
Research Journal of Applied Sciences, Engineering and Technology 8(4): 471-480, 2014
DOI:10.19026/rjaset.8.995
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.

Submitted: January 24, 2014 Accepted: March 08, 2014 Published: July 25, 2014

Corresponding Author: Waqar Mehmood, COMSATS Institute of Informaion Technology, Wah Campus, Quaid Avenue
Wah Cantt, Pakistan

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

471

Research Article
Conflict Detection and Merging in Model based SCM Systems

Waqar Mehmood and Arshad Ali
COMSATS Institute of Informaion Technology, Wah Campus, Quaid Avenue Wah Cantt, Pakistan

Abstract: This study presents a fine-grained approach to the problem of conflict detection and merging in
model-based Software Configuration Management (SCM) systems. Traditional SCM systems uses textual
or structured data to represent models at fine-grained level. Our approach is based on defining graph
structure to represent models data at fine-grained level. The approach is based on transforming the textual
or structured data into graph structure and then performing the diff, merge and evolution control activities
at the graph structure whereas versioning activities should remains at textual or structural representation.
By doing so, at one hand we are getting the advantages of reusing the existing SCM systems for versioning
purposes and on other hand avoiding the problems associated with textual or structured representation
when performing rest of the SCM activities.

Keywords: Conflict detection, fine-granular representation, merging, model-based SCM, versioning

INTRODUCTION

Software Configuration Management deals with

controlling the evolution of soft-ware systems. It is an
indispensable part of a high-quality software
development life cycle. Controlling the evolution
requires many activities to perform such as
construction and creation of versions, maintaining
consistency between inter-dependent components,
conflict detection and merging.

We categorize SCM systems into two areas i.e.,
Model-based SCM systems and Text-based SCM
systems. Text-based SCM systems are traditional
SCM systems that consider software artifact as a
text files. By model-based SCM we means SCM
system that consider software artifact as a graphical
model. Funda-mentally, the main difference between
text and model-based SCM occurs because of the
different nature of their artifacts. Text-based SCM
assumes an implicit tree structure with nodes being
text files and with no relations. In contrast, in model-
based SCM models are graphs, with nodes being
complex entities and arcs (relations) containing a
large part of model semantics. These dissimilarities
clearly indicate that text and model-based SCM
cannot be handled in the same way.

In this study the presented approach deals with
conflict detection and merging activities in model-
based SCM. At fine-grained level we represent our
model as graph structure, which is an intermediate
representation in the form of graph.

The approach is based on transforming the textual
or structured data into graph structure. The diff, merge

and evolution control activities are performed at the
level of graph structure whereas versioning activities
should remains at textual or structural representation
such as XMI-files.

Model Driven Engineering (MDE) goal is to
perform Software Engineering (SE) activities only on
models, however, in reality models and files coexist
and will have to be managed together consistently.
This requires the reusability of traditional SCM
systems for files. In our approach versioning
activities should remains at textual or structural
representation. By doing so, at one hand we are
getting the advantages of reusing the traditional
SCM systems for versioning purposes and on other
hand avoiding the problems associated with textual or
structured representation when performing rest of
the SCM activities.

The approach present a three-way merge process,
where a base and its de-rived versions are used for
merging. The process of merging consists of
comparison of version, conflict detection and
resolution and merging. The comparison and merge
operation are performed at fine-grained level on graph
structure. The process of merging cannot be completely
automated. Manual interaction is required in case of
conflict detection. A conflict usually occurs if same
element of an entity is modified in parallel. In order to
differentiate conflicted and non-conflicted cases we
define different merge cases. Merge cases are used to
analyze the difference result in order to perform the
merge operation. We explain these concepts with the
help of an example.

