
Research Journal of Applied Sciences, Engineering and Technology 9(5): 380-390, 2015

DOI:10.19026/rjaset.9.1417

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: September 22, 2014 Accepted: November 10, 2014 Published: February 15, 2015

Corresponding Author: S. Suresh, Department of Computer Science and Engineering, Adhiyamaan College of Engineering,

Hosur-635109, Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

380

Research Article

Workload Known VMM Scheduler for Server Consolidation for Enterprise Cloud
Data Center

1
S. Suresh and

2
S. Sakthivel

1
Department of Computer Science and Engineering, Adhiyamaan College of Engineering, Hosur-635109,

2
Department of Computer Science and Engineering, Sona College of Technology, TPTC Main Road,

Salem-636005, Tamil Nadu, India

Abstract: This study proposes a novel adaptive meta-heuristics based scheduling policies for provisioning the
VCPU resources among competing VM service domains in a cloud. Such provisioning guarantees to Service Level
Agreement for each domain, with respect to the diverse workloads on-the-fly. The framework is built on CSIM
models and tools, making it easy to understand and configure various virtualization setups. The study demonstrates
the usefulness of the framework by evaluating proactive, reactive and adaptive VCPU scheduling algorithms. The
paper evaluates how periodic/aperiodic execution of control actions can affect policy performance and speed of
convergence. The periodic reactive resource allocation is used as the baseline for analysis and the average response
time is the performance metric. Simulation based experiments using variety of real-world arrival traces and synthetic
workloads results that the proposed provisioning technique detects changes in arrival pattern and resource demands
and allocates resources accordingly to achieve application SLA targets. The proposed model improves CPU
utilization and makes the best tradeoff between resource utilization and performance from 2 to 6% comparing with
the default VMM scheduler configurations for diverse workloads. In addition, the results of the experiments show
that the proposed Weighed Moving Average algorithm combined with the aperiodic policy significantly outperforms
other dynamic VM consolidation algorithms in all cases, in regard to the SLA metric due to a substantially reduced
level of response time violations and the frequency of algorithm invocation.

Keywords: Cloud computing, cloud workload, server consolidation, server virtualization, simulation, VMM

scheduling

INTRODUCTION

Clouds are a large poll of hardware or software

resources that can be accessed on-demand like a utility
computing. These cloud services can be provided
without any knowledge of the physical location of the
servers and the systems that provide the computing
services. It is continuously gaining popularity, due to its
ease-of-use, on-demand resource provisioning, pay per
use business model and ability to support execution of
applications of diverse types. Virtualization acts as a
driving force of cloud by simplifying load balancing,
dealing with hardware failures and easing system
scaling through server consolidation. Server
consolidation enables one to consolidate applications
running on possibly tens of thousands of servers each
significantly underutilized on the average. Thus by
running multiple Virtual Machines (VMs) on the same
physical resources, virtualization promises a more
efficient usage of the available hardware in cloud data
centers. However, as all VMs share the same physical
resources, contention for shared resources cause

significant variance in the observed system response
time and throughput.

All request is delivered to the cloud users as
services. In these regard, two important problems are
frequently encountered with deploying IT applications
in cloud. The first is overload or under load. Assigning
resources to VMs in a static manner solves this issue.
However, static allocation becomes inefficient under
varying load. The second problem is Quality of Service
(QoS). As cloud hosted services and applications are
user oriented, QoS has a great impact on the growth and
acceptability of cloud computing paradigm. However,
providing QoS requires a solid model that needs
detailed insights of computing centers. Indeed, it is very
difficult to dynamically allocate resources for multitier
applications. i.e., increasing resource utilization
effectively and meeting Service Level an Objective
(SLOs) in a shared virtualization environment is a great
challenge to the scheduler for achieving good fairness,
efficient workload balancing and minimal wasted CPU
time, when allocating the physical CPU time to VMs.
Thus, the scheduler with a good adaptiveness can make

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

381

a better trade off and change its strategy for VMs with
the different workload properties. Besides the reduction
in infrastructure and ongoing operating costs, this work
also has societal significance as it helps to decrease the
level of carbon-dioxide and energy consumption by
modern IT infrastructures.

Virtualization solutions ranging from VMware,

KVM and XEN can be implemented within a cloud.

Each has its strength and weakness. The performance of

a hosted application is sensitive to the hypervisor

scheduler configuration parameters on which the

application is running. However, the exact relationship

between the value of the scheduler configuration

parameters of the VM and the application performance

metrics such as response time or throughput is not

obvious. Therefore, determining the appropriate

parameter values that provides certain SLA for an

application becomes problematic due to the dynamic

nature of the workload. Thus most of the time, the

parameters are left as default values. Subsequently,

existing tools for performance and resource

management of virtualized infrastructures lack the

ability to dynamically determine the effects of changing

resource allocations on the performance of hosted IT

services. Modern virtualization and middleware

technologies create many possible ways for resource

allocation and system reconfiguration by adding or

removing virtual CPU cores to VMs or by changing the

hypervisor scheduling parameters.

Virtualization delivers dramatic resource usage and

cost cuttings. However, overall data center efficiency

metrics may not meet the requirement of the state-of-art

hardware and software advancements for the cloud data

centers workloads. Thus, a research was done to

evaluate, how does application response time in cloud

get impacted with adaptive CPU resource allocation

with changing customer workloads? When should a

reconfiguration be triggered for achieving effective

resource usage without compromising SLAs? and How

rapidly and at what level is the reconfiguration

triggered?

As system level scheduling implementation

requires deep understanding on hardware architecture,

as well as low level programming and debugging,

evaluating new scheduling techniques under various,

controllable and repeatable conditions are impossible in

real Cloud. This makes qualitative evaluation of

scheduling algorithm difficult and requires significant

effort. To address this problem, the cloud virtualization

environment, is simulated to evaluate the performance

of the defined algorithm using CSIM (Schwetman,

2001) simulation toolkit and a C/C++ library that

allows assembling a complete virtualization system

with flexible configurations.

