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Abstract: The purpose of this study is investigation and comparison of localization and accurate industrial 
measurement through classic and modern mapping methods. in this research and it is proved that if the objective is 
to determine the coordinates of an event or the geometry of an object, there is no need to align and the coordinates of 
points on a target, which is generally an ultimate objective of a local mapping project, can be reached and can save 
the necessary time for aligning and deploying device only through measuring the lengths and angles in Theodolite 
orthogonal framework. Existence of error in measurement and the need for a unit and close-to-truth response for 
measured quantities are among the most important issues of measurement science, so that it is possible to determine 
the accuracy and reliability of mapping projects only through these issues and proper application of mathematical 
language. Observations of total station (Horizontal angle, vertical angle and oblique length) are performed in the 
Local Astronomy Coordinate System which can be time consuming and cause disruption in core activity of 
industrial sector according to the time required to locate and align device. Alignment in Goniometer and Distance 
Measurement or Total Station tools are investigated. Numerical results of this research indicate the complete success 
of presented method. Thus, this paves the ways for application of total station as a quick tool in open industrial 
environments and provided theory can create the industrial capabilities for classic mapping. 
 
Keywords: Astronomy coordinate, geodetic coordinate, theodolite, total station 

 
INTRODUCTION 

 
Geodesy astronomy was previously considered as 

the necessities of localization due to the need for 
transferring the longitudinal and angular observations 
performed by Goniometers and Distance Measurement 
tools from Local Astronomy Coordinate System (LA) 
to Geodetic Coordinate System (G) {Geodetic Length, 
Geodetic Width and Elliptical Height}. When a 
Goniometer or Distance Measurement tool is aligned, 
the Local Astronomy Coordinate System is created 
through horizontal and vertical extension and this is due 
to the classic geodesy and observation in "Local 
Astronomy Coordinate" System and the need to transfer 
the observations from LA coordinate system to 
Geodesy by the help of astronomical observations. 
Figure 1 shows the Local Astronomy Coordinate 
System. A star as a point is shown in this Figure and 
this could be another point in the ground surface. 
Nowadays, total station equipment, which are in fact an 
integration of an Electronic Distance Measurement and 
Goniometer, are gradually replaced with observations 
of Theodolite and Electronic Distance Measurement; 
therefore, we refer to total station in this study instead 
of Theodolite and Distance Measurement tool.  

Nowadays, the theory of localization has been 
changed and application of total stations has been 
primarily   limited    to  industrial   activities   or  local  

 
 
Fig. 1: Local Astronomy coordinate system (LA) 

 
localization  with  spread of satellite methods especially 
GPS. This study aims to provide new mathematical 
models and equations by which the alignment and 
station-establishment stages can be eliminated from 
observation stages with total station. This change in the 
use of observations lead to a significant increase in the 
rate and ease of observation and can meet the maximum 
needs of industrial applications and determine the local 
localization needed for speed of above observation. 
Local  Astronomy  Coordinate  System  is shown in 
Fig. 1. 
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Observed point can be an earth point or in the 
shape of star as shown in this figure. In the case of 

observing as the star, the length is excluded from 

observations and unknowns are changed into the 

components of extension to the star instead of 

coordinates. Thus, distances and angles required to 

locate the points of an industrial object can be measured 

in a factory without alignment and station in a little 

time without any damages to production line due to the 

long stop. For instance, there is a new method, Plane 

Serve, in industry with a triaxial slider, interferometer 

laser and an engine which moves on an industrial broad 

and without-friction surface. The curvature, shape and 
position of surface are maintained while elevating this 

metal surface by elevator; this method also has a high 

resolution and accuracy. Through the geodetic 

techniques this study seeks to investigate various ways 

of location and finally measuring the components. The 

appropriate method can be applied among the methods 

according to parameters such as cost, accuracy, speed 

and time in different industrial applications. However, 

every selection should be the most possible economical 

way as well as providing the required accuracy and this 

can be achieved through a proper analysis (Kavanagh 
and Glenbird, 2000).  

