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Abstract: The Senegalo-Mauritanian upwelling is a very productive upwelling occurring along the West coast of 
Africa. The seasonal and inter-annual variability of the upwelling region between 9° and 22°N and 14° and 25°W 
was studied by merging monthly ocean color data and sea surface temperature provided by satellite sensors during 
twelve years from 1998 up to 2010. We combined these two parameters to obtain a unique index describing the 
spatio-temporal variability of the upwelling. We used a classification methodology consisting in a neural network 
topological map and a hierarchical ascendant classification. Six classes can explain most of the variability of this 
region, one of them (class 6) being dedicated to the coastal upwelling water, another being the signature of the Gulf 
of Guinea dome water (class 2), a third one to case 2 water (class 5). The classes can be considered as multi-factorial 
statistical indices allowing us to characterize the different water types of this region and to investigate their 
variability. It is shown that the upwelling extent is maximum in February-March, minimum in August-September. 
Its variability is linked to that of the wind and to the ITCZ position. The Gulf of Guinea waters moves northward in 
June and relaxes to their southward position in December. During the twelve years of observation, we were not able 
to evidence climatic trends of the SST and Chl-a concentration. The methodology we have developed can be used in 
a large variety of problems implying multi sensor measurements. 
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INTRODUCTION 
 

The Senegalo-Mauritanian upwelling is a very 
productive coastal region occurring along the West 
coast of Africa. It extends from 26°N down to 10°N. It 
has been well documented during the past decades from 
in-situ and satellite observations. For a review of the 
physics (Barton, Eastern Boundary of the North 
Atlantic. 1998) and the biogeochemical behavior 
(Aristegui et al., 2004). The major forcing are the trade 
winds blowing South-westward, which generate an 
offshore Ekman transport generating an upwelling of 
deep cold waters rich in nutriments favorable to 
phytoplankton development. The analysis of satellite-
derived chlorophyll concentration and Sea Surface 
Temperature (SST) (Lathuiliere et al., 2008) showed 
that the Senegalo-Mauritanian upwelling can be split 
into two regions, one north of 21°N (Fig. 1) where the 
seasonality is very weak, the other south of that 
latitude, where the upwelling presents a strong 
seasonality. In the south part, the upwelling intensity is 
maximum at the beginning of spring (March to April)  

showing an offshore SST gradient with cold SST along 
the coast and high phytoplankton concentration (Fig. 2 
and 3). The intense upwelling period is associated with 
a strong phytoplankton bloom, which extends far away 
offshore, as shown in ocean color satellite images. It 
weakens in June and disappears from mid-July to the 
end of summer, period for which the offshore 
horizontal SST and chlorophyll concentration gradients 
decrease (Fig. 2 and 3). The weakening in the 
upwelling is due to that weakening of the trade winds 
linked to the Northward displacement of the Inter 
Tropical Convergence Zone (ITCZ) driving the rainy 
season. North of 21°N, there is a quasi-permanent 
upwelling of which the corresponding chlorophyll-a 
concentration extends far offshore associated with 
filaments and eddies.  

In fact, this schematic description is, in reality, 
much more complicated. The studied area is the eastern 
termination of the North Atlantic Tropical gyre. It is 
influenced at its northern boundary by the Canary 
current (CanC) flowing southward and the North 
Equatorial Current (NEC) flowing southwestward and 
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Fig. 1: Mauritania and Senegal coastal topography. The land is in brown and the ocean depth corresponds to the color scale in 
meters (right side of the figure) 

 

 
 

 
 
Fig. 2: Climatology of the SST (left panels) and chlorophyll-a concentration (right panels) for the months of February (upper 

panels) and August (lower panels) averaged for the ten years of observation 
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Fig. 3: SST (upper panel) and chlorophyll-a (lower panel) zonal sections (February, April, August and November) along 17° N  
 
at its southern boundary by the North Equatorial 
Counter Current (NECC) flowing eastward. Seasonal 
fluctuation and meandering of these currents may 
modulate the upwelling region and the structures and 
characteristics   of  the  associated  waters (Lathuiliere 
et al., 2008). 

The aim of the present study is to combine ocean 
color and SST satellite observation in order to extract 
optimum information on the upwelling dynamics, in a 
much more efficient way than the information obtained 
by processing the two data sets separately. For that, we 
propose to cluster ocean situations presenting 
similarities, both with respect to chlorophyll 
concentration and to SST. For this, we chose a neural 
network clustering method, i.e., the Self Organizing 
Map (SOM) (Kohonen, 2001). SOM have been used in 
many geophysical studies to extract information of 
huge data set leading to understand complex 
phenomena. It has recently been applied to study the 
biological production in eastern boundary upwelling 
systems by Lachkar and Gruber-(2012).  

