 5(3): 72-80, 2013

80

Pilato, M., 2004. Version Control with Subversion.
O'Reilly and Associates Inc., Sebastopol, CA,
USA.

Yuehua, L., G. Jeff and J. Fr´ed´eric, 2007. DSMDiff:
A differentiation tool for domain-specific models.
Europ. J. Inform. Syst., 16(4): 349-361.