In summary, the contribution of this study is

multifold and our works are as follows:

• Study on server virtualization and its various

solutions

• Study on state of the art work in VMM scheduling

• Conducting performance case study that focus on

how the performance is affected by the amount of

CPU allocation

• Construct an adaptive system that automatically

adjust the VMM CPU scheduler, based on the

workload fluctuations to give guarantee QoS using

combinatorial heuristic search techniques

• Investigate and evaluate more scheduler

configurations and to measure the performance

Background information and definition: This section

presents some background information and definitions

on server virtualization and its solutions, chip

multithreading, combinatorial search techniques and

workload forecasting.

Server virtualization: Server virtualization is an

abstraction of underlying physical hardware. It creates

virtual environments that allow running multiple

applications in separate virtual containers hosted on a

single hardware. VMM, a software layer separates

underlying hardware from the software running on top

of it and creates a notion of the hardware for a virtual

machine. Thus, VMM creates and manages hardware

units for the virtual (Smith and Nair, 2005; Suresh and

Kannan, 2014a) classified Virtualization Technology

into three major approaches, based on the performance

and support of the hardware platforms and methods of

executing guest OS code with or without hardware

access. The first approach is called binary translation, in

which the VMM modifies the guest’s binary image at

runtime to get processor control when guest software

attempts to perform a privileged operation. The VMM

can then emulate privileged operation and return

control to guest software. The second approach is called

paravirtualization, in which the guest’s kernel is

modified to cooperate with the VMM when performing

privileged operations. The third one is hardware

assisted virtualization, in which the VMM uses

processor extensions such as AMD-V and Intel-VT to

intercept and emulate privileged operation in the guest.

Scheduling in VMM: Aforesaid, three virtualization

approaches infer, VMM is an important entity as it

routes any request by the guest to access the hardware.

The VMM gives a portion of the full/partial physical

machine resources to each guest domain, thus multiple

guests must share the available resources. Thus, with

diverse workload and demand, it grants each guest OS a

limited amount of specified resource. Thus, from the

perspective of VMM’s CPU scheduler, each VM is

represented by one or more virtual resources and the

primary goal is to maintain proportional share of CPU

time allocation of each guest domain.

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

382

Chip Multithreading (CMT) and Virtual CPU
(VCPU): CMT combines the resources of multiple
CPUs in a single host system, in which all the
processors behave identical. CMT creates space for any
processor; to execute any processes in the system,
improving overall system performance. Subsequently,
logical domains technology provides flexible
assignment of hardware resources to domains, with
options for specifying physical resources for a
corresponding virtual resource say physical CPU to
Virtual CPUs (VCPUs). A domain can have one VCPU
up to all the VCPUs on the server. The number of CPUs
in a domain can be dynamically and none disruptively
changed on-the-fly and the change in the number of
VCPUs in a running domain takes effect instantly. This
method avoids the frequent context switches usually
VMM implemented by to run several guests on a CPU
and to intercept privileged operations. It results an
impressive benefit in terms of simplicity and reduction
of the overhead.

Dynamic resource allocation: Dynamic resource
allocations are quite essential for adaptive computing.
Generally, there are two approaches namely reactive
resource allocation and proactive resource allocation.
Reactive allocation is used to adjust resources based on
demand and recent behavior. It is preferred more to
handle momentary fluctuations smoothly. Whereas,
proactive resource allocations involve taking up actions
to make resources available for upcoming load spikes.
It is good for managing resources in a multi-tenant
cloud where it is common to have hot spots at some
locations, while still having spare resources scattered
throughout the datacenter. Inability to use fragmented
spare resources in a datacenter during load spikes
quickly causes host level over provisioning. When
predictions are accurate, this scheme provides very
good performance. Forecasting can be achieved by
applying many techniques (Herbst et al., 2013).
However, the paper deals with the popular forecasting
techniques namely weighted moving averages and
exponential smoothing.

Genetic Algorithm (GA): As scheduling belong to
combinatorial optimization problems, optimization
algorithms are default choice to find optimal solutions.
Compared to conventional heuristics, GA (Sivanandam
and Deepa, 2008) is well suited for fine tuning
structures which are very close to optimal solutions.
GA is a computational model that emulates biological
evolutionary theories to solve optimization problems. In
computing terms, GA maps a problem to a set of binary
strings and each of them representing a possible
solution. The GA, then manipulates the most promising
strings searching for improved solutions, through a
simple cycle on four stages:

• Creation of a "population" (randomness) of strings

• Evaluation of each string (reproduction)

• Selection of "best" strings using fitness function

• Genetic manipulation (cross over) to create the new

population of strings

Here, the decision variables are the CPU usage limits to

be enforced on the co-located VMs. As a result, it

maximizes the system utility.

LITERATURE REVIEW

VMM resource allocation, scheduling and analysis

of virtualization performance are the most important
problems in server virtualization research for enterprise
applications. In specific, optimizing the performance of
the resource virtualization is an ongoing research area
and there are several new techniques are proposed to
implement resource virtualization. Some of the related
works are discussed below.

Cherkasova et al. (2007) compared three
schedulers in XEN, SEDF (Simple Earlier Deadline
First), BVT (Borrowed Virtual Time) and Credit. They
studied that the credit scheduler used in XEN is
performance-oriented and does not act in accordance
with configured values. They also found that choosing
the right parameters for individual virtual machines is
crucial in order to get the desired application
performance.

Weng et al. (2009) developed a mathematical
scheduler modeling to analyze and empirically compare
XEN’s scheduling algorithms such as co proportional,
proportional share scheduling strategies that provide a
convenient infrastructure to quickly examine new idea
based algorithms. Similarly, Watson et al. (2010)
proposed a probabilistic performance model using
quantile regression. They made it possible to predict the
response time of the web authentication benchmark
depending on the allocated resources at the VM level.
However, they did not provide the performance relevant
factors explicitly.