The purpose of this study is investigation and 

comparison of localization and accurate industrial 

measurement through classic and modern mapping 

methods. 

 

MATERIALS AND METHODS 
 

Literature: calculation of distance in an orthogonal 

framework of a total station: Suppose that you want 

to calculate the spatial distance between two points of B 

and C (Fig. 2), thus we put a Theodolite in a desired 
location such as A. According to the internal structure 

of theodolite, the orthogonal framework XYZ is formed 

in the point A. Measureable quantities in this 
orthogonal framework include:  

 

 Spatial length AC 

 Spatial length AB 

 Extension of HB (Angle read from plane XAY of 

orthogonal framework XYZ from horizontal circle 

equal to zero to extension of point B 

 Extension of HC (Angle read from plane XAY of 

orthogonal framework XYZ from zero circle to 

extension of point C) 

 Angle VC (Angle read from the axis Z of 

orthogonal framework XYZ in plane AZC)  

 Angle VB (Angle read from the axis Z of 

orthogonal framework XYZ in plane AZB)  

 

Since the spatial distance can be calculated between 

every two points on the object, the geodetic adjustment 

and use of lengths more than the minimum requirement 

will be introduced to improve the accuracy (Vanícek 

and  Krakiwsky, 1982). Condition or parametric 

equation methods can be applied for performing the 

adjustment. Since the parametric adjustment method is 

extremely easy in terms of creating the equations, we 

do the adjustment on this basis in this study. Orthogonal 

Framework XYZ of a total station and measurable 

lengths and angles is shown in Fig. 2. 

 

Implementation and research procedures: In 

summary, the research area and implementation field 

include the following stages: 

 

 Selecting a desired object as the subject in order to 

do measurement on it (Subject in this study is a 

concrete cube with length of sides equal to 30 cm) 

(Joint Target with short-range photogrammetry)

 

 
 
Fig. 2: Orthogonal framework XYZ of a total station and measurable lengths and angles 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/183-5937630-4651954?_encoding=UTF8&field-author=P.%20Van%C3%ADcek&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/183-5937630-4651954?_encoding=UTF8&field-author=E.J.%20Krakiwsky&search-alias=books&sort=relevancerank
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 Installing a number of sticky reflectors on this 
object or subject  

 Creating the control points  

 Installing a number of reflectors on the control 

points surrounding the subject 

 Locating the installed reflectors on control points 

and subject outlines and obtaining the approximate 

coordinates of control points 

 Designing the optimal geodetic grid 

 Linear and angular observation in two ways:  

o Classic method (Here, the classical method refers 

to a way in which there is the ground station and 
the camera can be deployed on all stations and do 

observations and the camera is also aligned and 

cantraged.) with setting the station and alignment  

o Non-classic (modern) method without setting the 

station and alignment 

 Determining the exact and ultimate coordinates of 

subject outlines (desired cubic) and its volume 

 Investigating the final accuracy and determining 

the accuracy of coordinates 

 Controlling and comparing obtained accuracy with 

direct measurement accuracy on target 
 

RESULTS AND DISCUSSION 
 

Designing the three-dimensional control grid: In 
general, definition of a coordinate system is 
indispensable and necessary in grid of control points in 
order to determine the mathematical position of points. 
In other words, achieving the mathematical position of 
points (coordinates) and the relationship between the 
observations and unknown parameters are subject to the 
introduction of coordinate system. Constraints are the 
information about definition of coordinate system in a 
grid of control points. In fact, the mathematical location 
of control points can be on a line (one-dimensional), on 
a plane (two-dimensional), or on the space (three-
dimensional) (Maes et al., 1997). 

According to what was mentioned, our control 
points in this study have been considered three-
dimensional before and after replacement. It should be 
noted that definition of system origin is never possible 
through observations and the height of a point in one-
dimensional system, X and Y of a point in two-
dimensional systems and X, Y and Z of a point in three-
dimensional systems should be specified in order to 
introduce the parameter of origin (Maes et al., 1997). 

This grid, which has temporary station points, 

contains three station points, called α-β and y which 

make three vertices of triangle. Stages of grid design 

are described as follows (Bouarda, 1976). 

