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Abstract: In recent years, data are collected to a greater extent from several sources or represented by multiple 
views, in which different views express different point of views of the data. Even though each view might be 
individually exploited for discovering patterns by clustering, the clustering performance could be further perfect by 
exploring the valuable information among multiple views. On the other hand, several applications offer only a 
partial mapping among the two levels of variables such as the view weights and the variables weights views, 
developing a complication for current approaches, since incomplete view of the data are not supported by these 
approaches. In order to overcome this complication, proposed a Kernel-based Independent Component Analysis 
(KICA) based on steepest descent subspace two variables weighted clustering in this study and it is named as 
KICASDSTWC that can execute with an incomplete mapping. Independent Component Analysis (ICA) which 
exploit distinguish operations depending on canonical correlations in a reproducing kernel Hilbert space. Centroid 
values of the subspace clustering approaches are optimized depending on steepest descent algorithm and Artificial 
Fish Swarm Optimization (AFSO) algorithm for the purpose of weight calculation to recognize the compactness of 
the view and a variable weight. This framework permits the integration of complete and incomplete views of data. 
Experimental observations on three real-life data sets and the outcome have revealed that the proposed 
KICASDSTWC considerably outperforms all the competing approaches in terms of Precision, Recall, F Measure, 
Average Cluster Entropy (ACE) and Accuracy for both complete and incomplete view of the data with respect to the 
true clusters in the data. 
 
Keywords: Artificial Fish Swarm Optimization (AFSO) variable weighting, Augmented Lagrangian Cauchy Step 

computation (ALCS), clustering, data mining, fuzzy centroid, incomplete view data, Kernel-based 
Independent Component Analysis (KICA), mulitiview data, Steepest Descent Algorithm (SDA), 
subspace clustering, view weighting  

 
INTRODUCTION 

 
In several real world data mining complications, 

the identical instance possibly will exist in several 
datasets with dissimilar representations. Various 
datasets might highlight different features of instances. 
An example is clustering the users in a user-oriented 
recommendation system. For this process, related 
datasets can be: 
 

• User profile database 

• Users’ log data 

• Users’ credit score 
 
Learning with this kind of data is generally referred as 
multi-view learning (Bickel and Scheffer, 2004). Even 
though there are some earlier researches on multiple 
datasets, the entire presume the completeness of the 
different datasets. Multi-view learning is particularly 

appropriate for applications that concurrently gather 
data from several modalities, with each unique modality 
presenting one or more views of the data.  

In the past decade, multi-view data has raised 
interests in the so-called multi-view clustering (Tzortzis 
and Likas, 2010; Long et al., 2008; Greene and 
Cunningham, 2009). Different from the traditional 
clustering methods which take multiple views as a flat 
set of variables and ignore the differences among 
different views, multi-view clustering exploits the 
information from multiple views and take the 
differences among different views into consideration in 
order to produce a more accurate and robust 
partitioning of the data. 

Variable weighting clustering has been main 

research  subject  in  the field of cluster analysis (Deng 

et al., 2010; Cheng et al., 2008). It automatically works 

out a weight for each variable and recognizes 

significant variables and irrelevant variables through 
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variable weights. The multi-view data may perhaps be 

regarded as have two levels of variables. In case of 

clustering the multi-view data, the divergence of views 

and the significance of individual variables in each 

view should be considered. The conventional variable 

weighting clustering techniques only calculate weights 

for individual variables and pay no attention to the 

differences in views in the multi-view data. As a result, 

they are not appropriate for multi-view data. On the 

other hand, in the real world applications, there are 

several circumstances in which complete datasets are 

not available. 

Existing multi-view algorithms characteristically 

presume that there is a complete bipartite mapping 

among instances in the different views to characterize 

these correspondences, symbolizing that each object is 

represented in all views. Subsequently, the mapping 

among instances in the different views is not complete. 

Even in certain cases where the connections among 

views are recorded, sensor availability and scheduling 

possibly will result in several isolated instances in the 

various views. Even though it is practical to recognize a 

partial mapping between the views, the lack of an 

absolute bipartite mapping presents a complication to 

most existing multi-view learning approaches. Without 

a complete mapping, these approaches will be incapable 

to transmit any information concerning an isolated 

instance to the other views. 

The most important motivation of the proposed 

approach is to resolve the setback of weight value 

computation and centroid selection in multi-view data 

with incomplete data point of view, because the entire 

existing multi-view clustering data suitable only for 

clustering complete multi-view data. In the proposed 

KICASDSTWC approach for clustering both complete 

and incomplete view data in multi-view data. 

Incomplete view of data is carried out by proposing 

Kernel-based Independent Component Analysis 

(KICA), that differentiate the complete and incomplete 

view of multi view data, in addition differentiate the 

impacts of different views and different variables in 

clustering, the weights of views and individual 

variables are automatically computed depending on the 

AFSA. As a result, the view weights replicate the 

significance of the views in the complete data, at the 

same time the variable weights in a view only replicate 

the significance of variables in the view. In Steepest 

Descent Algorithm is proposed to select or optimize the 

fuzzy centroid values, Singular Value Decomposition 

(SVD) to lessen the complexity of clustering. 