Lim et al. (2010) proposed a mathematical model
to characterize workload using multiple resource
usages. In the model, host is characterized as a
collection of m resource queues. The application is
characterized as a vector of size m, where i

th
 element is

calculated as the amount of time using i
th

 resource
divided by its runtime when running in standalone
mode. This method assumed, to run multiple
applications together and not to take longer time than
sequential execution time. But, this is not true in real
virtualized environments as severe contention between
two VMs may lead to slowdown of more than twice.
Jung et al. (2010) developed a multi-level resource
allocation framework that adapts a VM’s CPU capacity,
by add or remove a VM, live-migrate a VM between
hosts and shutdown or restart a host. This method
considers good performance, transient costs and
nominal power consumption in its reconfiguration
algorithm. However, it is based on a simple multi-tier
application with read only transactions and a fixed web

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

383

tier modeled with a layered queuing network. Similarly
Lu et al. (2011) used analytical queuing models to
quantify the slowdown of virtualized applications in
server consolidation scenarios. They concluded that
using the total CPU time as distribution factor to derive
workload specific virtualization overhead typically
results in an uneven estimation at best.

Huber et al. (2011a) proposed a novel approach for

self-adaptive resource provisioning in virtualized

environments based on online architecture level

performance models. They investigated the use of such

models as a means for online performance prediction

which predicts the effects of changes in user workloads

and the effects of particular reconfiguration actions

undertaken to obey SLA. By using virtualization

techniques, they applied these allocation changes to

evaluate the use of such models for online performance

prediction. However, this present research, investigates

the influences of virtualization on system performance

to integrate the gained insights into the proposed

performance models are investigated.

Kousiouris et al. (2011) used Artificial Neural

Network, to predict the impact of the performance of

real time scheduling parameters, VM deployment and

workload type on the system performance based on

measurements using various MATLAB benchmark

tests. Similarly, Sethi et al. (2012) present a new fuzzy

controller for load balancing in cloud computing. For

them, the cloud computing requires processor speed and

assigned load of VM and provides the balance load to

reduce the application response time. This method can

be used only for CPU intense applications where the

SLA is related to CPU speed. On the contrary, a

generalized technique is applied in this present research

so as not to make any guess regarding the CPU speed.

Rao et al. (2013) proposed a fuzzy controller for

allocating virtualized resources with respect to the

application response time. The works of Sethi et al.

(2012) and Rao et al. (2013) consider only the response

time and its deviation from the SLA value as input

parameters to the controller. Instead, this present

research combines the information regarding the

response time with the VCPU utilization. The

combination of these two parameters allows the

adaptive genetic controller to gain more knowledge on

the system load, thus results in a more accurate CPU

capacity allocation.

Chia-Ying and Kang-Yuan (2013) proposed a

solution for the synchronization problem of a server

consolidation by modifying the XEN Credit Scheduler.

They added a new priority module to the scheduler in

order to avoid the scheduling decisions and for

synchronization. This new priority module allows

VCPUs to preempt and to run at the next time slice

without impacting overall system fairness. Through this

way, the threads in the concurrent program can be

synchronized. Consequently, proposed scheduler works

enhances the performance in concurrent workload

greatly by decreasing CPU allocation errors. However,

it incurs minor performance drop in a parallel workload

due to the extra overhead of finding the most urgent

work from other PCPUs. The work by Li and Zheng

(2014) on web application scalability originated for

static load balancing solution with server clusters, but

the dynamic scaling of web applications and energy

consumption of resources in virtualized Cloud

computing has not been impressively considered by Liu

et al. (2014).

Thus, this survey proves that earlier works have

missed a good opportunity of cost and performance

optimization by disregarding cloud workload aware

resource allocation at which computer processor

technology has progressed. In addition, it also draws a

conclusion that, no works exploit the genetic algorithm

extensively.

METHODOLOGY

Resource influence on VM and VMM schedulers: As

performance provision is the major concern of VMM

scheduler in cloud, this section provides:

• A quantitative case study that focus on how the

VM performance is affected by adapting a VM’s

CPU capacity

• Two qualitative case studies of widely popular

virtualization VMM schedulers

Performance influencing factors: As virtualization

introduces dynamics and increases flexibility, a variety

of additional factors can influence the performance of

virtualized systems. Having analyzed major

representative virtualization platforms, Huber et al.

(2011b) and Armbrust et al. (2010) abstracted a generic

performance model of VM performance influencing

factors. Those are virtualization type, hypervisor’s

architecture, resource management configuration and

workload profile. Though, several influencing factors

are grouped under the resource management

configuration, the CPU scheduling configuration has a

significant influence on the virtualization platform’s

performance. The number of VMs, Virtual CPUs

allocated to a VM and resource over commitment are

chief among them.

Performance study:

Impact of CPU allocation: CPU cores are one of the

main sources of performance interference. This

complexity is demonstrated by executing experiment,

targeted at the application level in virtual machine

environment by setting CPU limit at different levels.

The performance of the virtualized applications

(OLTB) are measured while varying the VM’s CPU

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

384

Fig. 1: SysBench database transactions

limit from 1 to 8 cores. All the experiments were

conducted on physical hardware configured with AMD

FX 8-Core Black Edition FX-9590. Both host and

virtual machine are configured with 8 VCPUs and 4 GB

RAM, 50 GB HDD with Ubuntu 14.04 LTS (Trusty

Tahr). The virtualization solutions considered for the

experiment is XEN 5.0. For the XEN machines, virtual

NICs use the default bridged network driver. MySQL

SysBench (Cillendo and Kunimasa, 2007; Suresh and

Kannan, 2014b) is a modular, cross platform and multi-

threaded benchmark tool for evaluating OS parameters.