 

Grid designing stages: The aim of grid designing is to 

provide a stable source framework by which other 

points can be determined with special accuracy. Grid 

designing involves several stages as follows: 

Table 1: Parametric coordinates of points on the site surface  

Coordinates of points on the wall (1)  (X, 0, z) 

Coordinates of points on the wall (2)  (0, y, z) 

Coordinates of points on the wall (3)  (X, b, z) 

Coordinates of points on the wall (4)  (A, y, z) 

Coordinates of points on the wall (5) (top)  (X, y, c) 

Coordinates of points on the wall (6) (bottom)  (X, y, 0) 

 

 
 
Fig. 3: A rectangle with dimensions a and b 

 

 
 
Fig. 4: Schematic view of room space 

 

 Determining or justifying the coordinate system  

 Determining the optimal form of grid  

 Determining the optimal weight matrix  

 Grid expansion  

 

Proposed algorithm of grid designing: The main part 
of this method is manifested in definition of coordinate 

system in which we have applied the geometry of site, 
itself, for defining the coordinate system and 

coordinates of points. In presented Algorithm, the 
coordinate system can be defined as follows:  

Origin can be assumed in one of the vertices of 

rectangle, for example 0 and the two-dimensional 

coordinate axes are extended along the rectangular 

sides. For instance, the extension of axis X can be 

assumed on the side 0D and extension of axis Y on the 

side 0B. In this regard, the coordinates of each point on 

the side 0D is equal to (X, 0) and coordinates of each 

point on 0B is equal to (0, Y). Thus, it is observed that 

the not-fixed point on the wall in local coordinate 

system is in a way that it is not out of or into the wall. 
Coordinates are defined in Table 1 for three-

dimensional mode (Fig. 3 and 4).  

The important point in this method is that 

dimensions of working place should be carefully 

defined in order to specify the coordinates accurately. 

According to definition above, the coordinate system is 

defined at this stage by geometry of environment in a 

way that possible movements for point of grid are 

normally along some of the coordinate axes and have 

no component on other axes, so that the point goes no 

more outside or inside (Grafarend and Schaffrin, 1974). 

According to the definition of coordinate system and 
possible movements for points of grid, we have 
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movement only along the certain axes and there is no 
movement along other axes. Another advantage of this 

method is that the exact dimensions of working place 

can be easily extracted after adjustment according to the 

coordinates of points. 
 
Angular observations of grid: Angular observations 
are obtained from comparing the measurement standard 
of angle or measurement unit of these observations 
(Degree, Grad, or Radian) in both horizontal and 
vertical plane through the tools with measureable 
quantitative. The accuracy of angular observations 
depends on the following three factors:  
 

 Accuracy of tools  

 Accuracy of modifications (Modification of 
conversion into horizon or out of the station for 
camera and modification of sphericity and 
refraction) 

 Accuracy of measurement ways  
 

Furthermore, since it is assumed that the 
observation errors are just random errors with zero 
mean and normal distribution, it is necessary to have no 
systematic errors in determining the accuracy of 
angular observations if possible in order not to have 
systematic errors in adjustment and calculations at next 
stages. Establishment of required geometry conditions 
in measurement tools is the most reliable way to ensure 
the absence of system a tic error in observation 
measurement tools. Every tool has a geometric 
condition. The geometry conditions of totals are met 
through their calibration (In accurate cameras for high 
resolutions). 
 
Longitudinal observations of grid: Target lengths are 
read with calibrated totals which are easily applied. The 
lengths have the resolution equal to 1 mm and the 
longitudinal observations have high resolution. Since 
the target wave (laser) is done as the sweep from the 
camera to sticky reflector (target point) in longitudinal 
observations, its resolution is much higher than the one-
way state. In this study, the target lengths of in our grid 
are mapped for several times by total and their average 
values are considered. After defining the initial 
coordinates of points as mentioned, we implement the 
grid design algorithm for step 1 design. The aim in step 
1 design is to optimize the shape of grid in order to 
increase the ability to detect the error observations and 
thus the obtained coordinates have target accuracy. 
Applied algorithm is as follows: 

 

 We discretely move the points of grid; it should be 
noted that each points of grid can be placed in 
various in finite situations because partial 
computational and displacement of grid points will 
have a little impact on grid optimality (For each 
station, we select several relatively states with 
differences). 