Augmented Lagrangian Cauchy Step computation 

(ALCS) to score the objects in subspaces where they 

are homogeneous and have elevated correlated utilities. 

The proposed KICASDSTWC is extended to support 

both incomplete and complete view data; it becomes 

efficient in clustering large high dimensional multi-

view data. 

 

LITERATURE REVIEW 

 

In recent times, numerous multi-view clustering 

algorithms have been developed (Chaudhuri et al., 

2009). These multi-view clustering approaches have 

been shown to provide enhanced performance in 

comparison to single-view approaches. On the other 

hand, the drawbacks of certain approaches are clear. 

For example, few approaches presume that the 

dimensions of the characteristics in multiple views are 

similar, restricting their applicability to the 

homogeneous circumstances. Few other approaches 

simply focus on the clustering of two-view data in order 

that it might be tough to broaden them to more than a 

two-view circumstance. Also, a suitable weighting 

approach is missing for these multiple views, even 

though coordinating different information is also one 

critical step in acquiring better clustering outcomes 

(Tang et al., 2009). An integrated framework that can 

incorporate several categories of multi- view data is 

lacking (Tang et al., 2010). 

Conventionally, tensor-based approaches have 

been exploited to model multi-view data (Kolda and 

Bader, 2009). Tensors are higher-order generalizations 

of matrices and certain tensor approaches are incredibly 

great to analyze the latent pattern unknown in the multi- 

view data. Tensor decompositions (Kolda and Bader, 

2009) obtain multi-linear structures in higher-order 

data-sets, in which the data have over two modes. 

Tensor decompositions and multi-way investigation 

permit naturally obtaining hidden components and 

examining complex association among them. Sun et al. 

(2006) commenced a Dynamic Tensor Analysis (DTA) 

approach and its variants and implement them to 

anomaly detection and multi-way latent semantic 

indexing. It seems their clustering approach is intended 

for dynamic stream data. Dunlavy et al. (2006) execute 

Parallel Factor Analysis (PARAFAC) decomposition 

for examining scientific publication data with multiple 

linkages. The last two concepts that incorporate multi-

view data as a tensor resemble to this approach. 

However this approach is based on Tucker-type tensor 

decomposition. 

Chaudhuri et al. (2009) developed a clustering 

approach which carries out clustering on lower 

dimensional subspace of the multiple views of the data, 

planned by means of canonical correlation 

investigation. Two approaches for mixtures of 

Gaussians and mixtures of log concave distributions 

were provided. Long et al. (2008) developed an all-

purpose scheme for multi-view clustering in a 

distributed framework. This scheme commences the 

idea of mapping function to enable the several patterns 
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from several pattern spaces comparable and therefore a 

best possible pattern can be learned from the multiple 

patterns of multiple views.  

Greene and Cunningham (2009) developed a 
clustering approach for multi-view data with the help of 
a late integration strategy. In this approach, a matrix 
that includes the partitioning of each individual view is 
generated and then segmented to two matrices with the 
help of matrix factorization approach: the one 
represents the contribution of those partitioning to the 
concluding multi-view clusters, called metaclusters and 
the rest represent instances to the metaclusters 

Cohn et al. (2009) provided an interactive scheme 
in which a user continuously offers feedback to enhance 
the quality of a proposed clustering. In both of these 
situations, the user feedback is integrated in the form of 
constraints. This interactive scheme is a constructive 
extension that possibly will allow user knowledge to be 
brought into a multi-view clustering approach.  

On the other hand, with all of the above approaches 
for multi-view clustering of the complete view, these 
limitations may be between instances that do not have 
equivalences in the other views and weight value 
calculation depends on the view also not supported by 
these approaches, thus facilitate a challenge to multi-
view learning, in particular when the mapping is very 
limited. 
 

METHODOLOGY 
 

Based For the purpose of multi-view clustering 
with both complete and incomplete view of the data, a 

novel fast Kernel-based Independent Component 
Analysis and Steepest Descent Subspace  Two  variable 
Weighted Clustering (KICASDSTWC) with incomplete 
view methods has been proposed in this study. The 
proposed KICASDSTWC with incomplete view 
methods in which incomplete data are transformed into 
complete data by proposing the KICA in which the 
subspaces are created in accordance with a set of 
centroids for total dataset results from KICA based is 
calculated based Gradient descent method along with 
user’s domain knowledge of utility function. The 
proposed method distinguishes the impacts of several 
views and several variables by introducing the weights 
of views and individual variables to the distance 
function. The view weights are calculated from the 
complete variables, at the same time the variable 
weights in a view are calculated from the subset of the 
data which comprises only the variables in the view.  

As a result, the significance of the views in the 
complete data is reflected by the view weights while the 
significance of variables in the view is reflected by the 
variable weights in a view. The automatic calculations 
of the centroid value for the specific data through the 
proposed gradient descent method differentiate it from 
other existing clustering approaches. At the beginning, 
the input data results from KIC values are transformed 
into the fuzzy centroid values followed by which the 
fuzzy centroid values are optimized using the gradient 
descent method. With the assistance of the algorithm, 
the view and variable weights of the KICASDSTWC 
values in the objective function are optimized by 
employing Artificial Fish Swarm Optimization (AFSO).

 

 
 

Fig. 1: Flowchart representation of proposed methodology 
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The complete work representation of the proposed 

study is shown in Fig. 1. 