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

472

LITERATURE REVIEW

Odyssey-VCS (Oliveira et al., 2005) uses XMI as

the protocol for communication between CASE tools
and the VCS. When a conflict is detected, the
developer receive conflict description and the
original, user and current configurations. After
performing the manual merge, the developer resubmit
the UML model to the repository. Merge algorithm
follows a 3-way merge approach which inputs are
base version, source version and target version.
Three main steps are existence analysis, attribute
processing and relationship processing. The main
problem is with per-forming Diff/Merge on
structured data XMI which is not suitable for such
kinds of operations as identified by Ohst and Kelter
(2002).

The approach presented by Mehra et al. (2005)
describe a generic approach for diff and merge via a
set of plug-in components. Plug-ins are developed for
Pounamu meta-CASE tool which support Version
control, Visual differencing and Merging. Merging is
realized interactively. Differences are shown
graphically. The set of edit operations are offered to
the user who decides which changes to apply.
Diagram are transformed from XML representation
into intermediate java object representation which
represents a tree structure. Differences identified in
two versions are converted into edit operations. The
conversion can be considered as state-based to
operation-based conversion. The approach is based
on the reuse of existing SCM tools. However there are
no inter/intra link information maintained between
the elements of the models nor any evolution control
policy is followed.

An approach for comparison and versioning of
scientific workflows is presented in Ogasawara et al.
(2009). The approach is based on modified 3-way
merge algorithm named 3-way subgraph diff/merge
algorithm which is based on graph theory. A 3-way
subgraph diff/merge is a 3-way diff/merge in which
instead of comparing a single vertex, a subgraph is
analyzed as an atomic part and taken into
consideration for merge decisions. The main problems
with the approach are that it dealt only one specific
kind of model i.e., workflows. Thus the approach is
not generic. Furthermore, it doesn’t reuse the
existing SCM tools, which are helpful in case
software documents consists of text files along with
graphical models.

The approach of merging UML documents given

in Ohst et al. (2004) split the merging process into

three steps. First a pre-merged document is created,

then identified conflicts are solved manually and

finally merged document is created. The pre-merged

document is an extended unified document consisting

of common parts, automatically merged parts and

conflicts. Software document is transformed into

abstract syntax tree at fine-grained level.

In Schneider et al. (2004) all edit operations that

are executed on the diagrams are logged by the tool.

The approaches uses three way merging but gives

priority to the version that was committed first. The

approach is based on operation-based deltas and

thus dependent of the editor tool which logged the

edit operations.

MATERIALS AND METHODS

Below we first describe some basic terminologies.

Conflict: A conflict occurs when the same attribute of

an entity is modified parallel in both versions, or an

entity or its components are deleted in one version and

is modified in other version.

Merge: The process of combining two or more versions

into a consolidated version.

Types of merging: Two types of merging are Two-way

merging and Three-way merging.

Two-way merge: Two way merge compares two

versions and perform merging. Every difference

requires a user interaction. An example of two way and

three way merge is given in Fig. 1.

Three-way merge: Three way merge compare three

versions, a base version and two derived versions. It is

more powerful than two way merge since more

conflicts can be detected and user interaction is required

only the case of conflict. It also increases the level of

automation.

Versioning approach: There are two types of

versioning approach pessimistic approach and

optimistic approach.

Pessimistic approach: Pessimistic approach a.k.a lock-

modify approach al-lows one developer to work on a

model at a time. This approach ensure that no conflict

occurs in case many developer work on the same

model, since no parallel work is allowed.

Optimistic approach: In optimistic approach many
developer can modify the same model in parallel. A
merge to the changes are performed when the models
are checked-in.

Software documents: In software development life
cycle two main types of software documents as shown
in Fig. 2 are text files and graphical models. Text files
may contains source code, documentation etc whereas
graphical models are in form of UML or domain
specific models. However, these models are usually

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

473

Fig. 1: 2-way and 3-way merge example

Fig. 2: Software document representations

represented in XMI at fine-grained level which is

again a textual representation. The difference and

merge operation performed on textual level yields

many problem as identified in Ohst et al. (2003).

