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Abstract: This study proposes a novel adaptive meta-heuristics based scheduling policies for provisioning the 
VCPU resources among competing VM service domains in a cloud. Such provisioning guarantees to Service Level 
Agreement for each domain, with respect to the diverse workloads on-the-fly. The framework is built on CSIM 
models and tools, making it easy to understand and configure various virtualization setups. The study demonstrates 
the usefulness of the framework by evaluating proactive, reactive and adaptive VCPU scheduling algorithms. The 
paper evaluates how periodic/aperiodic execution of control actions can affect policy performance and speed of 
convergence. The periodic reactive resource allocation is used as the baseline for analysis and the average response 
time is the performance metric. Simulation based experiments using variety of real-world arrival traces and synthetic 
workloads results that the proposed provisioning technique detects changes in arrival pattern and resource demands 
and allocates resources accordingly to achieve application SLA targets. The proposed model improves CPU 
utilization and makes the best tradeoff between resource utilization and performance from 2 to 6% comparing with 
the default VMM scheduler configurations for diverse workloads. In addition, the results of the experiments show 
that the proposed Weighed Moving Average algorithm combined with the aperiodic policy significantly outperforms 
other dynamic VM consolidation algorithms in all cases, in regard to the SLA metric due to a substantially reduced 
level of response time violations and the frequency of algorithm invocation. 
 
Keywords: Cloud computing, cloud workload, server consolidation, server virtualization, simulation, VMM 

scheduling 

 
INTRODUCTION 

 
Clouds are a large poll of hardware or software 

resources that can be accessed on-demand like a utility 
computing. These cloud services can be provided 
without any knowledge of the physical location of the 
servers and the systems that provide the computing 
services. It is continuously gaining popularity, due to its 
ease-of-use, on-demand resource provisioning, pay per 
use business model and ability to support execution of 
applications of diverse types. Virtualization acts as a 
driving force of cloud by simplifying load balancing, 
dealing with hardware failures and easing system 
scaling through server consolidation. Server 
consolidation enables one to consolidate applications 
running on possibly tens of thousands of servers each 
significantly underutilized on the average. Thus by 
running multiple Virtual Machines (VMs) on the same 
physical resources, virtualization promises a more 
efficient usage of the available hardware in cloud data 
centers. However, as all VMs share the same physical 
resources, contention for shared resources cause 

significant variance in the observed system response 
time and throughput. 

All request is delivered to the cloud users as 
services. In these regard, two important problems are 
frequently encountered with deploying IT applications 
in cloud. The first is overload or under load. Assigning 
resources to VMs in a static manner solves this issue. 
However, static allocation becomes inefficient under 
varying load. The second problem is Quality of Service 
(QoS). As cloud hosted services and applications are 
user oriented, QoS has a great impact on the growth and 
acceptability of cloud computing paradigm. However, 
providing QoS requires a solid model that needs 
detailed insights of computing centers. Indeed, it is very 
difficult to dynamically allocate resources for multitier 
applications. i.e., increasing resource utilization 
effectively and meeting Service Level an Objective 
(SLOs) in a shared virtualization environment is a great 
challenge to the scheduler for achieving good fairness, 
efficient workload balancing and minimal wasted CPU 
time, when allocating the physical CPU time to VMs. 
Thus, the scheduler with a good adaptiveness can make 
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a better trade off and change its strategy for VMs with 
the different workload properties. Besides the reduction 
in infrastructure and ongoing operating costs, this work 
also has societal significance as it helps to decrease the 
level of carbon-dioxide and energy consumption by 
modern IT infrastructures. 

Virtualization solutions ranging from VMware, 

KVM and XEN can be implemented within a cloud. 

Each has its strength and weakness. The performance of 

a hosted application is sensitive to the hypervisor 

scheduler configuration parameters on which the 

application is running. However, the exact relationship 

between the value of the scheduler configuration 

parameters of the VM and the application performance 

metrics such as response time or throughput is not 

obvious. Therefore, determining the appropriate 

parameter values that provides certain SLA for an 

application becomes problematic due to the dynamic 

nature of the workload. Thus most of the time, the 

parameters are left as default values. Subsequently, 

existing tools for performance and resource 

management of virtualized infrastructures lack the 

ability to dynamically determine the effects of changing 

resource allocations on the performance of hosted IT 

services. Modern virtualization and middleware 

technologies create many possible ways for resource 

allocation and system reconfiguration by adding or 

removing virtual CPU cores to VMs or by changing the 

hypervisor scheduling parameters. 

Virtualization delivers dramatic resource usage and 

cost cuttings. However, overall data center efficiency 

metrics may not meet the requirement of the state-of-art 

hardware and software advancements for the cloud data 

centers workloads. Thus, a research was done to 

evaluate, how does application response time in cloud 

get impacted with adaptive CPU resource allocation 

with changing customer workloads? When should a 

reconfiguration be triggered for achieving effective 

resource usage without compromising SLAs? and How 

rapidly and at what level is the reconfiguration 

triggered?  

As system level scheduling implementation 

requires deep understanding on hardware architecture, 

as well as low level programming and debugging, 

evaluating new scheduling techniques under various, 

controllable and repeatable conditions are impossible in 

real Cloud. This makes qualitative evaluation of 

scheduling algorithm difficult and requires significant 

effort. To address this problem, the cloud virtualization 

environment, is simulated to evaluate the performance 

of the defined algorithm using CSIM (Schwetman, 

2001) simulation toolkit and a C/C++ library that 

allows assembling a complete virtualization system 

with flexible configurations. 