In order to carry out multi-view clustering for both 

complete and incomplete dataset, at first the incomplete 

dataset is transformed into complete dataset by 

proposing Kernel-based Independent Component 

Analysis (KICA). For ease of understanding, consider 

X and Y represent the two number complete and 

incomplete dataset respectively. Generalization to over 

two types of complete and incomplete dataset with one 

complete and remaining incomplete dataset can be 

performed in a similar way. Assume that complete 

multi-view data is indicated as � while incomplete 

multi-view dataset is indicated as � i.e., the variables 

values of the multi-view data are available for only a 

subset of the entire examples. To formalize and 

discover incomplete data, KICA is proposed to find the 

values of the variables. KICA learning approaches 

exploit the following concept: by means of a nonlinear 

mapping for both complete and incomplete view of the 

multi-view data samples: 

  

Φ: ℜ� → MVDV, X →  Φx�, Y → Φy�                (1) 

 

The data in the input space��, ��, … , ��  ∈ ℜ�is 

plotted to a potentially much elevated dimensional 

complete multi-view data with variable space � deal, 

kernel value Φ���, Φ���, … , Φ���. ��, �� , … , ��  ∈ℜ� is plotted to a potentially much elevated dimensional 

incomplete multi-view data with variable space � deal 

with kernel value Φ���, Φ���, . . . , Φ���. In case, if 

the learning of incomplete and complete multi-view 

data can be expressed based on inner products with 

correct nonlinear mapping Φ. In eigen-decomposition 

of a positive function (the kernel) is exploited to 

describe the following inner product for the 

transformation space: 

 Kσx − y� = � λ�∞� � Φ�x�Φ�y� = !Φ�x�Φ�y�"  (2) 

 

where, !. , . " represents an inner product, the Φ�s 

indicates the eigen-functions of the kernel and λ� 

denotes the related eigen values. Kernel ICA presumes 

a Reproducing Kernel Hilbert Space (RKHS) of the 

random variable V with kernel #� − �� and feature 

map $%�� = & ⋅, ��. Subsequently, the F-correlation 

among incomplete and complete variable multi-view 

data is given as the maximal correlation among the two 

random variables (���) and (���) in which (�and (�range over random variable V in F correlation as 

below: 

 

ρ = max+,,+- corrf�x��f�y��                            (3) 

 

max+,,+-
234+,5,�+-6,�
7489+,5,�+-6,�                             (4) 

Noticeably, in case if the random variables �� and �� are independent, at that time the F-correlation for 
mutliview data among complete and incomplete data 
happens to be zero. Furthermore, the reverse is also true 
provided that the set F is large enough. This indicates 
that : = 0 implies �� and �� are independent. With the 
intention of obtaining a computationally tractable 
implementation of F-correlation, the reproducing 
property of RKHS is exploited to estimate the F-
correlation: 
 fx� = !Φ�x�, f" = !& ⋅, ��, f"                             (5) 

 

Consider <�and <� represent the linear spaces 

spanned by the Φ-images of the data samples, then (� 

and (� can be fragmented into two parts, i.e.: 

 f� = � α��=� � Φ>x��? + f�A                             (6) 

 f� = � α��=� � Φ>x��? + f�A                             (7) 

 

where, (�A and (�A are orthogonal to <� and <� 

correspondingly. With the help of the empirical 

complete and incomplete view of mutliview data to 

approximate the population value, the F correlation can 

be given as: 

  

ρB = maxα,,α-∈ℜC α,DE,E-α-
Fα,DE,-α,�α-DE--α-�               (8) 

 

where, #� and #� represent the gram matrices linked 

with the complete and incomplete view of multi-view 

datasets G��%H and G��%H given as: 

  KI�8,J = k>�LM, �LN?                                             (9) 

 

The above kernel based system determines the 

resemblance value between the incomplete and 

complete view for multi view data. Once multi-view 

dataset incomplete and complete view of the data are 

discovered, subsequently carry out centroid value 

computation with the assistance of Steepest Descent 

Algorithm (SDA) for that purpose the complete and 

incomplete view results from KICA is given as O�D = Gz�, … . ZRH, its dimensions are described by set 

of S objects TU represented by the set V of T variables 

and view weights VW. Consider the value of object TU 

on attribute X and in time weight values is indicated by muv[38\. Also consider ]^_ represent an object 

chosen as the centroid from SDA. In addition, ℎabcTdefgMhih� = <TdfgMhih  is indicated as a 

homogeneous function to determine the homogeneity 

among object TU and centroid ]^_, on attribute X in a 

multi-view weight value. The users are permitted to 

define the homogeneous function, however the 

homogeneous values must be normalized to (0, 1) in 
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order that Smu[38\4\ =  1 points out that the value muv38� is “perfectly” homogeneous of the centroid muv2lR38\4\, or else which indicated by value <TdgMhih = 0. 