Therefore we represent these models at fine-grained

level in graph structure which is an intermediate

representation in the form of graph. The meta model

for this intermediate representation is given

Fig. 3. By this representation we overcome the

problems associated with textual representation of

models.

Four main areas of SCM: Four main areas of SCM

given in Fig. 4 are:

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

474

Fig. 3: Meta model of graph structure

Fig. 4: Four main areas of model based SCM

• Modeling and versioning

• Model differencing

• Evolution control policy

• Conflict detection and merging

Modeling and versioning: Deals with creating and
organizing versions of models, developing meta models
version space and product space, defining approach
pessimistic vs. optimistic.

Model differencing: Deals with comparing two
versions to detect matches, differences, defining fine-
grained data model. Approaches are state based and
operation based.

Evolution control policy: Deals with defining a policy

for creating a new version, defining versioning

granularity, defining intralink and interlink information.

Evolution control policy based on version granularity

and intra and inter-link information.

Conflict detection and merging: Conflict detection

and merging deals with identifying and resolving

conflict. In the next sections we will explain these

issues in more details.

Conflict detection: A conflict occurs when the same

attribute of an entity is modified parallel in both

versions, or an entity or its components are deleted in

one version and is modified in other version. Consider a

conflicted scenario given in Fig. 5. Two users user 1

and user 2 perform a check-out operation to an entity

Customer. The user 2 modifies the entity by refining the

data type of attribute id from into string and adding an

attribute name of type string. The user 2 then perform

check-in operation and the Customer entity is updated

in repository. At the same time user 1 also perform

updation by adding a method setId (id) to the entity.

Now when the user1 perform the operation check-in a

conflict is raised, since entity Customer is updated in

the repository and user 1 don’t have this updated

version of entity Customer. So user1 first check-out the

updated version of the entity, check the conflicted

attributes (in this case attribute id is conflicted attribute)

and perform manual resolution.

Not every change to a model or entity causes a

conflict e.g., adding methods or attributes to the same

entity, changes two different entities, adding an entity,

deleting an unmodified entity. The important point here

is to note that higher the delta granularity higher will be

the number of conflicts and vice versa. For instance, if

the delta granularity is at class level then any change to

the same class causes a conflict even different part of

the class are modified, whereas, if the delta granularity

is at attribute level then any change to the same

attribute causes a conflict. No conflict will

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

475

Fig. 5: Conflicted scenario

Fig. 6: Proposed solution

be raised if different attributes of the same class are

modified.

RESULTS AND DISCUSSION

Merge process: Merge process consists of following

four main steps.

Versions comparison: The process of comparing

derived versions with the base version.

Conflict detection and resolution: The process

of identifying the conflicted elements and

resolving the conflicts either manually or

automatically.

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

476

Merging: The process of combining two or more

versions into a consolidated version.

Currently this problem is solved at the level of

XMI along with the problems of versioning and

difference calculation. A diagram editor is used to

draw the graphical representation of the model which

is stored as XMI format at fine-granular level. A

plug-in of versioning system import/export these

XMI data to the versioning system which perform

versioning, differencing and merging operation on

XMI. An extension to the current solution is given in

Fig. 6. Our approach is based on transforming the

XMI into graph structure and performing the

differencing, merging and evolution control activities

at the graph structure whereas versioning activities

should remains at XMI representation. By doing so,

at one hand we are getting the advantages of reusing

the existing versioning system such as SVN

(Michael, 2004) for versioning purposes and on other

hand we overcome the problems associated with XMI

when performing differencing, merging and evolution

control activities.

Fig. 7: Merging workflow

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

477

Merging workflow: Merging workflow is given in

Fig. 7 . The workflow works as follows. The diagram

editor stores the diagram versions into xmi format.

These xmi formats are inputs of the merging process.

The first step is to transform these xmi inputs into graph

structures. After transformation the Diff component

compares the graph structures for matched, unmatched,

added and deleted elements using a three-way merge

approach. The result of this comparison will be

analyzed ac-cording to the merge policy (Fig. 8).

