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Abstract: The preprocessing steps have substantial influence on the accuracy of segmentation and classification of 
lesions. The background on the image grid, behind the brain structures in the MRI images may not be always 
homogeneous. The edges or sharp pixel intensity transitions present in the back ground may get preserved during 
edge sensitive noise restoration and highlighted during contrast enhancement. If conventional noise restoration 
methods as Gaussian Kernels are adopted, the weak edges of lesions and structures get smoothened. Similarly, 
common contrast enhancement schemes like Global/Local histogram equalization either over saturate the image or 
degrade the textural, intensity and geometrical features of the image above tolerable limit. This study proposes a 
novel combination of preprocessing methods which is exclusively suitable for MR images carrying weak edges. The 
proposed combination of preprocessing comprises back ground elimination, restoration with bilateral filter, 
enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE) and skull stripping. Back ground 
elimination and skull stripping are performed by multiplying the original image and contrast enhanced image 
respectively with a multiplication mask. Multiplication mask for background elimination is generated by gradient 
based thresholding and a series of morphological operations and the multiplication mask for skull stripping is 
generated via adaptive Otzu’s thresholding. MR images of tumor edema complex are used for testing the proposed 
strategy. The method is experimented in Matlab

®
. Qualitative inspection of the skull stripped images reveals that the 

weak edges of tumor-focus and perifocal edema are well preserved, inhomogeneity in the uniform regions is 
suppressed, CLAHE do not alter the textural intensity and geometrical image features and the brain region is 
accurately extracted. 
 
Keywords: Bilateral filter, contrast limited adaptive histogram equalization, glioblastoma multiforme, otzu’s 

threshold, preprocessing 

 
INTRODUCTION 

 
The term ‘preprocessing’ when used in connection 

with medical images refers to restoration and contrast 
enhancement. Contrast enhancement in medical 
imaging is nothing but improving the pixel intensity 
difference between different morphological structures 
so that visual distinction between these structures or 
their automated segmentation is easy. Sharp pixel 
intensity transitions in the homogenous tissue structures 
which causes unpleasant visual impact is ‘noise’. 
Traditional mean filters, median filters and Gaussian 
kernels degrade the contrast between the morphological 
structures and smoothen edges between the 
morphologies (Wang et al., 2006). Similarly, for 
enhancing contrast, there are traditional methods like 
contrast stretching, (Jagatheeswari et al., 2009; 
Umamaheswari and Radhamani, 2012) contrast 
transformation (Hossain et al., 2010) and histogram 

equalization. Contrast stretching is not applicable if the 
raw image itself is spread over the possible full 
intensity range. Devising a mapping function which 
equally suits multiple images is difficult in contrast 
transformation. Generally, histogram equalization 
saturates the image beyond tolerable limits. Though 
edge sensitive restoration methods like non-local means 
filter (Lu et al., 2012), anisotropic diffusion filter 
(Sameh Arif et al., 2011) and bilateral filters are 
available, operational parameters has to be selected 
carefully. Otherwise the outcome may become even 
worse than the raw image. Even for the most widely 
accepted contrast enhancement scheme CLAHE, the 
operational parameters like tile size, clip-limit, 
distribution etc. can be fixed empirically, from 
qualitative evaluation of the equalized images. 
Formulating the right combination of the restoration 
and enhancement schemes and the selection of their 
operational parameters are quite critical, in specific 
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      (a)                             (b)

Fig. 1: The images after each step of pre-processing

after bilateral filtering; (d): Contrast enhanced image after CLAHE and (e)

 

medical applications as the intensity and texture of the 

image has certain diagnostic meaning. 

Intensity transients and intensity in homogeneity 

are usually present in the background of MR images as 

evident in Fig. 1a. These intensity transitions in the 

background and the noise present in the morphological 

structures may interfere with the performance of the 

edge based segmentation schemes. Moreover, th

contrast of the image would not be enough to allow an 

accurate segmentation of the Region of Interest (ROI). 

The structures and tissue classes other than the brain 

region, like skull and scalp, increases the number of 

tissue classes in the whole image. S

methods like, K-Means (Chen et al

Expectation Maximization (EM) (Carson 

yield better outcomes when the number of tissue classes 

in the image of interest is less. 