 
The distribution centroid: The fuzzy centroid as 
developed (Kim et al., 2004) simulated the concept of 
distribution centroid for a improved representation of 
categorical variables. The cluster centers for the 
categorical variable part will be better represented by a 

fuzzy scenario. For mUT>�n? =  GeL� , eL�, eLo, … eLpH, the 

distribution centroid of a cluster Te] is specified as C[42r  and given as below: 

 C[42r = sc[42�r , c[42�r , … , c[42tr , … c[42[r u         (10) 

 

where,  

 

c[42tr = vsbt�, w[42t� u, sbt�, w[42t� u, …
sbt�, w[42t� u, … sbt�, w[42t� u y                (11) 

 
In the above equation: 

  w[42t� = � μRI � xIt�                                           (12) 

 

where, 

 

μzIt� = {
|}~��� |}~���}�,  if zIt = bt�

o if zIt ≠ bt�
�                           (13) 

 

At this point, the value of 1 is assigned to uI[42, if 
the data object �L belongs to cluster Te] otherwise 

which 0 is allocated, if the data object �L do not belong 

to cluster Te]. Based on the above mentioned 

equations 10, 11, 12 and 13, it is obvious that the 

number of repetitions of each categorical value is been 

considered by the cluster computation of distribution 

centroid. As a result, the distribution characteristics of 

categorical variables are considered to indicate the 

center of a cluster. In the proposed approach, 

optimisation of fuzzy membership centroid values is 

done with the assistance of SDA. SDA becomes an 

iterative and computations depend on the computation 

of the objective function Te(](and �Te(]( at each 

iteration are commonly concerned. The SDA approach 

of choosing the best centroid values by maintaining 

least amount of cluster multi-view datapoints for each 

cluster, subsequently recur the step until maximum 

number of points in the cluster is attains, or else go to 

step 3 and negative direction that is remaining points in 

the multi-view data are elected to choose optimized 

centroid value. The optimized centroid values are 

reduced through calculation of step size in step 4 of the 

algorithm then revise the chosen optimized fuzzy 

centroid value results in step 5 and move to step 2. The 

fundamental form of the algorithm for optimizing the 

centroid values is given below. 

 

Algorithm 1: Steepest descent algorithm for centroid 

calculation: 

 
1. Compute distance matrix m�^�f×f in which _�^�>�L, �n? indicates distance from �L to �n 

2. Make an initial guess �>�Ln? at the minimum; keep � = 0. Choose convergence parameter � > 0, is 
calculated from distance matrix 

3. Calculate the gradient steepest descent of the 

centroid objective function �Te(](�� at a point �% to all other points and centroid is indicated as ]%� = ∇mvfcf>z��? 

4. Compute centroid value as ����� = ����, when ��]�� < � and d������dfghih� > dfghihT�S� >0.5 then terminate the iteration process �∗ = �%� 
is minimum number of cluster multi-view data 

cluster datapoints. Otherwise go to step 3 

5. Consider the search direction at the current point �%� as _%� = −]%� 
6. Compute a step size �%� to reduce fuzzy centroid 

value �%� + �%�_%�� 

7. One dimensional search is exploited to determine �%� 
8. Revise the chosen fuzzy centroid values as �%��� = �%� +�%�_%� 
9. Keep � = � + 1 and move to step 2 

 

Gaussian function which employed above is the 

homogeneous function as similarity among data object TU and centroid ]�S is been normalized on feature a, w� to [0;  1]. The homogeneous function is specified 

as below: 

 

ℎabc  =   �¡ ¢− �i£¤¥¦§¨§©iª«¦§¨§�
�¬£¤¥-  �( ®�>�Ln%?¯  (14) 

 

where, °abc�  indicates a parameter which maintains the 

width of the Gaussian function centered at centroid ]^_. 

At this point, the similarity function is not symmetric, 

i.e., ℎabcefgMhih� ≠  ℎfgeabcMhih�, as the 

calculation depends on the distribution of objects 

centered at the former object. The evaluation of width 

of the Gaussian function is completed with the help of 

k-nearest neighbor’s heuristic (Nocedal and Wright, 

2006) and is given as: 

 σ2²³  = �
� � dist8csd, n�R∈=¸I¹º�»¼½¾�¾              (15) 

 

where, ¿ �ÀℎabcMhih represents the set of k-nearest 

neighbors of object TU on feature X, eÁÁ� and � =  :�TU� with an supposition that : is the 

neighborhood parameter described by users. In 
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accordance with the distribution of the objects projected 

in the data space of attribute, the width of the Gaussian 

function is being implemented by the k-nearest 

neighbors heuristic, as a result showing that °abc is 

more strong than keeping a constant value. Calculating 

and pruning the homogeneous tensor using SVD for 

optimized centroid °abc, a homogeneous tensor < ∈ [0, 1]�fg�×�M�×�ihh� is characterized containing the 

homogeneity values OÂ<fgMhih  with respect to 

centroid ]^_.  
 