In summary, the contribution of this study is 

multifold and our works are as follows:  

• Study on server virtualization and its various 

solutions 

• Study on state of the art work in VMM scheduling 

• Conducting performance case study that focus on 

how the performance is affected by the amount of 

CPU allocation 

• Construct an adaptive system that automatically 

adjust the VMM CPU scheduler, based on the 

workload fluctuations to give guarantee QoS using 

combinatorial heuristic search techniques 

• Investigate and evaluate more scheduler 

configurations and to measure the performance 

 

Background information and definition: This section 

presents some background information and definitions 

on server virtualization and its solutions, chip 

multithreading, combinatorial search techniques and 

workload forecasting. 

 

Server virtualization: Server virtualization is an 

abstraction of underlying physical hardware. It creates 

virtual environments that allow running multiple 

applications in separate virtual containers hosted on a 

single hardware. VMM, a software layer separates 

underlying hardware from the software running on top 

of it and creates a notion of the hardware for a virtual 

machine. Thus, VMM creates and manages hardware 

units for the virtual (Smith and Nair, 2005; Suresh and 

Kannan, 2014a) classified Virtualization Technology 

into three major approaches, based on the performance 

and support of the hardware platforms and methods of 

executing guest OS code with or without hardware 

access. The first approach is called binary translation, in 

which the VMM modifies the guest’s binary image at 

runtime to get processor control when guest software 

attempts to perform a privileged operation. The VMM 

can then emulate privileged operation and return 

control to guest software. The second approach is called 

paravirtualization, in which the guest’s kernel is 

modified to cooperate with the VMM when performing 

privileged operations. The third one is hardware 

assisted virtualization, in which the VMM uses 

processor extensions such as AMD-V and Intel-VT to 

intercept and emulate privileged operation in the guest. 

 

Scheduling in VMM: Aforesaid, three virtualization 

approaches infer, VMM is an important entity as it 

routes any request by the guest to access the hardware. 

The VMM gives a portion of the full/partial physical 

machine resources to each guest domain, thus multiple 

guests must share the available resources. Thus, with 

diverse workload and demand, it grants each guest OS a 

limited amount of specified resource. Thus, from the 

perspective of VMM’s CPU scheduler, each VM is 

represented by one or more virtual resources and the 

primary goal is to maintain proportional share of CPU 

time allocation of each guest domain. 
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Chip Multithreading (CMT) and Virtual CPU 
(VCPU): CMT combines the resources of multiple 
CPUs in a single host system, in which all the 
processors behave identical. CMT creates space for any 
processor; to execute any processes in the system, 
improving overall system performance. Subsequently, 
logical domains technology provides flexible 
assignment of hardware resources to domains, with 
options for specifying physical resources for a 
corresponding virtual resource say physical CPU to 
Virtual CPUs (VCPUs). A domain can have one VCPU 
up to all the VCPUs on the server. The number of CPUs 
in a domain can be dynamically and none disruptively 
changed on-the-fly and the change in the number of 
VCPUs in a running domain takes effect instantly. This 
method avoids the frequent context switches usually 
VMM implemented by to run several guests on a CPU 
and to intercept privileged operations. It results an 
impressive benefit in terms of simplicity and reduction 
of the overhead. 
 
Dynamic resource allocation: Dynamic resource 
allocations are quite essential for adaptive computing. 
Generally, there are two approaches namely reactive 
resource allocation and proactive resource allocation. 
Reactive allocation is used to adjust resources based on 
demand and recent behavior. It is preferred more to 
handle momentary fluctuations smoothly. Whereas, 
proactive resource allocations involve taking up actions 
to make resources available for upcoming load spikes. 
It is good for managing resources in a multi-tenant 
cloud where it is common to have hot spots at some 
locations, while still having spare resources scattered 
throughout the datacenter. Inability to use fragmented 
spare resources in a datacenter during load spikes 
quickly causes host level over provisioning. When 
predictions are accurate, this scheme provides very 
good performance. Forecasting can be achieved by 
applying many techniques (Herbst et al., 2013). 
However, the paper deals with the popular forecasting 
techniques namely weighted moving averages and 
exponential smoothing. 
 
Genetic Algorithm (GA): As scheduling belong to 
combinatorial optimization problems, optimization 
algorithms are default choice to find optimal solutions. 
Compared to conventional heuristics, GA (Sivanandam 
and Deepa, 2008) is well suited for fine tuning 
structures which are very close to optimal solutions. 
GA is a computational model that emulates biological 
evolutionary theories to solve optimization problems. In 
computing terms, GA maps a problem to a set of binary 
strings and each of them representing a possible 
solution. The GA, then manipulates the most promising 
strings searching for improved solutions, through a 
simple cycle on four stages: 
 

• Creation of a "population" (randomness) of strings 

• Evaluation of each string (reproduction) 

• Selection of "best" strings using fitness function 

• Genetic manipulation (cross over) to create the new 

population of strings 

 

Here, the decision variables are the CPU usage limits to 

be enforced on the co-located VMs. As a result, it 

maximizes the system utility. 