This study proposes a combination of background 

elimination, noise restoration, enhancement and skull 

stripping for MR images. The optimum operational 

parameters of CLAHE and bilateral filter are used 

which are fixed through qualitative inspection of the 

processed MR images. In fact operational parameters of 

enhancement methods like CLAHE and restoration 

methods like bilateral, anisotropic and non

filters can be fixed only empirically. But the choice 

operational parameters may be distinct for different 

classes of images. 

The forthcoming discussions comprise 

mathematics of background removal, restoration, 

enhancement and skull stripping followed by qualitative 

evaluation of the preprocessed MR images

 

MATERIALS AND METHODS

 

Axial Plane T1 contrast enhanced (Series: AX T1 

SE FS+C, Spin Echo Sequence (SE)) MR images 

(courtesy: Hind Labs, Govt. Medical College 

Kottayam, Kerala) are selected for the experimental 

evaluation of the proposed method. The specification of 

MR equipment is; Manufacturer: GE Medical Systems, 

Model Name: SignaHDxt, Acquisition Type: 2D and 

1.5T field strength. The proposed preprocessing is 
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(b)                              (c)                                 (d)                             

 
processing; (a): Original image; (b): Background eliminated image

Contrast enhanced image after CLAHE and (e): skull stripped image 

medical applications as the intensity and texture of the 

Intensity transients and intensity in homogeneity 

sually present in the background of MR images as 

evident in Fig. 1a. These intensity transitions in the 

background and the noise present in the morphological 

structures may interfere with the performance of the 

edge based segmentation schemes. Moreover, the 

contrast of the image would not be enough to allow an 

accurate segmentation of the Region of Interest (ROI). 

The structures and tissue classes other than the brain 

region, like skull and scalp, increases the number of 

tissue classes in the whole image. Segmentation 

et al., 2008) and 

Expectation Maximization (EM) (Carson et al., 2002), 

yield better outcomes when the number of tissue classes 

proposes a combination of background 

elimination, noise restoration, enhancement and skull 

stripping for MR images. The optimum operational 

parameters of CLAHE and bilateral filter are used 

which are fixed through qualitative inspection of the 

R images. In fact operational parameters of 

enhancement methods like CLAHE and restoration 

methods like bilateral, anisotropic and non-local means 

filters can be fixed only empirically. But the choice 

operational parameters may be distinct for different 

The forthcoming discussions comprise 

mathematics of background removal, restoration, 

enhancement and skull stripping followed by qualitative 

evaluation of the preprocessed MR images. 

MATERIALS AND METHODS 

Axial Plane T1 contrast enhanced (Series: AX T1 

SE FS+C, Spin Echo Sequence (SE)) MR images 

(courtesy: Hind Labs, Govt. Medical College 

Kottayam, Kerala) are selected for the experimental 

evaluation of the proposed method. The specification of 

is; Manufacturer: GE Medical Systems, 

Model Name: SignaHDxt, Acquisition Type: 2D and 

1.5T field strength. The proposed preprocessing is 

experimented inMatlab
®
. Figure 2 illustrates the 

hierarchy of steps involved in preprocessing. 

Background elimination was accomplished by 

multiplying the original MR image with a binary 

multiplication mask. Towards the construction of this 

multiplication mask, binary edge map of the raw MR 

image is generated through gradient based threshold 

(Yazid and Arof, 2013). The mul

constructed from this edge map through a series of 

morphological operations. The series of morphological 

operations include, dilation, hole filling, border clearing 

and erosion. In gradient based threshold, the gradient is 

computed with Sobel mask (Jähne et al

The magnitude gradient is computed from gradient 

along horizontal and vertical directions (

Woods, 1992; Acharya and Ray, 2005)

The gradient along x-direction: 

 

 g
x
=� ∂f�x,y�

∂x
                                                            

 

The gradient along y-direction: 

 

 g
y
=� ∂f�x,y�

∂y
                                                             

 

The gradient magnitude: 

  

 G�x,�y��= �g
x
2+g

y
2                                                

 

Edge image generated from gradient based threshold:

  

�f��x,�y��=� �� if G�x,y�≥GT� else
�	                               

 

where, GT is the adaptive gradient threshold. For 

dilation of the traced edges, horizontal and vertical 

structuring elements or strel objects with three 

neighbours or length 3 are used. Erosion is performed 

with a diamond strel object having five neighbours or 

with a length one neighbours or length 3 are used. 

Erosion is performed with a diamond strel object 

having five neighbours or with a length one.