Algorithm 2: SVD pruning:  
Input �mo� × �a� × �vww� homogenous tensor S 
Output: Pruned homogenous S 
1. M = unfoldS� 
2. Add dummy row and column to M 
3. While true do 

4. N ← zero mean normalization M� 
5. U�Vr ← N //SVD decomposition on N 

6. u ← principalcomponentU� 

7. v ← principalcomponentVr� 
8. Calculate threshold τ|τ4 

9. Prune row i of M if �ui�� < τ|, 1 ≤ i ≤ r 

10. Prune column i of M if �vj�� < τ4, 1 ≤ j ≤ n 
11. If there is no pruning then break 
12. Remove dummy row and column from M 

13. S = foldM� 
 

Initially, zero mean normalization is carried out on 
matrix O to get hold of the zero mean normalized 
matrix ¿ (Line 4), which will later be exploited to 
compute the covariance matrices. Zero mean 
normalization is carried out by computing the mean XeÀn of the matrix O that ∀Í ∈ G1, … ]H of each 

column: 
 avgÏ  = �

9 � Mi, j�9I �                                          (16) 

 

Subsequently, from each entry of O, its equivalent 

column mean ∀Í ∈ G1, … ]H is been subtracted: 
 Ni, j� = Mi, j� − avgt                           (17) 

 
At some point in the performance of the clustering 

process for the above returned centroid values, the 

homogeneous tensor < together with the utilities of the 
objects were exploited to compute the probability of 

each value TdeabcgMhih of the data to be clustered 

with the centroid ]^_. Subsequently, the covariance 
matrices of the homogeneous values in the object space 

and feature space called ¿¿r and ¿r¿ respectively 

were calculated (¿r is the conjugate transpose of matrix ¿): 

 NNr = U��Ur                                          (18) 

 NrN = V��Vr                                          (19) 

where, Â represents a Ð × Ð orthonormal matrix (its 

columns are the eigenvectors of ¿¿r), �� represents a Ð × ] diagonal matrix with the eigen values on the 

diagonal and � is a ] × ] orthonormal matrix (its 

columns are the eigenvectors of ¿r¿). If the magnitude 

of the pruned objects in their related elements of their 

principal components is little (Line 9 and 10), a 

heuristic however parameter-free approach can be 

proposed to find out the threshold ÑÒ for pruning 

objects. For pruned rows (objects) and columns 

(features) of matrix O, the homogeneous values are 

fixed to “0”. The process of computing SVD and 

pruning the matrix O is replicated until there is no more 

pruning. The clustering process for computing the 

probability value is carried out in which p[38\4\ ∈ ℝ 

represent the probability of object TU to be clustered 

with centroid ]^_on attribute X. The view weight e, 

variable weight Á for multi-view data is computed with 

the help of Artificial Fish Swarm Algorithm (AFSA). 

Consider Ô ∈ ℝ �fg�×�M�×�ihh� be the probability 

tensor, such that ¡fgMhih  is an element of it provided 

with the respective indices �TU� × �X� × �eÁÁ�. The 

following objective function is then maximised to 

calculate the probabilities: To perform the clustering 

process, the objective functions are defined as: 

 

fp� = � � � � p[38\4\hv[38\4\�\∈Ö4\∈×Ö8∈Ø[3∈ÙÚ  

utilityu[3\4\�                            (20) 

 gp� = � � � � p[38\4\ − 1\∈Ö4\∈×Ö8∈Ø[3∈ÙÚ   

(21) 

 

The Optimization of (¡� under constraint À¡� is 

a linear programming problem, as (¡� and À¡� is 

linear functions of the design variable Ô. Augmented 

Lagrangian multiplier technique is then exploited to 

maximize the objective function (¡� for clustering 

multi-view data in the subspace clustering technique. 

As a result, the modified objective function is defined 

as: 

 Û¡� = −(Ô� − ÜÀÔ� + Ý
� ÀÔ�� d������dfghih� 

                             (22) 

 

The optimization of Û¡� (Algorithm 3) depends 

on Augmented Lagrangian Cauchy Step computation 

(ALCS) methods, (Ô� and ÀÔ� would be employed 

by ALCS with the intention that the constrained 

optimization problem are been replaced with iterations 

of unconstrained optimization sub problems, Hence, the 

iterations continue until the solution converges. For 

algorithm 3, ALCS necessitates three parameters such 

as �%, ⊝%, ∈% to calculate the optimized probability 

value for clustering process. In the majority of 

situations, the results are insensitive to these parameters 
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and therefore can be fixed to their default values. The 

closeness cluster results for multi-view data results is 

constantly indicated by parameter �%. As a result, δ 

provides the standard tradeoff between accuracy and 

efficiency, i.e., smaller δ indicates longer computation 

time however better result. Parameter ⊝% maintains the 

level of clustering to the constraint ÀÔ�. Parameter ∈% 

auxiliary nonnegative scalar quantities on ÛÔ� when 

the constraint is breached. 

 

Algorithm 3: Augmented Lagrangian Cauchy Step 

computation (ALCS) 

Input: Initial probability distribution P8 

Output: The optimal probability distribution P8∗ 

1. Initialize P8â, μ� > 0,⊝�> 0, ∈�> 0,γ ∈ 0,1� 

2. While P8Iz�� < μ�, true do 

3. Set P8∗ ← P8Iz�� − z�then return P8∗ 

4. If not satisfied do 

5. P8∗ ← γP8Iz�� 
6. End while 

7. If �gP8I�� < �gP8I©��� then 

8. Return gP8I� 

9. ⊝�←⊝�. gP8I� 

10. Else ∈�←∈�. gP8I� 

11. end if 

12. λI ← λI −∈�. gP8I� 

13. i ← i + 1 

14. End procedure 

  