We focused our interest on monthly time scale due 
to the necessity to average the satellite images on a 
sufficient time to remove the effect of clouds, which 
can prevent the sea surface observation with satellite 
sensors, especially during the rainy season (July, 
August and September). At that time scale, SST and 
Chlorophyll-a concentration (Chl-a in the following) 
measured by satellite are proxies of the upwelling, SST 
being a signature of the dynamical behavior of the 
upwelling whereas Chl-a is a mixed signature of the 
dynamics and the integrated biological activity. Due to 
its own dynamics, Chl-a is able to enhance ocean 
physical structures not revealed by SST. Furthermore, 
we have processed the normalized ocean color spectra 
given by the SeaWiFS sensor in order to tentatively 
retrieve additional information such as the 
biogeochemical water type (case 2 water) or the 
phytoplankton species. 

THE SENEGALO-MAURITANIAN UPWELLING 
 

Coastal upwelling zones are very productive ocean 
regions. More than 80% of the ocean productivity is 
encountered in upwelling regions. The upwelling 
physical characteristics and behavior have been 
extensively described in the scientific literature 
(O'Brien and Hurlburt, 1972; Allen, 1973; Brink, 2005). 
Coastal upwelling is characterized by vertical motion of 
deep, hence cooler, water reaching the surface coastal 
layers. Its offshore extent is of the order of the first 
baroclinic radius of deformation (some tens of 
kilometers depending on the location and stratification). 
Its intensity is related to the along shore wind 
component which generates an offshore Ekman 
transport and consequently an upward vertical 
movement of water at the coast to satisfy the continuity 
equation. The upwelled water supplies nutriments to the 
surface layer, thus favoring the blooming of 
phytoplankton. The pattern of the upwelling is 
modulated by the alongshore variability of the wind, the 
coastline geometry (Crepon et al., 1984; Beletsky et al., 
1977), the bottom topography and instabilities of the 
fluid motion. Schematically, one observes a strip of 
cold surface water with high chlorophyll concentration 
parallel to the coast and whose front with offshore 
surface waters may oscillate (Barth, 1989) and form 
filaments (Bricaud et al., 1987; Lange et al., 1998; 
Lathuiliere et al., 2008). The signature of the upwelling 
is well observed on satellite Sea Surface Temperature 
(SST) and ocean color images, permitting the analysis 
of its variability. 

In this research, we aimed at extracting the most 
pertinent information from satellite ocean color 
observation and SST on the Senegalo-Mauritanian 
upwelling in order to characterize its variability and the 
mechanisms driving it. For this, we analyzed 10 years 
(from 1998 up to 2007) of monthly sea surface 
chlorophyll concentration (Chl-a in the following) 
provided by the SeaWiFS (Sea-viewing Wide Field-of
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Fig. 4: Seasonal variability of the SST (upper panel) and chlorophyll-a concentration (lower panel) averaged over the studied 
zone for the different years 

 
view Sensor) satellite radiometer and SST by the 
NOAA AVHRR instrument (Advanced Very High 
Resolution Radiometer (http://las.pfeg.noaa.gov/Ocean 
Watch/). We propose to combine these two variables 
for obtaining an optimum comprehensive description of 
the upwelling. 

Since the upwelling signature is mainly 
characterized by the offshore gradient of SST (Fig. 2), 
we thus decided to add a new variable defined as the 
difference at a given latitude (since the coast is 
approximately N-S) between the SST at an observed 
point and the mean SST in the longitude band 22°-
26°W which is an offshore region far away from the 
influence of the coastal upwelling (Demarcq and Faure, 
2000). This new variable, denoted ISST, filters out the 