 

           (e) 

Background eliminated image; (c): Restored image 

. Figure 2 illustrates the 

hierarchy of steps involved in preprocessing. 

was accomplished by 

multiplying the original MR image with a binary 

multiplication mask. Towards the construction of this 

multiplication mask, binary edge map of the raw MR 

image is generated through gradient based threshold 

. The multiplication mask is 

constructed from this edge map through a series of 

morphological operations. The series of morphological 

operations include, dilation, hole filling, border clearing 

and erosion. In gradient based threshold, the gradient is 

et al., 1999). 

The magnitude gradient is computed from gradient 

along horizontal and vertical directions (Gonzalez and 

Woods, 1992; Acharya and Ray, 2005). 

                                                           (1) 

                                                            (2) 

                                               (3) 

Edge image generated from gradient based threshold: 

	                               (4) 

is the adaptive gradient threshold. For 

dilation of the traced edges, horizontal and vertical 

structuring elements or strel objects with three 

neighbours or length 3 are used. Erosion is performed 

with a diamond strel object having five neighbours or 

a length one neighbours or length 3 are used. 

Erosion is performed with a diamond strel object 

having five neighbours or with a length one. 
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Fig. 2: Steps involved in pre-processing 

 

Conventional spatial filter kernels may sm

weak edges present between morphological structures. 

Bilateral filtering is a technique to smooth 

homogeneous regions of images while preserving the 

edges. In bilateral filtering, each pixel

replaced by a weighted average of its neigh

intensities. The mathematical concept of bilateral filter

(Tomasi and Manduchi, 1998) is the corrupted signal 

is the sum of noise V and the uncorrupted signal 

 �Y�=�X+V                                                              

 

The bilateral filter approximates a weighted 

average of pixels in the given image Y: 

 

�X
�k��=�  W�k,n�Y�k-n�N

n=-N W�k,n�N

n=-N

 -N ≤ n ≤ N 

 

In (6) restored intensity is the normalized weighted 

average of a neighbourhood of  [2N+1] samples around 

the k
th

 sample. The weights W [k, n] are computed 

based on the content of the neighbourhood. For the 

center sample X[k], the weight W[k, 

from the following two factors: 

 

Ws�k, n�=exp �- d
2��k�,�k-n��

2σs
2 �=exp �- n2

2σs
2�   

 

Wg�k,�n�=exp �- d
2�Y�k�,Y�k-n��

2σR
2 �= exp �- �Y

 

where, σs
2 and σR

2  are the variance of the Gaussian 

functions which form, the kernel of spatial and radio 

metric weight factors, respectively. 

The final weight is the product of spatial and radio 

metric weight factors: 

 

 W�k,�n�=Ws�k,�n�W
R
�k,�n��                            

 

For the bilateral filter, optimum window size of 

11*11, variance of the spatial weight factor Gaussian 

kernel = 10 and variance of the radiometric weight 

factor Gaussian kernel = 1.3 are opted through trial and 

error. Usually, the contrast between the brai

and ROI may be poor so that contouring the ROI is 

difficult.  For  example,  in  the MR images used to test 
the proposed preprocessing, the GBM
perifocaledema exhibit fairly close intensities. The 
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Conventional spatial filter kernels may smooth the 

weak edges present between morphological structures. 

Bilateral filtering is a technique to smooth 

homogeneous regions of images while preserving the 

pixel intensity is 

replaced by a weighted average of its neighbouring 

intensities. The mathematical concept of bilateral filter 

he corrupted signal Y 

and the uncorrupted signal X: 

                                                             (5) 

The bilateral filter approximates a weighted 

 

N ≤ n ≤ N               (6) 

(6) restored intensity is the normalized weighted 

[2N+1] samples around 

sample. The weights W [k, n] are computed 

based on the content of the neighbourhood. For the 

 n] is computed 

�               (7) 

�Y�k�-Y�k-n��2
2σR

2 ��    (8) 

are the variance of the Gaussian 

functions which form, the kernel of spatial and radio 

The final weight is the product of spatial and radio 

                           (9) 