From the outcomes of the optimized probability 

values for multi-view data both view and variable 

weights values are calculated using the Artificial Fish 

Swarm Optimization (AFSO) algorithm. Artificial Fish 

(AF) is a fictitious entity of true fish, which is exploited 

to carry on the analysis and explanation of the problem 

and can be recognized by exploiting an animal ecology 

conception. The each one of the variable and view 

weight values of multi-view data to carry out 

KICASDSTWC results the weight values by external 

perception by its vision. The number of variable (Á� 

and view weights (eÁ� values of multi-view data is 

signified as �å is the position on VÛ, ��^dX� indicates 

the visual distance and �åi  represents the visual 

position of the current multi-view data weight values at 

visual position is superior than the earlier weight values 

state, it goes forward to the next weight value 

calculation direction and arrives the �åæçèp  state; or 

else, current variable (Á� and view weights (eÁ� values 

maintains an inspecting travel around in the vision until 

it attains maximum clustering accuracy. Consider �å 

represents the current state of the variable (Á� and view 

weights (vw� values and it is indicated as �å =G�Á� , … , �ÁæH and �åé = G�Á�i , … , �ÁæiH 

subsequently process can be expressed as given below: 

 �ÁLi = �ÁL + ��^dX�. êXS_�, � ∈ 0, S]          (23) 

�åæçèp = �å + ëì̈ ©ëì
��ëì̈ ©ëì�� <� ¡. êXS_ �        (24) 

 
where, êXS_ � generates random numbers between 0 
and 1, Step represents the step length to carry out 
weight value calculation, S represents the number of 
multi-view data samples for clustering, δindicates the 
crowd factor of AFSO algorithm to optimize the 
Variable and View Weight values is found depending 
on the input parameters íand î to manage the 
distribution of the two types of weights �å and å. It 
can be simply validated whether the objective function 
(20) can get minimized with regard to �å and å 
if í ≥ 0 and ξ ≥ 0. In addition, it is carried out as given 
below. 
 í > 0, based on (25), eÁ is inversely proportional 
to ñ. The smaller ñn and the larger en shows that the 

equivalent variable is more significant. 
 η >  0, based on (25), í = 0 will generate a 
clustering result with only one significant variable in a 
view which possibly will not be desirable for high 
dimensional data. The attributes are presumed to be 
segmented into ó views GôpHp �� : 
 

õeÁn� = çèös©÷ø/úu
� çèöG©÷û/úHû∈üý                            (25) 

 ñn = � � �  ¿þfn � �, Í, Te]�ÐeÁ� pæL �%� �             (26) _�^�MS^_, S�  
 î >  0, based on (27), Á is inversely proportional 
to m. The smaller mp , the larger Áp , the more compact 
the corresponding view. 
 î > 0, based on (27), î = 0 will generate a 
clustering result with only one significant view. It 
possibly will not be desirable for multi-view data: 
 õÁp� = çèöG©�ý/�H

� çèö�©�ý
� �	û�,                                          (27) 

 mp = � � �  ¿þfn � �, Í, Te]�eBnæL �%� �  _�^�MS^_, S� 
 (28) 

 
The functions multi-view clustering data samples 

that comprise the behaviors of the VÛ: VÛ_ÔÐ �, VÛ_<ÁXÐT, VÛ_ÛU��UÁ, VÛ_OUe . Every fish 
typically resides in the place with a best objective 
function (20). The fundamental behaviors of AF are 
defined (Jiang and Yuan, 2005; Wang et al., 2005) as 
given below for maximum. 
 
AF_Prey: This is a fundamental biological behavior 
that tends to the each variable (Á� and view weights 
(eÁ� values is assigned to best variable (Á� and view 
weights (eÁ� food; commonly the fish give attention to 
perceives the best variable (Á� and view weights (eÁ� 
values in water to decide the movement by vision: 
 �ån = �åL + ��^dX�. êXS_�                          (29) 
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If ZWI < ZWt in the higher clustering accuracy it 

goes to an additional mutliview data samples; if not, 

choose a state �ån arbitrarily yet again to weight 

calculation and find whether it satisfies the forward 

condition. If it is not possible to satisfy higher 

clustering accuracy after maximum number of iterations 

completed by fish, it travels a step randomly to choose 

another variable (Á� and view weights (eÁ� values. In 

case of the maximum number of iterations is small in VÛ_ÔÐ �, the AF can work like a swim approach 

randomly, which makes it best variable (Á� and view 

weights (eÁ� values results: 

 �åLp��� = �åLp� + ��^dX�. êXS_�                (30) 

 

AF_Swarm: The fish will bring together in groups of 

variable (Á� and view weights (eÁ� values that are 

obviously assign variable (Á� and view weights 

(eÁ� values to multi-view data point clustering in the 

moving procedure, which is a type of living habits to 

satisfy clustering accuracy and eradicates unnecessary 

variable (Á� and view weights (eÁ� values. Consider �åL represent the VÛ current state of variable (Á� and 

view weights (eÁ� values, �åa represent the center 

location of variable (Á� and view weights (eÁ� values 

and S� represent the number of its companions in the 

current neighborhood _Ln < ��^dX��, S represents total 

number of variable (Á� and view weights (eÁ� values 

data samples. When �åa > �åL  and 
æ�æ > õ, which 

indicates that the companion center has additional 

clustering accuracy and is not very crowded, it goes 

forward a step to the companion center: 

 

�åLp��� = �åLp� + ëìø©ëì
ý�

��ëìø©ëì
ý��� <� ¡. êXS_�  

(31) 

 

If not, implements the preying behavior. The crowd 

factor restricts the length of the weight calculation 

searching space and more AF only cluster at the best 

possible area, which guarantees that AF move to 

optimum in a broad field.  