important SST seasonal variations (Fig. 4) due to air-
sea interactions and large scale oceanic physical 
phenomena and permits the enhancement of the local 
dynamical processes. Due to its large variation range 
and its distribution (many small values and very few 
large values), Chl-a was expressed it by its Log10 value, 
which is a quantity widely used by biophysicists. The 
images we processed extend from 9°N to 21°N and 
from 14°W to 26°W. As the pixel size of the data files 
is of the order of 11.1×11.1 km, each image is 
composed of 121×121 pixels. Each pixel of the 
upwelling is thus represented by a three dimensional 
vector D [Log10 (Chl-a), SST and ISST]. In order to 
overcome the problem of missing data due to clouds or 
to processing artifacts, which are major problems in 
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ocean remote sensing, we only considered, for the 
learning data set, monthly averaged images provided by 
the NOAA/SeaWiFs site. The learning dataset D was 
built up by averaging the monthly means for the 10 
years of observations in order to decrease the number of 
missing pixels for each month. To reduce the size of the 
learning data set, we sampled one line out of three of 
the monthly satellite image matrix. The learning set D 
represents a mean climatology of the behavior of the 
upwelling for the 10 years under study. After removing 
the effect land and clouds, D consisted of 23893 three-
dimensional vectors.   
We now present the method we used.  
 

THE METHODOLOGY 
 

We first applied an unsupervised classification 
similar to that done by Niang et al. (2003, 2006). The 
aim was to summarize the information contained in the 
three-component vector data set D by producing a small 
number of reference vectors (rv) that are statistically 
representative of the data. Each reference vector (rv) 
represents a set of vectors of D that have a similar 
pattern. In the present case, we chose to determine the 
rvs by minimizing some distance between rv and the 
vectors of D it represents. To do this, we used a specific 
neural network model, the so-called topological map, 
which was first introduced by Kohonen (1982) and 
fully described in Kohonen (2001). Each neuron of the 
map (Fig. 5) is associated with a particular reference 
vector (rv) and thus corresponds to a group (in this 
study, a set of pixels belonging to D). The rvs 
approximate the density of the data set D. They are 
computed by minimizing a specific cost function as in 
the K-Means algorithm (Badran et al., 2005). Besides 
the   different   neurons of the topological map C are 
connected together and determine a topological 
(neighborhood) relationship among the different groups 
(neurons). Close neurons on the maps correspond to rvs 
that are quite similar; very distant neurons correspond 
to rvs that are very different. The set of rvs represents 
the dataset D by compressing the information contained 
in it.  

In the present study, we dealt with a two-
dimensional map with quite a large number of neurons 
(20×20) and therefore of rvs, providing a highly 
discriminating representation of the observations. The 
pixels of the data set D are thus clustered into 400 
groups. We used the SOM version available on the web 
site http://www.cis.hut.fi/projects/somtoolbox/ 
download/. The topological map was learned according 
to the procedure described in Niang et al. (2003, 2006). 
The number of neurons was determined empirically 
from solutions of similar problems and then adjusted as 
described in Badran et al. (2005).  

The large number of groups allowed us to take 
into account the complexity of the dataset but may have 
prevented us from synthesizing some geophysical 
information embedded in the data, such as spatial or 
seasonal  specificities. To  counteract this difficulty, we  

 
 
Fig. 5: Structure of the Self-Organizing Map (SOM). The 

network comprises two layers: an input layer used to 
present observations and an adaptation layer for which 
a neighbourhood system is defined. Each neuron i is 
fully connected to the input layer. It is associated with 
a group that is represented by a reference vector rvi. In 
the figure, the neurons are cluster in 3 classes by HAC 

 
decided to aggregate this large number of groups into a 
smaller number of classes based on the similarities of 
the groups. We therefore extracted a few pertinent 
classes from the groups by clustering groups having 
similar statistical properties, expecting that the classes 
could be associated with geophysical characteristics. 
For that we used a hierarchical ascendant classification 
(HAC in the following), which is a bottom-up 
hierarchical classification (Jain and Dubes, 1998). This 
method iteratively computes a partition hierarchy 
(Badran et al., 2005). From the initial partition (the 
neurons on the map), two subsets of the computed 
partition are clustered at each iteration. These two 
subsets are selected by measuring their similarity 
according to the Ward criterion (Fig. 5).  