These parameters are important for a system to run a

MySQL database under intensive load to evaluate its

performance. SysBench, which was run on a separate

client machine, was configured to send multiple and

simultaneous queries to the MySQL database with zero

think time. A simple database that fits entirely in

memory is used. As a result, these workloads saturated

the virtual CPU and generated network activity, with

very little disk I/O. For various numbers of threads, the

experiment was conducted and the result is given in the

Fig. 1. As seen from the graph, the benchmarks

workloads behave linearly and the performance slope is

different at various CPU allocation ranges. SysBench

performance varies almost linearly with CPU

allocation. But, at some time, the saturated point is

visible because of resource over provisioning. Thus,

this data reveal the fact that virtualized workloads can

have quite different performance curves with respect to

number of CPU allocation. This leads to the

conclusions that direct allocation of resources to a VM

has an impact on the performance of hosted application

and choosing appropriate control knobs to handle

resource allocation for a VM is critical to ensure

desirable performance and to create a robust model.

State of the art VMM schedulers: VCPU scheduling

remains a challenge for Virtualization technologies,

especially with hypervisors starting to host Chip

Multithreading VMs. As the implemented prototype in

this study is generic, it briefly discusses the main

features of two popular VMM scheduler’s algorithms in

specific.

CPU scheduling algorithms in XEN: XEN supports

three different types of schedulers (Chisnall, 2007;

Cherkasova et al., 2007) namely BVT, SEDF and

Credit Scheduling. BVT is a proportional share

scheduler suited for I/O intensive domains. The

scheduler adjusts itself dynamically with the varying

I/O intensities when specified with the correct

parameters. It is based on the concept of virtual time,

dispatching the runnable VM with the smallest virtual

time the low latency support is provided in BVT for

real time and interactive applications by allowing

latency sensitive client to warp back in virtual time to

gain scheduling priority. And the client can effectively

borrow virtual time from its future CPU allocation.

However, due to the lack of Non Work Conserving

(NWC) mode (unused CPU cycles of one domain can’t

be used by the other domain), its usage is severely

limited in many application environments. SEDF is an

another algorithm, in which, the domains request a

minimum time slice for communication. The request is

a tuple of (si, pi, xi), which means Domi will receive si

units of time in each period of length pi. The xi is a

boolean flag indicating whether Domi is scheduled in

WC-mode or NWC-mode. SEDF performs well when

the workload is low, but when running in heavy

workload, many clients are observed to miss their

deadlines and the scheduling overhead significantly

increases, where the domain requests for ‘t’ slices every

‘p’ periods of CPU time. One main shortage is the lack

of global workload balancing on multiprocessors and

the CPU fairness depends on the value of the period.

Besides, the lack of global load balancing on

multiprocessors, implementation also limits its usage.

BVT lacks NWC-mode while SEDF is found to be

unstable under heavy workload and does not support

CMT well. So both of them were replaced by Credit

scheduler in XEN. The credit based scheduler is

recently incorporated into XEN and it provides better

load balancing and low latency mechanisms. This

algorithm is a kind of Proportional Share (PS) strategy,

featuring automatic workload balancing of virtual CPUs

across physical CPUs on a CMT host. According to the

scheduling algorithm of Credit Scheduler using in XEN

hypervisor, each virtual CPU is asynchronously

assigned to a physical CPU by CPU scheduler in order

to maximize the throughput. Specifically, when there is

no runnable VCPU on the current physical CPU, the

scheduler will try to migrate one runnable VCPU from

the other physical CPUs. Each domain is assigned with

a (weight, cap) pair. Similarly, the scheduler allocates

CPU time proportion (in credit) to each domain

according to its weight. All queued VCPUs are sorted

out by their remaining credit and the scheduler will

select the VCPU that has more credit to run. This

algorithm can efficiently achieve a global workload

balancing on a CMT system when the majority of the

workload is not the high concurrent application.

0

100

200

300

400

500

600

1CPU 2CPU 3CPU 4CPU 5CPU 6CPU 7CPU 8CPU

79

222

308

365

435

489
518

540

T
ra

n
sa

c
ti

o
n
/s

ec
o

n
d

(h
ig

h
er

 v
a
lu

e
s

a
re

 b
e
st

)

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

385

However, all these choice come with the burden of
choosing the right scheduler and configuring it.

VMware ESX server VCPU scheduling algorithms:

The default Round-Robin approach by KVM or Virtual

Box hypervisors cause additional synchronization

latency for guest VM due to VCPU preemption. In

order to eliminate this synchronization latency,

VMware applies a co-scheduling algorithm (Sukwong

and Kim, 2011), which uses a concept similar to gang

scheduling (Schwiegeishohn and Yahyapour, 1998).

Co-scheduling requires that all VCPUs are associated

with a VM to be scheduled simultaneously in order for

the VM to run. Such an algorithm helps to avoid the

synchronization latency, as both the waiting VCPUs

and the lock holding VCPU are preempted and resumed

at the same time. This ‘strict’ co-scheduling approach,

however, introduces a fragmentation problem. A VCPU

can only be scheduled after the hypervisor gathers

enough resources to execute all other VCPUs in the

same VM. However, ESX has several optimizations to

improve performance over a naive implementation of

co scheduling, which would require even idle VCPUs

in a VM to execute. First, ESX is able to detect if a

VCPU is executing an idle loop and in this case ESX

does not schedule an idle VCPU to run nor require it to

be co-scheduled for active VCPUs to run. Second, ESX

uses a technique called relaxed co-scheduling that helps

prevent requiring physical CPUs from being idle in

order to start running VCPUs in an CMT system.

Having analyzed two major representative

virtualization platforms, one can infer that current

commercial resource management tools provide only

partial solutions to VCPU scheduling problem by

forcing virtual machines allocation to be within certain

limits. In addition, these tools do not address setting

these limits with appropriate values for each

application, or how they should be changed in case.