 

AF_Follow: In the moving progression of the weight 

calculation from one position to many positions then 

discover best clustering accuracy by comparing the 

neighbourhood partners will trail and accomplish best 

clustering accuracy results rapidly: 

 �åLp��� = �åLp� + ��^dX�. êXS_�                (32) 

 

AF_Move: Fish swim arbitrarily in the water; indeed, 

they are looking for best weight calculation results food 

in larger ranges: 

�åLp��� = �åLp� + ��^dX�. êXS_�                (33) 

 

AF_Leap: When the objective functions õeÁL� −õeÁL� <  ¡^ carried out by fish. It selects fish, certain 

variable view weights (eÁ� values arbitrarily in the 

complete fish swarm and fix parameters arbitrarily to 

the chosen AF,  ¡^ is a smaller constant (Wang et al., 

2005) for view weights (eÁ� values: 

 

�ÛõeÁL� − õeÁL� <  ¡^�                            (34) 

 

The above mentioned process is also similar for 

variable weights. The step direction is restructured for 

next iteration of weight calculation: 

  <� ¡p�� = �.�©p
� ^� ¡                                          (35) 

 

where, � represents parameter to the maximum number 

of iterations and ¿ indicates the number of clustering 

data samples, � represents current fishes and � + 1 next 

fish (variable and view weights data samples) position. 

This process is continued until all, the multi-view 

clustering data samples is all concluded. 

 

EXPERIMENTAL RESULTS AND  

DISCUSSION 

 

In order to investigate the performance of the 

KICASDSTWC with incomplete view in classifying 

real-life data, selected three data sets from UCI 

Machine Learning Repository (Frank and Asuncion, 

2010): They are: 

  

• Multiple Features data set  

• Internet Advertisement data set  

• Image Segmentation data set  

 

With these data, evaluated the performance of the 

proposed KICASDSTWC with incomplete view 

existing, against Quasi Newton’s Subspace Two 

variable Weighted Clustering (QNSTWC), TW-k-

means with four individual variable weighting 

clustering algorithms, i.e., EWKM (Tzortzis and Likas, 

2010) and a weighted multi-view clustering algorithm 

WCMM (Jing et al., 2007). 

 

Characteristics of three real-life data sets: The 

Multiple Features (MF) data set includes 2,000 patterns 

of handwritten numerals that were obtained from a 

collection of Dutch utility maps. These patterns were 

segmented into 10 classes (“0”-“9”), each comprise 200 

patterns. Each pattern was described by 649 

characteristics that were segmented again into the 

following six views: 
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• Mfeat-fou view: Contains 76 Fourier coefficients 
of the character shapes 

• Mfeat-fac view: Contains 216 profile correlations 

• Mfeat-kar view: Contains 64 Karhunen-Love 
coefficients 

• Mfeat-pix view: Contains 240 pixel averages in 
2×3 windows 

• Mfeat-zer view: Contains 47 Zernike moments 

• Mfeat-mor view: Contains 6 morphological 

variables. At this point, use G1, G2, G3, G4, G5 and 

G6 to indicate the six views 

 
The Internet Advertisement (IA) data set includes a 

collection of 3,279 images from various web pages that 
are classifiedd either as advertisements or non 
advertisements (i.e., two classes). The instances are 
expressed in six sets of 1,558 characteristics, which are 
the geometry of the images (width, height and aspect 
ratio), the phrases in the url of the pages includes the 
images (base url), the phrases of the images url (image 
url), the phrases in the url of the pages the images are 
directing at (target url), the anchor text and the text of 
the images alt (alternative) html tags (alt text). The 
entire views have binary characteristics, apart from the 
geometry view whose characteristics are uninterrupted.  

The Image Segmentation (IS) data set includes 

2,310 objects drawn arbitrarily from a database of 

seven outdoor images. The data set includes 19 

characteristics which can be naturally segmented into 

two views: 

 

• Shape view: Includes nine characteristics 

regarding the shape information of the seven 

images. 

• RGB view: Includes 10 characteristics regarding 

the RGB values of the seven images. 

 

The graphical representations of the clustering 

results for variable and view weights with different 

variables and the methods results are shown in Fig. 2. It 

shows the variation in variable weights for varying í = 8 values and view weights Á = 1, Á = 32 for 

TW-K means, QNSTWC and proposed KICASDSTWC 

with Incomplete View (ICV) Á = 1, Á = 32 results are 

shown in Fig. 2. It shows that proposed 

KICASDSTWC with Incomplete View (ICV) results 

shows have higher clustering accuracy with less view 

weights values are automatically calculated using 

AFSA, the proposed system also supports incomplete 

view of multi-view dataset, Centroid values are 

optimized using SDA.  