We aggregated the 20´20 neurons into six 
significant classes. The resulting clustering of the three-
dimension vectors rvs associated with the neurons of 
the topological map is given in Fig. 6. We note that the 
topological map+HAC clustering is very coherent, 
since the classes represent clusters whose neurons are 
contiguous on the topological map. Moreover, the 
geophysical parameters (SST, ISST and chl-a) 
associated with each neuron (or rv) determine 
homogeneous fields on the SOM. Their gradients are 
smooth, well defined without any discontinuity. As an 
example, the chlorophyll-a concentration is maximum 
in the bottom right corner, minimum in the upper left 
corner of the SOM, the SST is minimum at the bottom, 
maximum at the top of the SOM. The number of groups 
(six) was selected because it presented the most 
significant discriminative partition with respect to the 
full dendrogram of the HAC (not shown) one the one 
hand and to the upwelling parameters, on the other 
hand.  
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Fig. 6: Upper left panel: Representation of the SOM map clustering in six different classes. Bottom left panel: projection on 
SOM of SST; the coldest temperatures are in the bottom and highest ones in the upper right side of the map; Upper right 
panel, projection of the ISST; the coldest ISST are in the bottom right corner and the smallest ones in the upper right side 
of the map. Bottom right panel: Chlorophyll-a concentration; the highest chlorophyll-a concentration are located in the 
bottom right corner of the map, the smallest in the upper left corner of the map 

 

 
 

 
 

Fig. 7a: Geographical extend of the six classes for January, February, March and April. The classes are identified by the color 
bars on the right side of the cartoons 



 
 

Res. J. Environ. Earth Sci., 5(12): 756-768, 2013 
 

762 

 
 

 
 
Fig. 7b: Geographical extend of the six classes for May, June, July and August. The classes are identified by the colors bars on 

the right side of the cartoons 
 

 
 

 
 
Fig. 7c: Geographical extent of the six classes for September, October, November and December. The classes are identified by 

the color bars on the right side of the cartoons 
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ANALYSIS OF THE SIX CLASSES 
 

In the following, we present the mean geophysical 
characteristics of the six classes for the ten year period 
we analyzed. Each neuron of the topological map has 
captured a set of pixels of D. We project the set of 
pixels corresponding to each class for a specific month 
of the monthly climatology on a geographical map of 
the studied region (Fig. 7). We observe that the six 

classes are geographically very coherent, since the 
pixels of a class are contiguous on the geographical 
map (Fig. 7). The classes, which have common 
statistical properties, are then associated with well-
defined geographical areas. In Fig. 8, we have 
displayed the median chlorophyll-a content, the median 
ISST and SST values with their variances associated 
with the six classes in winter (January), when the 
upwelling is well developed and in August, when the 

 

 
 

 
 

Fig. 8: Chlorophyll-a concentration (left hand panels), ISST (middle panels) and SST (right hand panels) values for the different 
classes in January (top) and August (bottom); Chlorophyll-a concentrations are given on a log scale; The little boxes on 
each panels includes 50% of the pixel values of the dedicated class and the line inside the box represents the median value 
of the class; The bars outside of each box correspond to the range of the remaining 50% 
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Fig. 9: Times series of the ocean parameters associated with each class: (upper panel) chlorophyll-a concentration, (middle 

panel) ISST, (bottom panel) SST (shown only for class 1 and 6). Note the strong seasonal variability for SST and ISST 
and chlorphyll-a concentration for class 6. The coldest SST were observed in 1999  
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upwelling signature is the weakest and practically non-
existent. We first analyze the six classes from their Chl-
a, ISST and SST characteristics: 
 
Class-1: Corresponds to low chlorophyll-a 

concentration and warm SST. Its ISST is close 
to zero by construction. 

Class-2: Corresponds to low chlorophyll-a 
concentration and slightly warmer SST and 
positive ISST. 

Class-3: Corresponds to slightly higher chlorophyll-a 
concentration and slightly colder SST and 
negative ISST.  

Class-4: Corresponds to higher chlorophyll-a 
concentration and cold SST and negative 
ISST.  

Class-5: Corresponds to much higher chlorophyll-a 
concentration and quite warm SST and 
positive ISST. 

Class-6: Corresponds to the highest chlorophyll-a 
concentration and the coldest SST and very 
high negative ISST. 

 
Similar behavior is observed for the other months. 

Figure 7 shows that class-1 (deep blue in the 
figure) is associated with offshore surface waters 
unaffected by coastal upwelling. This class extends far 
from the coast and is associated with a large number of 
neurons of the topological map (Fig. 6) corresponding 
to subtle differences in offshore water characteristics.  

Due to their geographical location (Fig. 7) and 
ocean characteristics (Fig. 8) class-3, class-4 and class-
6 are associated with the coastal upwelling. Class-6 
(deep red in Fig. 7), represents costal upwelling waters 
with cold temperatures and very high Chl-a 
concentration. This class is concentrated along the coast 
and extends a few tens of kilometers offshore. It 
follows the coast north of Cap Verde (15°N) where the 
continental shelf is narrow and extends over the Guinea 
coastal shelf south of 15°N. It is well marked during the 
boreal winter (January, February, March), for which it 
can extend down to 12 N and disappears in summer 
(July, August, September) south of 17°N. Class-4 
(yellow in Fig. 7) and class-3 (light blue in Fig. 7) 
extend quite far offshore. They correspond to waters 
that have been influenced by the costal upwelling 
through oceanic processes as instabilities and filaments. 
Class-3 waters are bounded by class-1 waters at its 
western limit (Fig. 7). Its offshore extent is important in 
winter and quite non-existent in summer. 