Thus, a resourceful VMM scheduler is important for

increased throughput and decreased response time.

System model: This section presents the proposed self-

adaptive resource management model and its working

logic. Generally, VMM schedulers repeat three steps:

workload characterization, performance estimation and

scheduling decision. Thus, the core concept revolves

around the idea of building mechanisms into systems

that allow for dynamic reconfiguration of VM’s VCPU,

based on the variations of the workload to achieve:

• An improved overall system performance to

withstand SLA

• A better utilization of system resources. To achieve

these goals, a computer system needs to be checked

regularly

Fig. 2: Proposed system framework components

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

386

The proposed system algorithm works as follows.

Thereby, all the virtual machines are serving the

incoming requests; VMM monitors the resource

utilization of the various resources and performance of

the system. VMM executes an algorithm, at (a) periodic

intervals, called Monitoring Interval (MI), to determine

the best configuration (suitable number of VCPUs) for

each VM with the help of a meta-heuristic algorithm

under varying workload. As a result of running the

controller algorithm, reconfiguration commands are

generated to instruct the system to change its

configuration.

The general control approach: This section presents

the control architecture of the proposed adaptive

systems. It describes the system architecture and

components and how they interact with one another. In

addition, some control decisions regarding workload

forecasting and frequency of control are also discussed.

The architecture of the system model is best illustrated

in Fig. 2. It has five main components namely workload

intensity supervisor, workload forecaster, SLA

observer, system performance examiner, genetic

algorithm guided VCPU regulator.

SLA observer is a component that computes the

measurement required for implementing the control

system. It calculates average response time, throughput

and resource utilization for each client class (VM) on

specified time periods. It has a list of completed

requests for each client class, which is populated by the

resource unit class after servicing the requests. The

designer specifies the time interval to calculate the

statistics. The generated statistic report is used by the

external entities for analysis and makes runtime

decisions. Afterwards, the list of request is cleared to

accumulate the completed requests till the next sample

instance. The SLA observer module uses the average

arrival rate of requests obtained in the previous

Monitoring Interval (MI), as an estimation of the

expected workload intensity for the next MI. This value

is then used by the algorithm to compute the SLA value

for a given set of configuration parameters. System

Performance Examiner is implemented as a component

that collects utilized data on all system resources (e.g.,

CPU) as well as the count of completed requests which

allow the component to compute the response time and

throughput. The monitor periodically inserts multiple

sample requests into the requests that are sent by the

client to the server. Two time stamps are used during a

sample request is inserted and a response is received.

The difference is used as the server side response time

and the average response time is considered as the

metric at certain point of time.

Workload Intensity Supervisor and Workload

Forecaster are the two main components that make the

algorithm more proactive as opposed to reactive. It

indicates that the system can make better configuration

decisions to accommodate the future workload.

Workload Forecaster is responsible for prediction of

request arrival rate. It helps to compute the resources

required for meeting SLA targets and resource

utilization goals well in advance. Prediction can be

defined based on historical data on resources usage, or

statistical models derived from known application

workloads. In addition, the particular method to

estimate future load, the workload intensity supervisor

alerts the workload forecaster and VCPU tuner when

service request rate is likely to change. This alert

contains the expected arrival rate and it must be issued

before the expected time for the rate to change; so that

the workload forecaster and VCPU tuner will have time

to calculate changes in the system and the application

provisioner will have time to add or remove the

required resources. Genetic Algorithm guided VCPU

Regulator consists of two components namely VCPU

regulator and genetic algorithm controller. The dynamic

balancing component, VCPU regulator reconfigures the

individual VM’s VCPU demand based on the resource

requirement. This component performs a re-evaluation

of the resource pools in a regular interval based on the

performance evaluation subject to SLA over a period of

time. If there is a big imbalance in the resource pool,

the balancing component will be more aggressive in the

balancing process. VCPU regulator decides the number

of VCPUs required meeting the SLA targets, with the

help of genetic algorithm. As stated earlier, VCPU

regulator finds out the best configuration by collecting

response time of the entire VMs. This algorithm takes

the desired SLA goals, the arrival and departure

processes into account and performs a combinatorial

search of the state space of possible configuration

points in order to find optimal configuration. The cost

function associated with each point in the space of

configuration points is the SLA value of the

configuration described in section. This component

considers the system as a network of queues whose

model parameters are obtained via workload intensity

supervisor and workload forecaster components. Clients

in the model are represented by the generated requests,

whereas application provisioner and application

instances are the processing stations for these requests.

Once the VCPU regulator determines the best

configuration for the workload intensity levels provided

by the various inputs, it sends reconfiguration

commands to the appropriate VM.

The accuracy of the CPU time is scheduled to the

virtual CPUs, depending on the time interval that is

regarded. Thus, by enabling the algorithm to

dynamically regulate the frequency of its invocation

over the fixed interval, the overall system performance

and stability could be improved. These considerations

have a significant impact on the efficiency of the

algorithm and on the performance of the entire system.

Furthermore, in the case of a sudden surge in the

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

387

workload, an adaptive controller algorithm responds to

the change occurs in the external environment in

advance.

Designs and implementation of system model: This
section presents the design and construction of a
simulation framework with appropriate parameters for
evaluating VCPU scheduling algorithms. Let us assume
n virtual machines are consolidated into an m-core
physical machine, given as vector VM = {vm1, vm2,

...vmn |m≥n}. The allocated/available resources for the
virtual machines at some point of time is given as
vector Rcpu = {r1cpu, r2cpu,…rncpu|ricpu≥1}. The response
time of the virtual machines at some instance, to meet
the SLA is given as vector SLAresp = {resp1, resp2,
…respn}. Further, resource requirement of the virtual

machines is calculated as ricpu = (respi/� respi
�	

�	�) *

(m-1). Here the value (m-1) models the effects of
contention for access to multicores.