Table 2: Coordinates of control points on the walls and stations 

Points X Y Z 

α 107.0000 102.5000 100.0000 
β 105.0000 105.0000 100.0000 
γ 102.0000 104.5000 100.0000 
X1 111.9600 100.0000 100.0000 
X2 105.5000 100.0000 100.0000 
X3 100.0000 100.0000 100.0000 
X4 100.0000 110.2500 100.0000 

 

 
 
Fig. 5: A view of displacement of points in working place 

 

 We obtain designing for each matrix states and 
then calculate the Matrix of Freedom (A grid has 
optimal shape that the minimum number of 
freedom in that grid is maximum compared to 
other states and the variance of the numbers of 
freedom is not high and all are in average.) as 
follows: 

 

PADDPAAAIR TTT 1)(                         (1) 

 
where,  
A :  Design matrix  
P :  Weight matrix  
D :  Ditm matrix 

 

 The optimal form of grid is obtained after creating 
the mathematical model in different states and 
calculating the matrix of freedom for each one 
according to the above constraint. It is worth noting 
that more than ten million different states of grid 
were evaluated in this study in order to design the 
applied grid in this research and finally the 
following grid, in which the variance of number of 
freedom was not high and also its minimum 
number of freedom was maximum compared to 
other cases, is selected with results as follows. In 
this table, the coordinates of each grid point are 
presented in completely local coordinate system on 
one of the vertices of working place (Branner, 
1979). Coordinates of control points on the walls 
and stations is shown in Table 2. 

 
The local coordinate system and points are 

calculated through primary information of working 
place and exact dimensions measured by observation 
and then the grid is designed as follows:  
 

 Displacement of grid points and creating the 
second mode (Fig. 5) 

 Creating Design matrix 
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 Creating the Matrix of freedom 

 Determining the minimum number of freedom in 
matrix 

 Repeating the steps 1 to 4 

 Determining the state of grid which its minimum 
number of freedom is maximal compared to others 
(As mentioned, 10 million different states are 
tested in this section in order to analyze all possible 
states of grid.)  

 
A Grid, which is obtained after doing the stage 6, is 

an optimal grid that should be implemented with 
respect to the local coordinate system. After 
implementing the above coordinates on the walls, the 
final observations are done in order to determine the 
exact coordinates of grid points to achieve the 
maximum accuracy and strength. Figure 5 show a view 
of displacement of points in working place. 
 
Conversion of coordinate systems: Since that each of 
stations creates a local coordinate system and thus its 
performed observations are independent on other 
stations, it is necessary to transfer all observations to a 
same system in order to be interpretable; in other 
words, all coordinate s are converted into a coordinate 
system through the coordinates of each control points 
and consistent transformation. According to the 
summary process, the conversion coefficients are 
calculated for each system to one of the systems like the 
system depending on second station setting and the 
observation coordinates can be transferred from all 
stations to a system with these specified coefficients 
after determining the appropriate type of conversion 
(Affine: 3D Affine Coordinate Transformations, 
Conformal, DLT (Direct Linear Transformation), 
Procrustes, etc.) and by the control points with specified 
coordinates in all systems. In practice these two steps 
are done together and in a system of equations through 
the least squares method for calculating the coefficients 
and  coordinates in new system. Thus, each of reading 
step at that station is done in that coordinate and 
independent on other systems, but for creating a one-
dimensional model, consisting of all selected points, it 
is necessary to transfer all coordinates to a same single 
but desired system. Therefore, it is necessary to 
compare the conditions of systems according to two 
states:  
 

 State of aligned camera  

 State without aligned camera  
 

In this study, 12-parametric conversion (3D translation, 

3D rotation, different scale factor along each axis and 

3D skew) is used for converting the system into each 

other; their practical results are presented as follows 

(Cooper, 1982).  
 