Class-5 (light red in Fig. 7) corresponds to waters 
rich in chlorophyll and whose temperature is high. 
These waters are mainly located in shallow water area, 
such as the Guinea shelf south of 15°N and the Arguin 
bank at 21°N). The class-5 signature is visible up to 
19°N in July, August and September replacing Class-6 
waters at some location south of that latitude. In winter 
(January to April), class-5 waters (light red in Fig. 7) 

are confined South of 12°N in the coastal region, 
covering the shallow continental Guinea shelf shown in 
Fig. 1. In fact, these waters are suspected to correspond 
to case-2 waters, which are coastal waters for which 
Chl-a, sediments and dissolved maters are mixed, 
leading to an overestimation of chlorophyll-a 
concentration values due to absorption of incoming 
solar radiation by the dissolved maters.  

Class-2 waters (sky blue in Fig. 7) are waters 
whose chlorophyll-a concentration is quite small and 
temperature warm. They are located in the south part of 
the region during winter and spring. They move 
northward at the beginning of summer and reach 17°N 
in September, staying at that latitude until October and 
then moving back to south at the end of November. 
These waters may represent a signature of the North 
Atlantic Equatorial Counter Current (NECC), which 
intensifies in summer and forms the so-called Guinea 
Dome (Siedler et al., 1992). During their northward 
progression in summer, class-2 waters never invade the 
Guinea continental shelf, which is mainly covered with 
class-5 and class 6 waters. 

The SST of the six classes presents a well-marked 
seasonal variation, which is shown in (Fig. 8) and on 
monthly mean SST time series (Fig. 9). The SSTs of the 
six classes vary in phase. The SST is maximum in 
October and minimum in February-March-April. The 
seasonal variation is associated with the seasonal 
variation of the long shore component of the wind, 
which generates an offshore Ekman transport and thus a 
mass deficit, which is compensated by an upward 
advection of deep cold waters rich in nutriment at the 
coast. Surprisingly the chlorophyll concentration does 
not show  well-marked seasonal variation as seen in 
Fig. 9, except for class 6, whose Chl-a values present 
high seasonal and inter annual variations during the first 
five years of the studied period which could not be 
related to any identifiable indices such as NAO, Enso or 
African monsoon indices. 

 

 
 
Fig. 10: Seasonal variability of the spatial extent of class 6 

waters 
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Fig. 11: Time series of the monthly wind vector at Dakar from 2003 to 2006. The wind direction is given according to the axes 
drown in the upper left panel 

 
Moreover, we note that the extent of class 6 waters, 

which is associated with the coastal upwelling, presents 
a strong seasonal variation as shown in Fig. 10. This 
extent is minimum in summer (July to September). It 
starts to grow in November, is maximum in March, 
stays well developed until May and begins to decrease 
in June. This extent is associated with the long shore 
component of the trade winds. The decrease is linked to 
the northward progression of the ITCZ (Inter Tropical 
Convergence Zone) and the ensuing decrease in 
intensity of the trade winds that drive the upwelling 
dynamics (Fig. 11). The ratio between the maximum 
extent class-6 area and its minimum extent is about 6, 
showing the strong variability of the upwelling area. 

In Fig. 11 shows the time series of the monthly 
wind vector at Dakar from 2003 to 2006. The wind 
presents a strong seasonal variability, with a maximum 
in winter (November to May) and a minimum in 
summer (July, August, September) when the ITCZ 
reaches its northernmost position. We note that the 
seasonal variability of the extent of class 6 waters 
shown in Fig. 10 varies with the southward component 
of the wind, in agreement with the upwelling theory 
(Allen, 1973). The more intense the North South wind 
component, the larger the extent of class 6 waters.  