The simulation model of a system is built as the
cluster of the four server machines in which each
cluster is modeled as a multiple server queue. It
incorporates necessary assumptions that are required for
having a real performance model of cloud centers:

• Random arrival process

• Incorporates complex user requests

• Captures different delays imposed by cloud centers
on user requests

• Hyper exponential family distribution of the
service time

As mentioned earlier, the simulation framework is built
by CSIM models and tool, used by C/C++ programmers
to implement process oriented, discrete event
simulation model. CSIM processes are operated in an
asynchronous parallel manner, mimicking the behavior
of multiple entities which are active at the same time.

A CSIM program models a system as a collection

of CSIM processes which interact with each other by

using the CSIM structures. The purpose of modeling a

system is to produce estimates of time and

performance. The model maintains simulated time, so

that it can yield insight into the dynamic behavior of the

modeled system. In CSIM, entities are represented by

processes and queues are represented by facilities and

other simulated resources. In these models, the

complete system is represented by a collection of

simulated resources and a collection of processes that

compete for use of these resources. In CSIM, it is easy

to model a CPU and multi-core CPU as a facility and

facility_ms, respectively. A facility is a server with a

queue for the waiting processes. In operation, an

arriving process reserves a facility. If the server at the

facility is not busy, it is assigned to do the requesting

process. If the server is busy, the arriving process is

placed in the queue and it is suspended. Normally,

when the process is given to the server, it does a hold

(service time) and releases the server at the facility.

When this happens, the queue is checked; there is a

waiting process and so on. Now a multi-server operates

in the same way only when there are multiple servers.

The service time is drawn from a probability

distribution function exponential (service Time). All the

CSIM resources have ‘inspector functions’, which lets

one to get properties and statistics from the resources.

For example, the mean response time of the server (i) is

given by server (i) ->resp (). Similarly, the statistics and

counters for a resource is cleared by calling the reset ()

method. The communication among CSIM processes is

accomplished via CSIM mailboxes (used for inter-

process communications) and synchronization of CSIM

processes is accomplished via CSIM events (used to

synchronize process activities).

Based on CSIM, a set of C++ classes, server VM,

VMM, scheduler, client and transactions have been

developed, which models the basic program and

machine components of the system as shown in Fig. 2

and system specification. This is an open model, where

the transactions arrive from outside to be processed

with a variable of transactions that circulate among the

clients and the servers via internet. The sim process

creates the model in which the activities start with the

instantiation of the genProcess method in the client

class; each client has its unique id. The generator holds

(delay) an exponentially distributed interarrival interval

and generates a new transaction using genProcess that

runs “forever”. When genProcess creates a new

transaction, it selects the server first and the transaction

will visit using client class id. In this model, the servers

are an array of server objects and each server has a

CPU resource, with multiple servers (think of each of

these CSIM servers as a core). Each transaction notes

its start time and visits the cpu on the serverVM object.

When a transaction completes, it records its response

time (the interval between its start time and its

completion). The selectServer and configController

method models the VMM as if it is in the proposed

system (Fig. 2). The configController is elaborated

more; for example, scheduler () functions have two

different methods, reactive and proactive for resource

allocation. Each scheduler needs to implement its

scheduling policy and needs to register itself to this

interface. Users can set the scheduler option during

compile time by passing the parameter value of

scheduler () and the scheduler implements the required

resource allocation decisions. Based on the chosen

controller, the sim process executes configController

that in turn invokes appropriate scheduler which

allocates sufficient resources. For instance, if the

decision is to maintain 2 and 3 resource units for A and

B client classes respectively, this component

implements these decisions until the next decision is

made. It has the access to the queue instances of each

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

388

client class, resource units and other state variables. In

periodic/aperiodic interval, it executes the scheduler

algorithm. Here, the design decision of centralized

scheduler has been taken instead of each class taking

the responsibility of scheduling. This is because, it is

easy to track and validate the resource utilizations

compared to a distributed algorithm. In addition,

arbitrary size of controller intervals is considered to

dynamically vary the length of the monitoring interval

that is dynamically determined. In each control period,

the VMM scheduler computes a weight for every VM.

The weights are then truncated to integers and given to

the VMs to set the number of VCPUs to be used for the

next interval. Finally, the inspector function reports

statement of each server resources usage and summary

of the response times for all of the transactions. The

user can use the given classes to implement the required

simulation depending on their requirements.

RESULTS AND DISCUSSION

This section involves performance evaluation of a

range of VCPU provisioning policies.

One of the key areas to be looked at in the cloud is

how a cloud service provider handles various capacity

requirements in different time zones at a given time. In

situations like these, cloud service providers must

consider all these geo-specific business requirements

and design the service model in which there are none or

the least possible bottlenecks or resource conflicts.

Thus, to make experiments reproducible, it is important

to rely on a set of input traces to reliably generate the

workload, which would allow the experiments to be

repeated as many times as necessary. Thus, it is also

important to use diverse workload traces collected from

a real system such as slowly varying (ITA, 1998),

Large variations (NLANR, 1995) and artificially

generated quickly varying (synthetic) workload, as this
would help to reproduce a realistic scenario.
Furthermore, this implies that the overall system
workload is composed of multiple independent
heterogeneous applications, which also corresponds to a
cloud environment. In our implementation testbed, the
four servers can together handle at most 200 requests
per second; thus, we scale the arrival traces such that
the maximum request rate into the system is 200
req/sec. Further, we scale the duration of the traces
to 2 h.