 

LITERATURE REVIEW 

 
VMM resource allocation, scheduling and analysis 

of virtualization performance are the most important 
problems in server virtualization research for enterprise 
applications. In specific, optimizing the performance of 
the resource virtualization is an ongoing research area 
and there are several new techniques are proposed to 
implement resource virtualization. Some of the related 
works are discussed below. 

Cherkasova et al. (2007) compared three 
schedulers in XEN, SEDF (Simple Earlier Deadline 
First), BVT (Borrowed Virtual Time) and Credit. They 
studied that the credit scheduler used in XEN is 
performance-oriented and does not act in accordance 
with configured values. They also found that choosing 
the right parameters for individual virtual machines is 
crucial in order to get the desired application 
performance.  

Weng et al. (2009) developed a mathematical 
scheduler modeling to analyze and empirically compare 
XEN’s scheduling algorithms such as co proportional, 
proportional share scheduling strategies that provide a 
convenient infrastructure to quickly examine new idea 
based algorithms. Similarly, Watson et al. (2010) 
proposed a probabilistic performance model using 
quantile regression. They made it possible to predict the 
response time of the web authentication benchmark 
depending on the allocated resources at the VM level. 
However, they did not provide the performance relevant 
factors explicitly. 

Lim et al. (2010) proposed a mathematical model 
to characterize workload using multiple resource 
usages. In the model, host is characterized as a 
collection of m resource queues. The application is 
characterized as a vector of size m, where i

th
 element is 

calculated as the amount of time using i
th

 resource 
divided by its runtime when running in standalone 
mode. This method assumed, to run multiple 
applications together and not to take longer time than 
sequential execution time. But, this is not true in real 
virtualized environments as severe contention between 
two VMs may lead to slowdown of more than twice. 
Jung et al. (2010) developed a multi-level resource 
allocation framework that adapts a VM’s CPU capacity, 
by add or remove a VM, live-migrate a VM between 
hosts and shutdown or restart a host. This method 
considers good performance, transient costs and 
nominal power consumption in its reconfiguration 
algorithm. However, it is based on a simple multi-tier 
application with read only transactions and a fixed web 
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tier modeled with a layered queuing network. Similarly 
Lu et al. (2011) used analytical queuing models to 
quantify the slowdown of virtualized applications in 
server consolidation scenarios. They concluded that 
using the total CPU time as distribution factor to derive 
workload specific virtualization overhead typically 
results in an uneven estimation at best.  

Huber et al. (2011a) proposed a novel approach for 

self-adaptive resource provisioning in virtualized 

environments based on online architecture level 

performance models. They investigated the use of such 

models as a means for online performance prediction 

which predicts the effects of changes in user workloads 

and the effects of particular reconfiguration actions 

undertaken to obey SLA. By using virtualization 

techniques, they applied these allocation changes to 

evaluate the use of such models for online performance 

prediction. However, this present research, investigates 

the influences of virtualization on system performance 

to integrate the gained insights into the proposed 

performance models are investigated. 

Kousiouris et al. (2011) used Artificial Neural 

Network, to predict the impact of the performance of 

real time scheduling parameters, VM deployment and 

workload type on the system performance based on 

measurements using various MATLAB benchmark 

tests. Similarly, Sethi et al. (2012) present a new fuzzy 

controller for load balancing in cloud computing. For 

them, the cloud computing requires processor speed and 

assigned load of VM and provides the balance load to 

reduce the application response time. This method can 

be used only for CPU intense applications where the 

SLA is related to CPU speed. On the contrary, a 

generalized technique is applied in this present research 

so as not to make any guess regarding the CPU speed. 

Rao et al. (2013) proposed a fuzzy controller for 

allocating virtualized resources with respect to the 

application response time. The works of Sethi et al. 

(2012) and Rao et al. (2013) consider only the response 

time and its deviation from the SLA value as input 

parameters to the controller. Instead, this present 

research combines the information regarding the 

response time with the VCPU utilization. The 

combination of these two parameters allows the 

adaptive genetic controller to gain more knowledge on 

the system load, thus results in a more accurate CPU 

capacity allocation. 

Chia-Ying and Kang-Yuan (2013) proposed a 

solution for the synchronization problem of a server 

consolidation by modifying the XEN Credit Scheduler. 

They added a new priority module to the scheduler in 

order to avoid the scheduling decisions and for 

synchronization. This new priority module allows 

VCPUs to preempt and to run at the next time slice 

without impacting overall system fairness. Through this 

way, the threads in the concurrent program can be 

synchronized. Consequently, proposed scheduler works 

enhances the performance in concurrent workload 

greatly by decreasing CPU allocation errors. However, 

it incurs minor performance drop in a parallel workload 

due to the extra overhead of finding the most urgent 

work from other PCPUs. The work by Li and Zheng 

(2014) on web application scalability originated for 

static load balancing solution with server clusters, but 

the dynamic scaling of web applications and energy 

consumption of resources in virtualized Cloud 

computing has not been impressively considered by Liu 

et al. (2014). 

Thus, this survey proves that earlier works have 

missed a good opportunity of cost and performance 

optimization by disregarding cloud workload aware 

resource allocation at which computer processor 

technology has progressed. In addition, it also draws a 

conclusion that, no works exploit the genetic algorithm 

extensively. 