For the bilateral filter, optimum window size of 

11*11, variance of the spatial weight factor Gaussian 

kernel = 10 and variance of the radiometric weight 

factor Gaussian kernel = 1.3 are opted through trial and 

Usually, the contrast between the brain structures 

and ROI may be poor so that contouring the ROI is 

the MR images used to test  
the GBM-focus and the 

edema exhibit fairly close intensities. The 

contrast between the brain structures and edema is also 
poor as evident in Fig. 1. Even though schemes like 
Histogram Equalization (HE) can be employed to 
enhance the contrast, HE either over enhances the noise 
or saturates the image. In HE, the degree of contrast 
enhancement is determined by the slope of the mapping 
function, which transforms the original intensity into 
contrast enhanced intensity. Hence, the enhancement of 
noise can be managed by manipulating the slope of the 
mapping function. In HE, the contrast enhanced 
intensity ‘Sk’ is directly proportional to the cumulative 
probability density. The slope of the mapping function 
at any point is proportional to the height of the 
histogram at the corresponding intensity as apparent in 
(10). So that limiting the slope of the mapping fu
is equivalent to clipping the height of the histogram:

 

�Sk=
�L-1�
MN
 nj k=0,1, 2,….k

j=0 ..,L

 
where,  
L  = The maximum possible intensity, say 255 in a 

uint8 image 
M*N = The total number of pixels  
nj  = The probability of occurrence of the j
 

CLAHE is an extension of the adaptive histogram 
equalization which improves contrast between 
morphologies and suppresses pixel intensity transitions 
in the homogeneous regions. In CLAHE (
the image is divided into non-overlapping contextual 
region or tiles and the local histogram of the tile is 
computed. Prior to the estimation of the cumulative 
probability density and contrast enhanced intensity, 
histogram of each tile is clipped with respect to 
defined clip-limit. The clip-limit is a multiple of the 
average height of the histogram of the contextual 
region. Average height of the histogram is the ratio of 
total number of pixels present in the contextual region 
and the number of grey levels. In this respect, clip
is the product of the user-defined contrast factor, ‘α’ 
and average number of pixels falling in each histogram 
bin. For a contextual region of size ‘M’ rows and ‘N’ 
columns and L being the number of histogram bins, the 
clip-limit is given by: 
 

 nT = 
αMN

L
 0< α ≤1                                              

 

The original height of the histogram of the 

contextual region is clipped with respect to the clip

limit nT such that: 

 

ctures and edema is also 
poor as evident in Fig. 1. Even though schemes like 
Histogram Equalization (HE) can be employed to 
enhance the contrast, HE either over enhances the noise 

In HE, the degree of contrast 
ned by the slope of the mapping 

function, which transforms the original intensity into 
contrast enhanced intensity. Hence, the enhancement of 
noise can be managed by manipulating the slope of the 
mapping function. In HE, the contrast enhanced 

’ is directly proportional to the cumulative 
probability density. The slope of the mapping function 
at any point is proportional to the height of the 
histogram at the corresponding intensity as apparent in 
(10). So that limiting the slope of the mapping function 
is equivalent to clipping the height of the histogram: 

L-1             (10) 

maximum possible intensity, say 255 in a 

probability of occurrence of the j
th

 intensity 

CLAHE is an extension of the adaptive histogram 
equalization which improves contrast between 
morphologies and suppresses pixel intensity transitions 
in the homogeneous regions. In CLAHE (Karel, 1994), 

overlapping contextual 
region or tiles and the local histogram of the tile is 
computed. Prior to the estimation of the cumulative 
probability density and contrast enhanced intensity, 
histogram of each tile is clipped with respect to a user 

limit is a multiple of the 
average height of the histogram of the contextual 
region. Average height of the histogram is the ratio of 
total number of pixels present in the contextual region 

In this respect, clip-limit 
defined contrast factor, ‘α’ 

and average number of pixels falling in each histogram 
bin. For a contextual region of size ‘M’ rows and ‘N’ 
columns and L being the number of histogram bins, the 

                                             (11) 

The original height of the histogram of the 

contextual region is clipped with respect to the clip-
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�hk= �nT if nk ≥nT

nk else
k�=1,2,……L-1 	            (12) 

 �� is the histogram of contextual region and: 

 

 nk
L-1

k =0 = MN                                          (13) 

 

Total number of clipped pixels: 

 

nc = MN -  hk 
L-1

k=0                                              (14) 

 
To renormalize the histogram or to bring its area 

under the curve back to the original, the clipped pixels 
are redistributed back to the histogram bins. This 
redistribution can be uniform or distributing them into 
the bins with contents less than the clip-limit, in 
proportion to the number of pixels in the bin. Here, the 
clipped pixels are equally redistributed to all the 
histogram bins such that the bin content is less than the 
clip-limit. The number of clipped pixels to be 
redistributed to each histogram bin: 
 