Due to the space constraints, only consolidated

servers average response time for workload aware

reactive and proactive algorithm with fixed and variable

time interval is given in Table 1. For synthetic

workload, Table 1 indicates that the effective response

time differs from the MI for both proactive and

reactive. As far as reactive algorithm is concerned, it

gives good results for MI is 1 min and for all other

cases not withstands with SLA. This is because the

resource allocations are carried out precisely at the time

interval and in all other cases no such precision is

maintained. Subsequently, for this case, there is no

improvement in their frequency of execution. Likewise,

for the Exponential Smoothing case, the effective

response time is 0.3821 when MI = 2 (Table 1). This is

because, the Exponential Smoothing forecasted the

workload, predetermined resource allocation that made

the server ready for maintaining SLA. In addition, as

the frequency of execution time is saved 50%, steeled

to the service time. For the same case, when the MI = 3

(Table 1) close result with 50% execution frequency

improvement with a 2% deviation in their net response

time can be seen. Similarly, for Weighted Moving

Average case, it gives good response time for both

MI = {1, 2} (Table 1) with least deviation of 0.5 and

34% execution frequency reduction. This is due to

the this forecasting algorithm, which exploits the

workloads characteristics of constant intensity for quite

Table 1: Comparison of various workload aware algorithms for the fixed monitoring interval

Model Time (min)
Frequency of
algorithm invocation

Response time (min) for various workloads
--

Quickly varying
(synthetic) Slowly varying Large variations

Reactive 1 120 0.3967 0.3786 0.3831
Proactive (ExpS) 0.3899 0.3739 0.3790
Proactive (WMA) 0.3810 0.3783 0.3779
Reactive 2 60 0.3998 0.3816 0.3862
Proactive (ExpS) 0.3821 0.3768 0.3825
Proactive (WMA) 0.3826 0.3825 0.3781
Reactive 3 40 0.4119 0.3907 0.3960
Proactive (ExpS) 0.3890 0.3797 0.3916
Proactive (WMA) 0.4090 0.3858 0.3820
Reactive 4 30 0.4292 0.4104 0.4151
Proactive (ExpS) 0.4207 0.4090 0.4119
Proactive (WMA) 0.4256 0.4009 0.4071
Reactive 5 24 0.4315 0.4215 0.4240
Proactive (ExpS) 0.4190 0.4108 0.4129
Proactive (WMA) 0.4002 0.4047 0.4036
Reactive 6 20 0.4521 0.4456 0.4472
Proactive (ExpS) 0.4421 0.4229 0.4277
Proactive (WMA) 0.4456 0.4233 0.4289

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

389

Table 2: Comparison of various workload aware algorithms for the adaptive monitoring interval

Model

Frequency of algorithm

invocation (synthetic/slowly

varying /large variations))

Response time (min) for various workloads

--

Quickly varying (synthetic) Slowly varying Large variations

Reactive (base) 38/27/32 0.3883 0.3743 0.3876

Proactive (ExpS) 26/17/23 0.3751 0.3712 0.3794

Proactive (WMA) 22/19/20 0.3579 0.3727 0.3614

a while before changing significantly. Thus, for the

fixed MI, forecasting algorithm provides good results

especially for WMA. As far as MI is concerned, the

accuracy of the CPU time is scheduled to the virtual

CPUs depending on the time interval that is regarded.

That is, if the MI is too small and the workload amount

is relatively steady, the proposed algorithm will be

executed too frequently with little or no effect. At the

same time, if the MI is too large and the workload

amount varies very quickly, the controller will not run

effectively. Thus, an MI itself adjust to the workload

strength can be more effective than a fixed MI. Table 2

gives the comparative results of the adaptive MI

algorithms.

In the case of real workload traces, for slowly

varying traces, exponential smoothing works much

better. For the fixed time interval even for the MI = {1,

2, 3}, there is no huge performance variance in it.

Comparing with the reactive model (0.3786 min),

exponential smoothing (0.3739 min) gives 12%

improvement. In the case of adaptive MI, exponential

smoothing (0.3712 min) gives 8% improvement over

reactive model (0.3743 min). Comparing with weighted

moving average (0.3727 min), it gives merely 3%

improvement. Exponential smoothing impact due to

adaptive MI (merely 17 times algorithm invocation) is

around 7%. This is all because of its forecasting

characteristics best suited for the slowly varying

workload nature. Surprisingly, reactive model works

equivalent to weighted moving average in some cases

(e.g., for MI = 1, 2). This is all because of the workload

characteristics.

For highly varying workload, apparently WMA

once again works much better. Especially with adaptive

MI (only 20 times of algorithm invocation), it gives 7%

improvement over the reactive model. Comparing with

exponential smoothing, it gives 5%. This is because of

its forecasting characteristics and suitability for the

workload traces. Table 2 shows all the algorithms work

quite nicely and withstand the SLA with adaptive MI

over fixed MI.

CONCLUSION

This study proposed a novel system using meta-

heuristic combinatorial search techniques that

automatically regulates the VMM CPU scheduler for

cloud, considering diverse geo-specific business

requirements. It evaluated the usefulness of the

framework for proactive, reactive and adaptive VCPU

scheduling algorithms for varying real-world and

synthetic workload traces. Simulation based results

indicate that proposed model improves CPU utilization

and make the best tradeoff between resource utilization

and performance by 2% on average and up to 6%

compared to the default VMM scheduler

configurations. In addition, the results of the

experiments have shown that the Weighed Moving

Average algorithm combined with the adaptive MI

policy significantly outperforms other dynamic VM

consolidation algorithms in all cases.

Regarding possible future works, first, the
proposed system can be evaluated in a real Cloud
infrastructure like Open Stack. Second, the system can
be evaluated for more complex workload models such
as slowly varying, big spike, dual phase variations
which are drawn from real-world traces, that will
leverage these workload models with increasing server
consolidation ratio. Third, apart from CPU sharing, the
work can be extended to cover the allocations of the
resources like main memory and, network I/O. Fourth,
multiple alternative forecasting methods in parallel can
be applied. Finally, the model can be extended to
support adaptive scheduling techniques in addition with
the resource allocation for the diverse workloads.