 

METHODOLOGY 

 

Resource influence on VM and VMM schedulers: As 

performance provision is the major concern of VMM 

scheduler in cloud, this section provides: 

 

• A quantitative case study that focus on how the 

VM performance is affected by adapting a VM’s 

CPU capacity 

• Two qualitative case studies of widely popular 

virtualization VMM schedulers 

 

Performance influencing factors: As virtualization 

introduces dynamics and increases flexibility, a variety 

of additional factors can influence the performance of 

virtualized systems. Having analyzed major 

representative virtualization platforms, Huber et al. 

(2011b) and Armbrust et al. (2010) abstracted a generic 

performance model of VM performance influencing 

factors. Those are virtualization type, hypervisor’s 

architecture, resource management configuration and 

workload profile. Though, several influencing factors 

are grouped under the resource management 

configuration, the CPU scheduling configuration has a 

significant influence on the virtualization platform’s 

performance. The number of VMs, Virtual CPUs 

allocated to a VM and resource over commitment are 

chief among them. 

 

Performance study: 

Impact of CPU allocation: CPU cores are one of the 

main sources of performance interference. This 

complexity is demonstrated by executing experiment, 

targeted at the application level in virtual machine 

environment by setting CPU limit at different levels. 

The performance of the virtualized applications 

(OLTB) are  measured  while  varying  the  VM’s  CPU 
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Fig. 1: SysBench database transactions 

 

limit from 1 to 8 cores. All the experiments were 

conducted on physical hardware configured with AMD 

FX 8-Core Black Edition FX-9590. Both host and 

virtual machine are configured with 8 VCPUs and 4 GB 

RAM, 50 GB HDD with Ubuntu 14.04 LTS (Trusty 

Tahr). The virtualization solutions considered for the 

experiment is XEN 5.0. For the XEN machines, virtual 

NICs use the default bridged network driver. MySQL 

SysBench (Cillendo and Kunimasa, 2007; Suresh and 

Kannan, 2014b) is a modular, cross platform and multi-

threaded benchmark tool for evaluating OS parameters. 

These parameters are important for a system to run a 

MySQL database under intensive load to evaluate its 

performance. SysBench, which was run on a separate 

client machine, was configured to send multiple and 

simultaneous queries to the MySQL database with zero 

think time. A simple database that fits entirely in 

memory is used. As a result, these workloads saturated 

the virtual CPU and generated network activity, with 

very little disk I/O. For various numbers of threads, the 

experiment was conducted and the result is given in the 

Fig. 1. As seen from the graph, the benchmarks 

workloads behave linearly and the performance slope is 

different at various CPU allocation ranges. SysBench 

performance varies almost linearly with CPU 

allocation. But, at some time, the saturated point is 

visible because of resource over provisioning. Thus, 

this data reveal the fact that virtualized workloads can 

have quite different performance curves with respect to 

number of CPU allocation. This leads to the 

conclusions that direct allocation of resources to a VM 

has an impact on the performance of hosted application 

and choosing appropriate control knobs to handle 

resource allocation for a VM is critical to ensure 

desirable performance and to create a robust model. 

 

State of the art VMM schedulers: VCPU scheduling 

remains a challenge for Virtualization technologies, 

especially with hypervisors starting to host Chip 

Multithreading VMs. As the implemented prototype in 

this study is generic, it briefly discusses the main 

features of two popular VMM scheduler’s algorithms in 

specific. 

CPU scheduling algorithms in XEN: XEN supports 

three different types of schedulers (Chisnall, 2007; 

Cherkasova et al., 2007) namely BVT, SEDF and 

Credit Scheduling. BVT is a proportional share 

scheduler suited for I/O intensive domains. The 

scheduler adjusts itself dynamically with the varying 

I/O intensities when specified with the correct 

parameters. It is based on the concept of virtual time, 

dispatching the runnable VM with the smallest virtual 

time the low latency support is provided in BVT for 

real time and interactive applications by allowing 

latency sensitive client to warp back in virtual time to 

gain scheduling priority. And the client can effectively 

borrow virtual time from its future CPU allocation. 

However, due to the lack of Non Work Conserving 

(NWC) mode (unused CPU cycles of one domain can’t 

be used by the other domain), its usage is severely 

limited in many application environments. SEDF is an 

another algorithm, in which, the domains request a 

minimum time slice for communication. The request is 

a tuple of (si, pi, xi), which means Domi will receive si 

units of time in each period of length pi. The xi is a 

boolean flag indicating whether Domi is scheduled in 

WC-mode or NWC-mode. SEDF performs well when 

the workload is low, but when running in heavy 

workload, many clients are observed to miss their 

deadlines and the scheduling overhead significantly 

increases, where the domain requests for ‘t’ slices every 

‘p’ periods of CPU time. One main shortage is the lack 

of global workload balancing on multiprocessors and 

the CPU fairness depends on the value of the period. 

Besides, the lack of global load balancing on 

multiprocessors, implementation also limits its usage. 