Parametric conversion: It is assumed in this 

performed conversion in target project that the scales 

along three axes are not equal and three unknowns of 

scale are Sx, Sy, Sz. Furthermore, there are three non-

orthogonal unknowns of axes x, y, z, as 𝛿𝑥 , 𝛿𝑦 , 𝛿𝑧 with 

three rotations and three transfers. Thus, this conversion 

includes twelve unknown parameters which should be 

measured and we need at least four points with known 

coordinates in both systems in order to estimate the 

unknown parameters. Matrix of this conversion is as 

follows: 

 

1 1 1 1

2 2 2 2

3 3 3 3

x y zx y z k

X x x a b c x d

Y S S S M M y k y a b c y d

Z z z a b c z d

   

            
                         
                       

  (2) 

where,  

k =  Three transfers of 𝛿𝑥, 𝛿𝑦 , 𝛿𝑧  
M       =  The parameters of non-orthogonality  

𝑀𝜔𝜑𝑘 =  The rotations of both systems  

𝑆𝑧 , 𝑆𝑦 , 𝑆𝑥 =  Scales of both systems  

 

According to this conversion, all possible states are 

considered for transformation and two systems can be 

properly converted into together. This conversion can 

be linear as follows:  

 

1 1 1 1 1 1 1 1 1 0x a x b y c z d F x a x b y c z d                (3) 

 

2 2 2 2 2 2 2 2 2 0y a x b y c z d F y a x b y c z d                (4) 

 

3 3 3 3 3 3 3 3 3 0z a x b y c z d F z a x b y c z d               (5) 
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1
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A x y z

x y z

B

V
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V

a b d











  
  

  
   


 
 

   
      

  
  

  
   
 

     (6) 

 

Values of transfer are attainable from each system 

to the reference system after the least squares solution. 

After doing the conversion calculations and according 

to the observations of object by station, which their 

coordinates are obtained through the control points; all 

of them are defined in a coordinate system. We do the 

adjustment with respect to the classic and non-classic 

observations:  

 

Adjusted observations:  
Grid constraints: The number of constraints in a grid 

is  the  first  point  which  should  be  considered  in  the 
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classic state. The grid cannot rotate around the axes x 

and y in classic mode (because we have aligned the 
camera in all points and the only rotation is around the 

axis z). Unlike the three-dimensional mode, in which 
we need at least 7 constraints, here we introduce 5 

constraints to the grid as follows:  
 

 Three-dimensional coordinates of a point  

 Coordinate x or y or z from another point  

 Coordinate system scale  
 

This constraint is introduced for scale of system 
due to the longitudinal observations, but x, y and z of a 

point like x of another point should be optionally 
introduced for introducing other constraints. According 

to the main point of introducing the constraints, these 
constraints should be introduced equally in both states 

in order to compare both classic and non-classic cases.  
 

Adjustment equations: The three-dimensional 
adjustment and least squares parametric method have 

been applied for adjustment of this grid. Observations 
(L), vector of unknowns (X) and matrix of coefficients 

(A) are the vectors as follows:  
 

1 2 1 1

2 3 9 12 2 2 9 10 11 12 9 9

[ ,..., , , , ,..., ,..., , ,..., ,..., ,...,

, , , , ,..., ,..., , , , , ,..., ,...]

i

T

L H V V V S h H H V S

H H H H V S H H H H V S

         

           


 

 

4 4 4, , , , , , , , ,
T

q q qX x y z x y z x y z     
   

      (7) 

 

 1:
1:

i

i nj
j n

L
A

X 


 
  

  

 

 

Equations of observations in this project are written 
three-dimensionally. In this case, the equation of 

horizontal angle observations is exactly like the two-
dimensional state, but the equations of vertical angle 

observations are written as follows:  

 




















222 ))(()()(

)(
cos

tiijijij

tiij

ij

hZZyyxx

hZZ
ArcV

       

(8) 

 

where, 

Zi =  The height of deployment station  

hti =  The height of camera in deployment station  

 

Equation of observation for oblique lengths is 

written as follows: 