REFERENCES

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica and M. Zaharia, 2010. A view
of cloud computing. Commun. ACM, 53(1): 50-58.

Cherkasova, L., D. Gupta and A. Vahdat, 2007.
Comparison of the three CPU schedulers in Xen.
SIGMETRICS Perform. Eval. Rev., 35(2): 42-51.

Chia-Ying, T. and L. Kang-Yuan, 2013. A modified
priority based CPU scheduling scheme for
virtualized environment. Int. J. Hybrid Inform.
Technol., 6(2).

Chisnall, D., 2007. The Definitive Guide to the Xen
Hypervisor. 1st Edn., Prentice Hall Press, Upper
Saddle River, NJ, USA.

Cillendo, E. and T. Kunimasa, 2007. Linux
Performance and Tuning Guidelines. Redpaper,
IBM.

Herbst, N.R., N. Huber, S. Kounev and E. Amrehn,

2013. Self-adaptive workload classification and

forecasting for proactive resource provisioning.

Proceeding of the 4th ACM/SPEC International

Conference on Performance Engineering

(ICPE’13). Czech Republic, Prague.

Res. J. Appl. Sci. Eng. Technol., 9(5): 380-390, 2015

390

Huber, N., B. Fabian and K. Samuel, 2011a. Model-
based self-adaptive resource allocation in
virtualized environments. Proceeding of the 6th
International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS
’11), pp: 90-99.

Huber, N., M. Quast, M.V. Hauck and S. Kounev,
2011b. Evaluating and modeling virtualization
performance overhead for cloud environments.
Proceeding of the International Conference on
Cloud Computing and Services Science (CLOSER
2011). SciTePress, Noordwijkerhout, Netherlands,
pp: 563-573.

ITA, 1998. The Internet Traces Archives: WorldCup98.
Retrieved from: http://ita.ee.lbl.Gov/html/contrib/
WorldCup.html.

Jung, G., M. Hiltunen, K. Joshi, R. Schlichting and
C. Pu, 2010. Mistral: Dynamically managing
power, performance and adaptation cost in cloud
infrastructures. Proceeding of IEEE 30th
International Conference on Distributed
Computing Systems (ICDCS, 2010), pp: 62-73.

Kousiouris, G., T. Cucinotta and T. Varvarigou, 2011.
The effects of scheduling, workload type and
consolidation scenarios on virtual machine
performance and their prediction through
optimized artificial neural networks. J. Syst.
Software, 84(8): 1270-1291.

Lim, S.H., J.S. Huh, Y.J. Kim, G.M. Shipman and
C.R. Das, 2010. A quantitative analysis of
performance of shared service systems with
multiple resource contention. Technical Report.
Retrieved from: http://www.cse.psu.edu/research/
publications/tech-reports/2010/cse-10-010.pdf.

Liu, Z., W. Qu, W. Liu, Z. Li and Y. Xu, 2014.
Resource preprocessing and optimal task
scheduling in cloud computing environments.
Concurr. Comp-Pract. E., DOI: 10.1002/cpe.3204.

Lu, L., H. Zhang, G. Jiang, H. Chen, K. Yoshihira and
E. Smirni, 2011. Untangling mixed information to
calibrate resource utilization in virtual machines.
Proceeding of the 8th ACM International
Conference on Autonomic Computing, pp:
151-160.

NLANR, 1995. National Laboratory for Applied

Network Research. Anonymized access logs.

Retrieved from: ftp://ftp.ircache.net/Traces/.

Rao, J., Y. Wei, J. Gong and C.Z. Xu, 2013. QoS
guarantees and service differentiation for dynamic
cloud applications. IEEE T. Network Serv.
Manage, 10(1).

Schwetman, H., 2001. CSIM19: A powerful tool for
building system models. Proceeding of the 2001
Winter Simulation Conference, pp: 250-255.

Schwiegeishohn, U. and R. Yahyapour, 1998.
Improving first-come-first-serve job scheduling by
gang scheduling. In: Feitelson, D.G. and
L. Rudolph (Eds.), JSSPP’98. LNCS 1459,
Springer-verlag, Berlin, Heidelberg, pp: 180-198.

Sethi, S., A. Sahu and S.K. Jena, 2012. Efficient load

balancing in cloud computing using fuzzy logic.

IOSR J. Eng., 2(7): 65-71.

Sivanandam, S.N. and S.N. Deepa, 2008. Introduction

to Genetic Algorithms. 2nd Edn., Springer-Verlag,

New York.

Smith, J.E. and R. Nair, 2005. Virtual Machines:

Versatile Platforms for Systems and Processes.

Morgan Kaufmann [Imprint], San Diego.

Sukwong, O. and H.S. Kim, 2011. Is co-scheduling too

expensive for SMP VMs? Proceeding of the 6th

conference on Computer Systems (EuroSys '11),

pp: 257-272.

Suresh, S. and M. Kannan, 2014a. A study on system

virtualization techniques. Proceeding of the

International Conference on HI-TECh Trends in

Emerging Computational Technology (ICECT,

2014). Virudhunagar, Tamilnadu, India.

Suresh, S. and M. Kannan, 2014b. A performance study

of hardware impact on full virtualization for server

consolidation in cloud environment. J. Theor.

Appl. Inform. Technol., 60(3).

Watson, B.J., M. Marwah, D. Gmach, Y. Chen,

M. Arlitt and Z. Wang, 2010. Probabilistic

performance modeling of virtualized resource

allocation. Proceeding of the 7th International

Conference on Autonomic Computing (ICAC’10),

pp: 99-108.

Weng, C., Z. Wang, M. Li and X. Lu, 2009. The hybrid

scheduling framework for virtual machine systems.

Proceeding of the 2009 ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution

Environments. New York, USA.