BVT lacks NWC-mode while SEDF is found to be 

unstable under heavy workload and does not support 

CMT well. So both of them were replaced by Credit 

scheduler in XEN. The credit based scheduler is 

recently incorporated into XEN and it provides better 

load balancing and low latency mechanisms. This 

algorithm is a kind of Proportional Share (PS) strategy, 

featuring automatic workload balancing of virtual CPUs 

across physical CPUs on a CMT host. According to the 

scheduling algorithm of Credit Scheduler using in XEN 

hypervisor, each virtual CPU is asynchronously 

assigned to a physical CPU by CPU scheduler in order 

to maximize the throughput. Specifically, when there is 

no runnable VCPU on the current physical CPU, the 

scheduler will try to migrate one runnable VCPU from 

the other physical CPUs. Each domain is assigned with 

a (weight, cap) pair. Similarly, the scheduler allocates 

CPU time proportion (in credit) to each domain 

according to its weight. All queued VCPUs are sorted 

out by their remaining credit and the scheduler will 

select the VCPU that has more credit to run. This 

algorithm can efficiently achieve a global workload 

balancing on a CMT system when the majority of the 

workload is not the high concurrent application. 
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However, all these choice come with the burden of 
choosing the right scheduler and configuring it. 
 

VMware ESX server VCPU scheduling algorithms: 

The default Round-Robin approach by KVM or Virtual 

Box hypervisors cause additional synchronization 

latency for guest VM due to VCPU preemption. In 

order to eliminate this synchronization latency, 

VMware applies a co-scheduling algorithm (Sukwong 

and Kim, 2011), which uses a concept similar to gang 

scheduling (Schwiegeishohn and Yahyapour, 1998). 

Co-scheduling requires that all VCPUs are associated 

with a VM to be scheduled simultaneously in order for 

the VM to run. Such an algorithm helps to avoid the 

synchronization latency, as both the waiting VCPUs 

and the lock holding VCPU are preempted and resumed 

at the same time. This ‘strict’ co-scheduling approach, 

however, introduces a fragmentation problem. A VCPU 

can only be scheduled after the hypervisor gathers 

enough resources to execute all other VCPUs in the 

same VM. However, ESX has several optimizations to 

improve performance over a naive implementation of 

co scheduling, which would require even idle VCPUs 

in a VM to execute. First, ESX is able to detect if a 

VCPU is executing an idle loop and in this case ESX 

does not schedule an idle VCPU to run nor require it to 

be co-scheduled for active VCPUs to run. Second, ESX 

uses a technique called relaxed co-scheduling that helps 

prevent requiring physical CPUs from being idle in 

order to start running VCPUs in an CMT system.  

Having analyzed two major representative 

virtualization platforms, one can infer that current 

commercial resource management tools provide only 

partial solutions to VCPU scheduling problem by 

forcing virtual machines allocation to be within certain 

limits. In addition, these tools do not address setting 

these limits with appropriate values for each 

application, or how they should be changed in case. 

Thus, a resourceful VMM scheduler is important for 

increased throughput and decreased response time.  

 

System model: This section presents the proposed self-

adaptive resource management model and its working 

logic. Generally, VMM schedulers repeat three steps: 

workload characterization, performance estimation and 

scheduling decision. Thus, the core concept revolves 

around the idea of building mechanisms into systems 

that allow for dynamic reconfiguration of VM’s VCPU, 

based on the variations of the workload to achieve: 

 

• An improved overall system performance to 

withstand SLA 

• A better utilization of system resources. To achieve 

these goals, a computer system needs to be checked 

regularly

 

 
 

Fig. 2: Proposed system framework components 
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The proposed system algorithm works as follows. 

Thereby, all the virtual machines are serving the 

incoming requests; VMM monitors the resource 

utilization of the various resources and performance of 

the system. VMM executes an algorithm, at (a) periodic 

intervals, called Monitoring Interval (MI), to determine 

the best configuration (suitable number of VCPUs) for 

each VM with the help of a meta-heuristic algorithm 

under varying workload. As a result of running the 

controller algorithm, reconfiguration commands are 

generated to instruct the system to change its 

configuration.  

 

The general control approach: This section presents 

the control architecture of the proposed adaptive 

systems. It describes the system architecture and 

components and how they interact with one another. In 

addition, some control decisions regarding workload 

forecasting and frequency of control are also discussed. 

The architecture of the system model is best illustrated 

in Fig. 2. It has five main components namely workload 

intensity supervisor, workload forecaster, SLA 

observer, system performance examiner, genetic 

algorithm guided VCPU regulator.  

SLA observer is a component that computes the 

measurement required for implementing the control 

system. It calculates average response time, throughput 

and resource utilization for each client class (VM) on 

specified time periods. It has a list of completed 

requests for each client class, which is populated by the 

resource unit class after servicing the requests. The 

designer specifies the time interval to calculate the 

statistics. The generated statistic report is used by the 

external entities for analysis and makes runtime 

decisions. Afterwards, the list of request is cleared to 

accumulate the completed requests till the next sample 

instance. The SLA observer module uses the average 

arrival rate of requests obtained in the previous 

Monitoring Interval (MI), as an estimation of the 

expected workload intensity for the next MI. This value 

is then used by the algorithm to compute the SLA value 

for a given set of configuration parameters. System 

Performance Examiner is implemented as a component 

that collects utilized data on all system resources (e.g., 

CPU) as well as the count of completed requests which 

allow the component to compute the response time and 

throughput. The monitor periodically inserts multiple 

sample requests into the requests that are sent by the 

client to the server. Two time stamps are used during a 

sample request is inserted and a response is received. 

The difference is used as the server side response time 

and the average response time is considered as the 

metric at certain point of time. 