The graphical representations of the clustering 

results for variable and view weights with different 

variables and the methods results are shown in Fig. 3 

for Internet Advertisement (IA) dataset. It shows the 

variation in variable weights for varying í = 8 values 

and view weights Á = 1, Á = 32 for TW-K means and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 2: Comparison of the total variable weights and view 

weights for methods in Multiple Features (MF) data 
set 

 
 
 
 
 
 
 

 

 

 
 
 

 

 

 

 
 
 
 
Fig. 3: Comparison of the total variable weights and view 

weights for methods in Internet Advertisement (IA) 
data set 

 
 
 
 
 

 

 

 
 
 
 
 
 

 

 

 

 
 
 
Fig. 4: Comparison of the total variable weights and view 

weights for methods in Image Segmentation (IS) 
dataset 
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Table 1: Summary of clustering results on three real-life data sets by five clustering algorithms 

Dataset Evaluation EWKM WCMM TW-K means QNSTWC KICASDSTWC-ICV 

MF Precision 0.25 0.59 0.81 0.83 0.880 

 Recall 0.39 0.58 0.83 0.85 0.870 
 F measure 0.43 0.64 0.84 0.86 0.890 

 Accuracy 0.39 0.62 0.86 0.87 0.895 

 ACE 2.42 2.15 1.89 1.56 1.050 
IA Precision 0.26 0.59 0.74 0.76 0.810 

 Recall 0.16 0.36 0.75 0.76 0.815 

 F measure 0.23 0.49 0.72 0.73 0.820 
 Accuracy 0.18 0.39 0.74 0.76 0.830 

 ACE 2.12 1.98 1.56 1.05 0.980 

IS Precision 0.05 0.36 0.64 0.72 0.790 
 Recall 0.06 0.43 0.65 0.71 0.760 

 F measure 0.07 0.45 0.62 0.73 0.780 

 Accuracy 0.09 0.42 0.65 0.71 0.790 
 ACE 1.98 1.85 1.36 1.25 0.850 

 

QNSTWC results are shown in Fig. 3. It shows that 

proposed KICASDSTWC with Incomplete View (ICV) Á = 1, Á = 32 results shows have higher clustering 

accuracy. 

The graphical representations of the clustering 

results for variable and view weights with different 

variables and the methods results are shown in Fig. 4 

for Image Segmentation (IS) dataset. It shows the 

variation in variable weights for varying í = 8 values 

and view weights Á = 1, Á = 32 for TW-K means, 

QNSTWC and KICASDSTWC with Incomplete View 

(ICV) results are shown in Fig. 4. It shows that 

proposed KICASDSTWC with Incomplete View (ICV) 

results shows have higher clustering accuracy with less 

view weights are taken for incomplete and complete 

view results.  

In order to evaluate the clustering accuracy, this 

study uses Precision, Recall, F-measure, accuracy and 

average cluster entropy to evaluate the results.  

 

Precision: Precision is computed as the fraction of 

accurate objects among those that the algorithm 

considers belonging to the relevant cluster.  

 

Recall: Recall is the fraction of authentic objects that 

were recognized. 

 

F-measure: F-measure is the harmonic mean of 

precision and recall and accuracy is the proportion of 

accurately clustered objects.  

The results of the different clustering approaches 

with the above mentioned parameter results are shown 

in the Table 1. The performance comparison results of 

the proposed KICASDSTWC shows higher Precision, 

Recall, F measure and average accuracy, since the 

weight and centroid values are automatically calculated 

rather than using fixed values. 

 

Average Cluster Entropy (ACE): depends on the 

contamination of a cluster given the true classes in the 

data. If ¡Ln  represents the fraction of class Í in obtained 

cluster �, ¿L represents the size of cluster � and ¿ 

indicates the total number of examples, subsequently 

the average cluster entropy is given as: 

 

E = � =}© � �}� �3¹>�}�?� � =EI �                            (36) 

 

where, # represents the number of clusters. 

 

CONCLUSION 

 

In this study, proposed novel robust 

KICASDSTWC  methods  for complete and incomplete  

view of the data. In order to carry out multi-view data 

for incomplete data, new approach to ICA depending 

on kernel methods is given in this study. At the same 

time, most current ICA algorithms are depending on 

employing a single nonlinear function, this approach is 

a more flexible one in which candidate nonlinear 

functions of incomplete and complete view data are 

selected adaptively from a reproducing kernel Hilbert 

space. The proposed clustering is dissimilar to other 

existing approaches, because incomplete and complete 

view data are primarily learned then fuzzy centroid 

values are optimized using SDA. Given multiple-view 

data, calculate weights for views and individual 

variables concurrently with the help of AFSO. With the 

aim of reducing the complexity in the subspace 

clustering approach Singular Value Decomposition is 

proposed with ALCS methods for probability 

distribution optimization. The proposed system have 

been evaluated using three datasets namely Multiple 

Features (MF), Internet Advertisement (IA) and Image 

Segmentation (IS) based on the precision, recall, f 

measure and accuracy to analysis the properties of two 

types of weights. It shows that proposed 

KICASDSTWC achieves better clustering results than 

the existing clustering methods. Future works must 

concentrate on the ability to use isolated instances that 

do not have a corresponding multi-view representation 

to enhance learning and facilitate multi-view learning to 

be employed for a wider variety of applications. 
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