�nµ = 
nc

L
= 

MN-  hk
L-1
k=0

L
�                                           (15) 

 
The clipped pixels are uniformly redistributed to all 

the histogram bins, provided the new histogram: 
 

�hk= � nT if nk + nµ ≥nT

nT+nk else
�	                             (16) 

 
The number of undistributed pixels are again 

computed from (14-15) and the transformation (16) is 
repeated till all the clipped pixels get distributed 
uniformly to the histogram bins and the histogram 
grows back to the original area. The cumulative 
histogram of the contextual region is given by: 
 

Ck = 

1

MN
 hj�k

j=0                                           (17) 

 
Contrast of each tile is enhanced so that the 

histogram of the tile approximately matches with the 
histogram specified by the distribution parameter as 
uniform (flat), Rayleigh (bell-shaped) or exponential 
(curve shaped). The neighbouring tiles are combined 
using bilinear interpolation to eliminate artificially 
induced boundaries. The clip-limit and tile size opted 
here is 0.1 and 8*8, respectively and the distribution 
specified is uniform. This also was decided empirically, 
as the bilateral filter parameters. MR image after 
restoration and contrast enhancement is intensity 
threshold and connected components in the resulting 
binary image are labelled. As the intensity features of 
each MR image is different, an image adaptive 
threshold is computed using Otsu’s method (Otsu, 
1979). The mathematical way of estimating Otsu’s 
threshold is as follows: 

Let L is the maximum possible grey level in the 

histogram equalized MR image and the image contains 

grey levels, {0, 1, 2….L}. The normalized grey level 

histogram: 

  �Pi=
ni

N� Pi ≥ 0,  p
i 
=L

i=1 1                                 (18) 

 

where, N is the total number of pixels in the MR image, 

ni is the number of occurrence of grey level ‘i’ and pi is 

its probability density function, given, i = { 0, 1, 

2,…..L} and N = {n1+n2+....+nL}. If the grey levels are 

assumed to be of two classes C0 and C1, separated by a 

threshold ‘k’, so that C0 = 0, 1,…k} and C1= {k+1…}, 

the probabilities of class occurrence: 

 

ω0= Pr�C0�= Pi
k
i=1 = ω�k��                               (19) 

 �ω1= Pr�C1� = Pi
L
i=k+1 =1-ω�k��            (20) 

 

The mean grey level of classes:  

 

�µ
0 

= ik
i=1 Pr �i C0

� � = iPi
ω0
�k

i=1  = 
µ�k�

ω�k� �   (21) 

�µ
1 =
 iL

i=k+1 Pr�i/C1�=  ip
i

ω1 !L
i=k+1 =

µT-µ�k�
1-ω�k� �         (22) 

 

 ω�k� =  p
i 
�k

i=1                                           (23) 

 

 "�k� � = � �ip
i�k

i=1                                               (24) 

 

where, ω(k) and µ(k) are the zeroth and first order 

cumulative moments of the histogram up to the k
th

level, 

respectively: 

 �µ
T
�=�µ�L� =  ip 

i 
�L

i=1                                         (25) 

 

µT is the global mean of histogram equalized image: 

 

 ω0 µ0
 +ω

1 
µ

1
 =µ

T
, ω

0 
+ ω1 = 1, ∀ k                   (26) 

 

The class variances are given by: 

  

σ0 =
2  �i-µ

0
�2k

i=1 Pr�i C0! � = �i-µ
0
�2k

i=1 Pi ω0 �!           (27) 

 

σ1 =
2  �i-µ

1
�2L

i=k+1 Pr�i C1! � = �i-µ
1
�2k

i=k+1 Pi ω1 �!     (28) 

 

To evaluate the performance of the threshold ‘k’, 

the following discriminant criterion is used: 

  

 λ= σB
2 σw

2!  K= σT
2 σw

2 η=σ
B
2 σw

2  !�              (29) 

 

where λ, K and η are within class variance, between 

class variance and the variance of total grey levels, 

respectively: 
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 σw = 
2 ω0σ0

2+ω1σ1
2                                          (30) 

 

�σB 
2 =ω0�µ0

-µ
T
�2

+ω1�µ1
-µ

T
�2

= ω0ω1�µ1
-µ

0
�2�         (31) 

 

The global variance of grey levels: 

 

�σT
2  =  �i-µ

T
�2L

i=1 Pi �                                          (32) 

 

At optimum threshold k, the object function (29) 

maximizes. 