Workload Intensity Supervisor and Workload 

Forecaster are the two main components that make the 

algorithm more proactive as opposed to reactive. It 

indicates that the system can make better configuration 

decisions to accommodate the future workload. 

Workload Forecaster is responsible for prediction of 

request arrival rate. It helps to compute the resources 

required for meeting SLA targets and resource 

utilization goals well in advance. Prediction can be 

defined based on historical data on resources usage, or 

statistical models derived from known application 

workloads. In addition, the particular method to 

estimate future load, the workload intensity supervisor 

alerts the workload forecaster and VCPU tuner when 

service request rate is likely to change. This alert 

contains the expected arrival rate and it must be issued 

before the expected time for the rate to change; so that 

the workload forecaster and VCPU tuner will have time 

to calculate changes in the system and the application 

provisioner will have time to add or remove the 

required resources. Genetic Algorithm guided VCPU 

Regulator consists of two components namely VCPU 

regulator and genetic algorithm controller. The dynamic 

balancing component, VCPU regulator reconfigures the 

individual VM’s VCPU demand based on the resource 

requirement. This component performs a re-evaluation 

of the resource pools in a regular interval based on the 

performance evaluation subject to SLA over a period of 

time. If there is a big imbalance in the resource pool, 

the balancing component will be more aggressive in the 

balancing process. VCPU regulator decides the number 

of VCPUs required meeting the SLA targets, with the 

help of genetic algorithm. As stated earlier, VCPU 

regulator finds out the best configuration by collecting 

response time of the entire VMs. This algorithm takes 

the desired SLA goals, the arrival and departure 

processes into account and performs a combinatorial 

search of the state space of possible configuration 

points in order to find optimal configuration. The cost 

function associated with each point in the space of 

configuration points is the SLA value of the 

configuration described in section. This component 

considers the system as a network of queues whose 

model parameters are obtained via workload intensity 

supervisor and workload forecaster components. Clients 

in the model are represented by the generated requests, 

whereas application provisioner and application 

instances are the processing stations for these requests. 

Once the VCPU regulator determines the best 

configuration for the workload intensity levels provided 

by the various inputs, it sends reconfiguration 

commands to the appropriate VM.  

The accuracy of the CPU time is scheduled to the 

virtual CPUs, depending on the time interval that is 

regarded. Thus, by enabling the algorithm to 

dynamically regulate the frequency of its invocation 

over the fixed interval, the overall system performance 

and stability could be improved. These considerations 

have a significant impact on the efficiency of the 

algorithm and on the performance of the entire system. 

Furthermore, in the case of a sudden surge in the 
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workload, an adaptive controller algorithm responds to 

the change occurs in the external environment in 

advance.  

 
Designs and implementation of system model: This 
section presents the design and construction of a 
simulation framework with appropriate parameters for 
evaluating VCPU scheduling algorithms. Let us assume 
n virtual machines are consolidated into an m-core 
physical machine, given as vector VM = {vm1, vm2, 

...vmn |m≥n}. The allocated/available resources for the 
virtual machines at some point of time is given as 
vector Rcpu = {r1cpu, r2cpu,…rncpu|ricpu≥1}. The response 
time of the virtual machines at some instance, to meet 
the SLA is given as vector SLAresp = {resp1, resp2, 
…respn}. Further, resource requirement of the virtual 

machines is calculated as ricpu = (respi/� respi  
�	


�	� ) * 

(m-1). Here the value (m-1) models the effects of 
contention for access to multicores.  

The simulation model of a system is built as the 
cluster of the four server machines in which each 
cluster is modeled as a multiple server queue. It 
incorporates necessary assumptions that are required for 
having a real performance model of cloud centers: 

 

• Random arrival process 

• Incorporates complex user requests 

• Captures different delays imposed by cloud centers 
on user requests 

• Hyper exponential family distribution of the 
service time 
 

As mentioned earlier, the simulation framework is built 
by CSIM models and tool, used by C/C++ programmers 
to implement process oriented, discrete event 
simulation model. CSIM processes are operated in an 
asynchronous parallel manner, mimicking the behavior 
of multiple entities which are active at the same time. 

A CSIM program models a system as a collection 

of CSIM processes which interact with each other by 

using the CSIM structures. The purpose of modeling a 

system is to produce estimates of time and 

performance. The model maintains simulated time, so 

that it can yield insight into the dynamic behavior of the 

modeled system. In CSIM, entities are represented by 

processes and queues are represented by facilities and 

other simulated resources. In these models, the 

complete system is represented by a collection of 

simulated resources and a collection of processes that 

compete for use of these resources. In CSIM, it is easy 

to model a CPU and multi-core CPU as a facility and 

facility_ms, respectively. A facility is a server with a 

queue for the waiting processes. In operation, an 

arriving process reserves a facility. If the server at the 

facility is not busy, it is assigned to do the requesting 

process. If the server is busy, the arriving process is 

placed in the queue and it is suspended. Normally, 

when the process is given to the server, it does a hold 

(service time) and releases the server at the facility. 

When this happens, the queue is checked; there is a 

waiting process and so on. Now a multi-server operates 

in the same way only when there are multiple servers. 

The service time is drawn from a probability 

distribution function exponential (service Time). All the 

CSIM resources have ‘inspector functions’, which lets 

one to get properties and statistics from the resources. 