 
CONCLUSION 

 
 A Self Organizing Map (SOM) associated with a 

hierarchical ascending clustering provides an efficient 
index to investigate the variability of the Senegalo-
Mauritanian upwelling by combining SST, ISST and 
chlorophyll-a values observed by satellite remote 
sensors using a multivariate statistical relationship. The 
grouping of the data in few (six) classes based on three 
major signatures of the upwelling, SST and ISST, as 
physical parameters and chlorophyll-a concentration as 
biogeochemical parameter, allowed us to study the 
variability of the upwelling. This method has enabled 
us to pick up the major characteristics of the Senegalo-
Mauritanian upwelling. The values of the upwelling 
parameters are very distinct for the six classes (Fig. 9) 
justifying the CAH classification a posteriori. In Fig. 6, 

we have displayed the decomposition in six classes on 
SOM and in Fig. 7 the geographical pattern of the six 
classes. The different classes can be related to ocean 
phenomena: class 6 corresponds costal upwelling 
waters (cold and high Chl-a concentration), while class 
1 corresponds to offshore waters (warm and low Chl-a 
concentration). Class 4 and 3 correspond to waters, 
which have been influenced by the upwelling through 
temperature and chlorophyll-a diffusion due to 
filaments and instabilities. Class 2 can be related to the 
NECC waters moving northward in June-July with the 
ITCZ displacement and enhancing the dome of the Gulf 
of Guinea. Class 5 can be associated with shallow shelf 
waters corresponding to class-2 water. It mainly 
corresponds to case-2 waters and is found on the 
Arguin bank and on the shallow shelf extending off the 
Gambia and Guinea coasts. This was confirm by 
analyzing the nLw* spectrum (spectrum normalized by 
the Chl-a spectrum).  The class 5 normalized spectra are 
always larger than unity, which could be due to the 
effect of the light backscattering onto the sediment 
particles present in the waters, confirming that these 
waters are case-2 waters. The class 6 normalized 
spectra, which are also larger than unity can interpreted 
by high chlorophyll-a concentration associated with a 
large variety of phytoplankton species. This may lead to 
an important package effect (Bricaud et al., ) that 
makes the chlorophyll-a concentration-absorption 
relationship non-linear and the normalized spectrum 
different from unity. The very high variance for classes-
5 and -6 indicates the complexity of the interaction 
between the incoming solar radiation and the 
biogeochemical constituents of the water column. 

Our method has also enabled us to quantify the 
spatial extent of the upwelling in terms of pixel 
numbers and estimate its seasonal variability. The 
variability of this extent is linked to the variability of 
the southward component of the wind that is parallel to 
the coast. Nevertheless, for the ten years of 
observations, we were not able to detect any climatic 
trends in the SST of the different classes, nor in the 
chlorophyll-a concentration. This might be due than in 
strong upwelling area as fed by deep waters, the 
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characteristics of this deep water are much more stable 
than surface layers. Moreover, despite attempting to 
investigate the inter-annual variability of the upwelling 
in terms of spatial extent and duration (expressed in 
month of the year) in respect of class 6, which reflects 
the upwelling dynamics, we were not able to reach 
definite conclusions regarding the inter annual 
variability of this extent, which is quite small and is 
biased by the cloud coverage masking the relaxation of 
the upwelling in summer and very often its spatial 
extent all year around. This effect is important during 
the summer months (July, August, September), leading 
to spurious effect on the class extent. 

The results of the method we have developed show 
the interest in combining the different variables through 
a unique multivariate statistical process rather than to 
combine the results of analysis done separately on the 
different variables. As an example, analysis of the 
chlorophyll-a concentration can provide classes having 
similar concentration; analysis of ISSTs or SSTs can 
also provide classes having similar ISSTs or SSTs. But 
the merging of three contours obtained separately is a 
very delicate operation whereas the multivariate 
analysis done by SOM provides an optimum 
combination of the information embedded in the three 
data sets. Class 5 and class 2 oceanic characteristics 
would not have been easily identified by applying mono 
variable statistical methods on each variable separately. 

The method we have presented is relevant to 
analyze a large variety of phenomena, which have been 
observed with several different sensors. It permits to 
combine different measurements given by different 
sensors in a rational manner to extract pertinent 
information on the phenomena, which would not have 
been obtained by using the observation separately as 
shown in this study. Moreover, the present method, 
which uses SOM, is very easy to implement and to 
handle, as there exists friendly software dedicated to the 
handling them. Other method such as k-means could 
also be used to make data fusion analyses. In fact, SOM 
is an extension of the K-means method in which the 
different clusters are related together allowing a more 
efficient partitioning as shown in Badran et al., 2005), 
especially when the analyzed data set is related to 
complex physical laws.  
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