The discriminant criteria maximizing λ, K or η for 

k, are however, equivalent to one another; e.g., K= λ+1 

and η= λ/(λ+1) in terms of λ because the following 

basic relation always holds: 

 �σw
2 �+�σB

2 �=�σT 
2 �                                                   (33) 

 

σw
2,
 and σB

2
 are functions of threshold level k, but σT

2
 is 

independent of k, σw
2 

is based on the second order 

statistics, while σB
2
 is based on the first order statistics. 

Therefore, %�is the simplest measure with respect to 

k. Thus at the optimum threshold ‘k’, the object 

function % maximises. 

The optimal threshold ‘k’ which maximizes % or 

equivalently maximizes σB
2
, is selected through a 

sequential search using (23) and (24), or explicitly 

using (19)-(22): 

 

 η�k��= σB
2 �k� σT 

2 �!                                               (34) 

 

 σB
2 �k�= �µTω�k�-µ�k��2

ω�k��1-ω�k�� �                                      (35) 

And the optimal threshold k is: 
 

 σB
2 �k*��= max1≤k˂<L σB

2 �k��                          (36) 

 
The MR image is converted to binary image by 

thresholding it with respect to the optimum threshold 
‘k’ as in (37): 
 

 B
 �x,y��=� �1, if B�x,y� ≥ k

0, else
	                            (37) 

 
where, B(x, y) is the MR image after back ground 

elimination, restoration and enhancement, the &'�(, *� is 
the binary image generated via intensity threshold. The 
connected components in the binary image are labelled. 
Region properties, area and solidity of each labelled 
regions are estimated. Labelled region, presenting area 
above half of the maximum area are identified as high 
solidity regions. This high solidity labelled region, 
exhibiting highest area, corresponds to the brain region. 
A multiplication mask, similar to the mask used in 
background elimination was generated by hole-filling 
this ‘high solidity-high area’ region. The skull stripped 
image is: 
 �U�x,y��=�S�x,y�×F�x,y�             (38) 

x�=�+1,2,3,……M, and y�=�+1,2,3,……N,                   
 
where, ‘F’ is the binary multiplication mask and ‘S’ is 
the MR image after background elimination, bilateral 
filtering and CLAHE. 

 
RESULTS AND DISCUSSION 

 
The combination of pre-processing, background 

elimination, bilateral filtering, enhancement with 
CLAHE  and skull stripping is experimentally proved to  

 

 
                                                        (a)                                                        (b)  

 
                                                       (c)                                                         (d) 

 
                                                       (e)                                                          (f) 

 

Fig. 3: Original image specimens and its pre-processed versions 
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be viable on Axial Plane T1 contrast enhanced MR 

images of Glioblstoma Multiforme-edema complex. 

Figure 1 demonstrates the images after each step of 

preprocessing. It is apparent from the Fig. 1a and b that 

the structures other than the morphologies are removed 

from the raw MR image after background elimination. 

Bilateral filtering well preserves the weak edges among 

the morphological structures while smoothening the 

noise inherent in homogeneous regions. It is obvious 

from the qualitative inspection of the contrast enhanced 

image that CLAHE has good noise suppression 

capabilities and the degree of contrast enhancement is 

sufficient to support characterization of tissue classes 

such that even primitive segmentation methods can 

yield accurate outcomes. As skull stripping accurately 

extracts the brain region, effectively eliminating skull 

and scalp, the number of tissue classes in the resultant 

image comes down and this would enhance the 

accuracy of segmentation, especially when K-means or 

EM are employed. 

Six sets of raw MR images and the corresponding 

preprocessed images are illustarted in Fig. 3. 

 

CONCLUSION 

 

A combination of background elimination, 

restoration, enhancement and skull stripping schemes 

were successfully demonstrated on axial plane T1 

weighted MR images. The background elimination 

could remove structures other than morphology from 

the image grid. Edge sensitive bilateral filter could 

preserve the weak edges between the tumor-focus and 

the perifocaledema during smoothening. CLAHE 

exhibits good noise suppression capabilities and it is 

immune to saturation. The skull stripping methodology, 

adopted could extract the brain region perfectly. As the 

pre-processing steps proposed here are robust and 

adaptive, segmentation algorithms would yield better 

outcomes. 
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