For example, the mean response time of the server (i) is 

given by server (i) ->resp (). Similarly, the statistics and 

counters for a resource is cleared by calling the reset () 

method. The communication among CSIM processes is 

accomplished via CSIM mailboxes (used for inter-

process communications) and synchronization of CSIM 

processes is accomplished via CSIM events (used to 

synchronize process activities). 

Based on CSIM, a set of C++ classes, server VM, 

VMM, scheduler, client and transactions have been 

developed, which models the basic program and 

machine components of the system as shown in Fig. 2 

and system specification. This is an open model, where 

the transactions arrive from outside to be processed 

with a variable of transactions that circulate among the 

clients and the servers via internet. The sim process 

creates the model in which the activities start with the 

instantiation of the genProcess method in the client 

class; each client has its unique id. The generator holds 

(delay) an exponentially distributed interarrival interval 

and generates a new transaction using genProcess that 

runs “forever”. When genProcess creates a new 

transaction, it selects the server first and the transaction 

will visit using client class id. In this model, the servers 

are an array of server objects and each server has a 

CPU resource, with multiple servers (think of each of 

these CSIM servers as a core). Each transaction notes 

its start time and visits the cpu on the serverVM object. 

When a transaction completes, it records its response 

time (the interval between its start time and its 

completion). The selectServer and configController 

method models the VMM as if it is in the proposed 

system (Fig. 2). The configController is elaborated 

more; for example, scheduler () functions have two 

different methods, reactive and proactive for resource 

allocation. Each scheduler needs to implement its 

scheduling policy and needs to register itself to this 

interface. Users can set the scheduler option during 

compile time by passing the parameter value of 

scheduler () and the scheduler implements the required 

resource allocation decisions. Based on the chosen 

controller, the sim process executes configController 

that in turn invokes appropriate scheduler which 

allocates sufficient resources. For instance, if the 

decision is to maintain 2 and 3 resource units for A and 

B client classes respectively, this component 

implements these decisions until the next decision is 

made. It has the access to the queue instances of each  
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client class, resource units and other state variables. In 

periodic/aperiodic interval, it executes the scheduler 

algorithm. Here, the design decision of centralized 

scheduler has been taken instead of each class taking 

the responsibility of scheduling. This is because, it is 

easy to track and validate the resource utilizations 

compared to a distributed algorithm. In addition, 

arbitrary size of controller intervals is considered to 

dynamically vary the length of the monitoring interval 

that is dynamically determined. In each control period, 

the VMM scheduler computes a weight for every VM. 

The weights are then truncated to integers and given to 

the VMs to set the number of VCPUs to be used for the 

next interval. Finally, the inspector function reports 

statement of each server resources usage and summary 

of the response times for all of the transactions. The 

user can use the given classes to implement the required 

simulation depending on their requirements. 

 

RESULTS AND DISCUSSION 

 

This section involves performance evaluation of a 

range of VCPU provisioning policies.  

One of the key areas to be looked at in the cloud is 

how a cloud service provider handles various capacity 

requirements in different time zones at a given time. In 

situations like these, cloud service providers must 

consider all these geo-specific business requirements 

and design the service model in which there are none or 

the least possible bottlenecks or resource conflicts. 

Thus, to make experiments reproducible, it is important 

to rely on a set of input traces to reliably generate the 

workload, which would allow the experiments to be 

repeated as many times as necessary. Thus, it is also 

important to use diverse workload traces collected from 

a real system such as slowly varying (ITA, 1998), 

Large    variations   (NLANR,    1995)   and   artificially 

generated quickly varying (synthetic) workload, as this 
would help to reproduce a realistic scenario. 
Furthermore, this implies that the overall system 
workload is composed of multiple independent 
heterogeneous applications, which also corresponds to a 
cloud environment. In our implementation testbed, the 
four servers can together handle at most 200 requests 
per second; thus, we scale the arrival traces such that 
the maximum request rate into the system is 200 
req/sec. Further, we scale  the  duration  of  the  traces  
to 2 h.  

Due to the space constraints, only consolidated 

servers average response time for workload aware 

reactive and proactive algorithm with fixed and variable 

time interval is given in Table 1. For synthetic 

workload, Table 1 indicates that the effective response 

time differs from the MI for both proactive and 

reactive. As far as reactive algorithm is concerned, it 

gives good results for MI is 1 min and for all other 

cases not withstands with SLA. This is because the 

resource allocations are carried out precisely at the time 

interval and in all other cases no such precision is 

maintained. Subsequently, for this case, there is no 

improvement in their frequency of execution. Likewise, 

for the Exponential Smoothing case, the effective 

response time is 0.3821 when MI = 2 (Table 1). This is 

because, the Exponential Smoothing forecasted the 

workload, predetermined resource allocation that made 

the server ready for maintaining SLA. In addition, as 

the frequency of execution time is saved 50%, steeled 

to the service time. For the same case, when the MI = 3 

(Table 1) close result with 50% execution frequency 

improvement with a 2% deviation in their net response 

time can be seen. Similarly, for Weighted Moving 

Average case, it gives good  response  time  for  both  

MI = {1, 2} (Table 1) with least deviation of 0.5 and 

34% execution frequency reduction.  This  is  due  to  

the this forecasting algorithm, which exploits the 

workloads characteristics of constant intensity for quite

 
Table 1: Comparison of various workload aware algorithms for the fixed monitoring interval 