 
222 ))(()()( iijijijij hZZyyxxS      (9) 

 

Now, an approximate coordinates is given to all 

points   in   adjustment    model    through    the    initial 

Table 3: Final coordinates of target vertices in coordinate system 

associated with α  

Point X Y Z 

Z1 999.8958 1002.7e+003 101.1648 

Z2 1000.1e+003 1002.9e+003 101.1237 

Z3 1000.1e+003 1002.8e+003 100.7958 

Z4 999.8985 1002.6e+003 100.8802 

Z5 1000.100 1002.9 101.1237 

Z6 1000.000 1003.1e+003 101.1184 

Z7 1000.0e+003 1003.1e+003 100.8150 

Z8 1000.100 1002.8 100.7958 

Z9 1000.000 1003.1 101.1184 

Z10 999.9419 1002.9 101.1031 

Z11 999.9469 1002.8 100.7888 

Z12 1000.0e+003 1003.1 100.8150 

 

Table 4: Final coordinates of Z1 to Z4 points on the target from α to β 

system 

Points X Y Z 

Z1 1000.1329 995.3208 100.0642 

Z2 1000.3073 995.5635 100.0600 

Z3 1000.3192 995.5516 99.7627 

Z4 1000.1445 995.3099 99.7635 

 

Table 5: Final coordinates of Z9 to Z12 points on the target from 𝛾 to β 

system 

Points X Y Z 

Z9 1000.0652 995.7399 100.0454 

Z10 999.8702 995.4963 100.0496 

Z11 999.9049 995.4892 99.7502 

Z12 1000.0784 995.7276 99.7464 

 

Table 6: Final coordinates of Z1 to Z4 points on the target from α to β 

system 

Points X Y Z 

Z1 1000.1665 995.3828 100.0480 

Z2 1000.3557 995.6228 100.0332 

Z3 1000.2809 995.5048 99.7834 

Z4 1000.0974 995.2577 99.8009 

 

Table 7: Final coordinates of Z9 to Z12 points on the target from 𝛾 to β 

system 

Points X Y Z 

Z9 1000.0652 995.7399 100.0454 

Z10 999.8702 995.4963 100.0496 

Z11 999.9049 995.4892 99.7502 

Z12 1000.0784 995.7276 99.7464 

 

observations. In this study, the approximate coordinates 
of all points was given from the point α to other points 

and then for introducing the constraints, x, y, z of point 
α were assumed to be constant and x of point β was 

selected as constraint. Then the replication circle is 
made after this step and the unknowns are obtained 

from the following formula:  

 

PdlAPAAdx TT 1)(                            (10) 

 

COMPOBS LLdl   and 1( )P L                     (11) 

 

dxXX oldnew                (12) 

 

The coordinates of all grid points is achieved after 
adjustment. However, some of the observations were 

eliminated from the observation equation during the
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Table 8: Comparison of lengths in both classic and non-classic methods 

Calculated lengths (non-classic-second type) Calculated lengths (non-classic-first type) Calculated lengths (classic) Measured lengths 

Lz1z4 = 29.51
 

Lz1z4 = 30.11
 

Lz1z4 = 30.34
 

Lz1z4 = 30.2
 

Lz2z9 = 31.34
 

Lz2z9 = 29.98
 

Lz2z9 = 31.13
 

Lz2z9 = 30.5
 

Lz9z10 = 29.99
 

Lz9z10 = 29.99
 

Lz9z10 = 30.21
 

Lz9z10 = 30.1
 

Lz3z12 = 30.33
 

Lz3z12 = 29.86
 

Lz3z12 = 30.55
 

Lz3z12 = 30.2
 

 

Table 9: Results of ANOVA test with repeated measurement1 in 3 study groups in SPSS 

Source Type III S.S. df M.S. F Sig. 

F Sphericity Assumed 2.135 3.000 0.712 12.854 0.000 

Greenhouse-Geisser 2.135 1.729 1.234 12.854 0.003 

Huynh-Feldt 2.135 2.561 0.834 12.854 0.001 

Lower-bound 2.135 1.000 2.135 12.854 0.016 

Error (F) Sphericity Assumed 0.830 15.000 0.055   

Greenhouse-Geisser 0.830 8.647 0.096   

Huynh-Feldt 0.830 12.805 0.065   

Lower-bound 0.830 5.000 0.166   
1: When the same measurements are carried out on a subject or case for several times, ANOVA test with repeated measurements should be used 

in order to analyze data and compare mean data among these several times. However, if there is an intergroup factor, it can be analyzed through 

defining the group in this test. The null hypothesis about the effects of intergroup and intra-group factors can be tested by this statistical method; 

S.S.: Sum of square; M.S.: Mean of square 

 

 
 
Fig. 6: Accuracy of coordinates points on the subject, final dx and dl 

 

adjustment due to the vast differences with results and 

since there were control points on surrounding walls, 

the grid was encountered with no rank deficiency 

(Another benefit of control points). Obtained results 

after adjustment are as follows (Table 3). 

The accuracy of results is also calculated through 

the formula ∑𝑋 = (𝐴𝑡𝑃𝐴)−1 and is shown in Fig. 6. 

This figure also shows the final dx and dl:  

 

Non-classic method: In this case, there is no need to 

cantrage and align the cameras while replacement. 

Moreover, another advantage of this method is that the 

camera height is not important here because the origin 

of our coordinate system is the center of camera. Lack 

of alignment and cantrage means that we initially 

deploy the arbitrary points and read the points on the 

structure (target) and then replace the camera for 

reading the rest of points on the structure and start 

reading after deployment (in an arbitrary place) without 

adjustment. The important point is that several points in 

common with previous stations should be read in order 

to link the observations among multiple stations (at 
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least 4 points). These points can be put on the structure 

or surrounding objects (e.g., walls). In this project, the 

camera is placed at three favorite stations and 

observation is done without alignment and cantraging 

of camera. Finally, we transferred the calculated 

coordinates at each point to other stations through the 

common points in each station. In this case, the final 

results are different according to the accuracy:  

 

 First station of alignment and cantrage and 

remaining without alignment and cantrage 

 No alignment and cantrage are done in them 

 

Results of first case are presented in Table 4 and 5 

and results of second case in Table 6 and 7. 
 

CONCLUSION 
 

As inferred from the numerical results, the second 

state has relatively low accuracy in non-classic method 

compared to the first state, the overall outcome of 

lengths. Moreover, both states have high accuracy close 

to classic methods. Table 8 compares some of the 

lengths.  

As observed, difference from direct measurement 

is negligible in both methods. In other words, the length 
difference is 2-3 mm on average (in all dimensions) in 

classic method compared to direct measurement and 

this difference is also existed in non-classic method- 

first type compared to direct measurement. Length 

difference in non-classic method-Second type is 3 mm 

on average (in all dimensions) compared to the direct 

measurement. Both non-classic methods can be applied 

depending on environmental conditions, time, cost and 

accuracy considered by employer. It is worth noting 

that the slight difference of lengths compared to the 

classic method and direct measurement will lead to the 
application of these methods in large-scale projects 

with high expenditures.  

However, the following output (Table 9) shows all 

changes in two sources of factor (two classic and non-

classic models) and error. As shown, the Sig. of this 

figure is lower than the significance level of 5% in each 

four tests. Therefore, it can be concluded that there is 

significant difference between the mean localization 
and accurate measurement based on the classic and 

non-classic models (both states) and the type of model 

has a significant impact on mean of localization and 

accurate measurement.  

Results of ANOVA test with repeated 

measurement in 3 study groups in SPSS is shown in 

Table 9. 

This study indicates the way for determining the 

coordinates through utilization of defined orthogonal 

frame work in the structure of a Total Station. 

Furthermore, all mathematical equations are provided 

and proved for determining the coordinates without 

alignment and setting the station. Numerical results of 

case indicate the great success of presented method. 

This has paved the way for application of Total Station 

as a quick tool in industrial environments and provided 

theory can create new industrial features for classic 

mapping.  
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