Model Time (min) 
Frequency of  
algorithm invocation 

Response time (min) for various workloads 
-------------------------------------------------------------------------------- 

Quickly varying 
(synthetic) Slowly varying Large variations 

Reactive 1 120 0.3967 0.3786 0.3831 
Proactive (ExpS)   0.3899 0.3739 0.3790 
Proactive (WMA)   0.3810 0.3783 0.3779 
Reactive 2 60 0.3998 0.3816 0.3862 
Proactive (ExpS)   0.3821 0.3768 0.3825 
Proactive (WMA)   0.3826 0.3825 0.3781 
Reactive 3 40 0.4119 0.3907 0.3960 
Proactive (ExpS)   0.3890 0.3797 0.3916 
Proactive (WMA)   0.4090 0.3858 0.3820 
Reactive 4 30 0.4292 0.4104 0.4151 
Proactive (ExpS)   0.4207 0.4090 0.4119 
Proactive (WMA)   0.4256 0.4009 0.4071 
Reactive 5 24 0.4315 0.4215 0.4240 
Proactive (ExpS)   0.4190 0.4108 0.4129 
Proactive (WMA)   0.4002 0.4047 0.4036 
Reactive 6 20 0.4521 0.4456 0.4472 
Proactive (ExpS)   0.4421 0.4229 0.4277 
Proactive (WMA)   0.4456 0.4233 0.4289 
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Table 2: Comparison of various workload aware algorithms for the adaptive monitoring interval 

Model 

Frequency of algorithm 

invocation (synthetic/slowly 

varying /large variations)) 

Response time (min) for various workloads 

-------------------------------------------------------------------------------------------- 

Quickly varying (synthetic) Slowly varying Large variations 

Reactive (base) 38/27/32 0.3883 0.3743 0.3876 

Proactive (ExpS) 26/17/23 0.3751 0.3712 0.3794 

Proactive (WMA) 22/19/20 0.3579 0.3727 0.3614 

 

a while before changing significantly. Thus, for the 

fixed MI, forecasting algorithm provides good results 

especially for WMA. As far as MI is concerned, the 

accuracy of the CPU time is scheduled to the virtual 

CPUs depending on the time interval that is regarded. 

That is, if the MI is too small and the workload amount 

is relatively steady, the proposed algorithm will be 

executed too frequently with little or no effect. At the 

same time, if the MI is too large and the workload 

amount varies very quickly, the controller will not run 

effectively. Thus, an MI itself adjust to the workload 

strength can be more effective than a fixed MI. Table 2 

gives the comparative results of the adaptive MI 

algorithms. 

In the case of real workload traces, for slowly 

varying traces, exponential smoothing works much 

better. For the fixed time interval even for the MI = {1, 

2, 3}, there is no huge performance variance in it. 

Comparing with the reactive model (0.3786 min), 

exponential smoothing (0.3739 min) gives 12% 

improvement. In the case of adaptive MI, exponential 

smoothing (0.3712 min) gives 8% improvement over 

reactive model (0.3743 min). Comparing with weighted 

moving average (0.3727 min), it gives merely 3% 

improvement. Exponential smoothing impact due to 

adaptive MI (merely 17 times algorithm invocation) is 

around 7%. This is all because of its forecasting 

characteristics best suited for the slowly varying 

workload nature. Surprisingly, reactive model works 

equivalent to weighted moving average in some cases 

(e.g., for MI = 1, 2). This is all because of the workload 

characteristics. 

For highly varying workload, apparently WMA 

once again works much better. Especially with adaptive 

MI (only 20 times of algorithm invocation), it gives 7% 

improvement over the reactive model. Comparing with 

exponential smoothing, it gives 5%. This is because of 

its forecasting characteristics and suitability for the 

workload traces. Table 2 shows all the algorithms work 

quite nicely and withstand the SLA with adaptive MI 

over fixed MI. 

 

CONCLUSION 

 

This study proposed a novel system using meta-

heuristic combinatorial search techniques that 

automatically regulates the VMM CPU scheduler for 

cloud, considering diverse geo-specific business 

requirements. It evaluated the usefulness of the 

framework for proactive, reactive and adaptive VCPU 

scheduling algorithms for varying real-world and 

synthetic workload traces. Simulation based results 

indicate that proposed model improves CPU utilization 

and make the best tradeoff between resource utilization 

and performance by 2% on average and up to 6% 

compared to the default VMM scheduler 

configurations. In addition, the results of the 

experiments have shown that the Weighed Moving 

Average algorithm combined with the adaptive MI 

policy significantly outperforms other dynamic VM 

consolidation algorithms in all cases.  

Regarding possible future works, first, the 
proposed system can be evaluated in a real Cloud 
infrastructure like Open Stack. Second, the system can 
be evaluated for more complex workload models such 
as slowly varying, big spike, dual phase variations 
which are drawn from real-world traces, that will 
leverage these workload models with increasing server 
consolidation ratio. Third, apart from CPU sharing, the 
work can be extended to cover the allocations of the 
resources like main memory and, network I/O. Fourth, 
multiple alternative forecasting methods in parallel can 
be applied. Finally, the model can be extended to 
support adaptive scheduling techniques in addition with 
the resource allocation for the diverse workloads. 
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