Based on difference result and merge policy the

possible actions can be categorize into add, delete,

include changed and include unchanged entities. The

desired action will be performed. In case of conflict

the conflicted elements will be identified. A manual

interaction will be required to resolve the conflict.

Finally merge diagram will be obtained.

Merge cases: We identified different merge cases

(Table 1). Base version elements are com-pared with

derived version elements. In case 1 the base element

remains un-changed in derived versions. In case 2

base element is changed in both versions. In case 3

represent changed in one version while remains

unchanged in second version. Case 4 represent

changed in one version while deleted in other version.

Case 5 represent base element deleted in one version

while unchanged in other version. In case 6 element is

deleted in both versions. Case 7 represent added in

either version. Note that case 2 and case 4 are

conflicted scenario, since same element is modified

parallel in both versions. Based on these cases we apply

our merge algorithm.

Merging algorithm: An abstract pseudo code of

merge algorithm is given below:

• All the base version elements are taken into

consideration. The corresponding element will be

checked in both derived versions. If a match is

found then the elements will analyzed according

to the merge cases given in Table 1.

• If the base element is unchanged in both version

then the unchanged element will be included into

merge version.

• If the base element is changed in both version

then the both the changed element will be

included into merge version with the

notification of conflict. Since this is a conflicted

scenario, merge version will be manually

updated to resolve the conflict.

Fig. 8: Base and derived versions

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

478

Table 1: Merge cases

Cases

Base version

vs. derived V1

Base version

vs. derived V2 Action Type

1 Unchanged Unchanged Include
unchanged

2 Changed Changed Include

changed

Conflict

3 Changed Unchanged Include

changed

4 Changed Deleted Include
changed

Conflict

5 Unchanged Deleted Delete

6 Deleted Delete Delete
7 Added - Add

Table 2: Diff comparison results

Base version Derived version 1 Derived version 2

A Unchanged Unchanged

B Changed Changed

C Deleted Unchanged
D Added -

E - Added

A-B Unchanged Unchanged
A-C Deleted Unchanged

A-D Added -

A-E - Added

• If the base element is unchanged in one version

and changed in other version then the changed

element will be included into merge version.

• If the base element is changed in one version and

deleted in other version then the changed

element will be included into merge version with

the notification of conflict. Since this is also a

conflicted scenario, merge version will be

manually updated to resolve the conflict.

• If the element remains unchanged in one version

and deleted in other version then the element will

be considered deleted and should not included in

merge version.

• If the element is deleted in both version then it is

also considered deleted and should not be included

in merge version.

• All elements that are present in either derived

version but not in base version are considered

added should be included merged version.

The same process will be repeated for

relationships between entities.

Example: Consider the example given in Fig. 8, where

a base version and two derived versions are given. In

the base version we have three classes Account,

Reservation and Customer. In derived version 1

Reservation entity is updated by adding makeRes ()

method, while entity Event is added and Customer

entity is deleted. In derived version 2 Reservation entity

is also updated by modifying the data types of attributes

status and date, while entity Category is also added.

By comparing derived versions with the base

version using a Diff algorithm and three-way merge

approach we get the Diff result given in Table 2. After

analyzing the result using the merge cases given in

Table 1 and perform the merging we get the result

given in Fig. 9. Note that entity Reservation is a

conflicted entity since its updated in both derived

versions, so user need to resolve the conflict manually.

Architecture: Figure 10 shows the reference

architecture. There are six components namely,

Model Editor, XMI/GS Converter, Merger, Diff

comparator, Version Controller and Versioning

System. The two repositories used in our approach are

Policy repository and Version repository. Model Editor,

Versioning System and Version repository are the

reusable components of existing systems such as

Magic draw and SVN (Michael, 2004) in our

approach. XMI/GS Converter takes XMI files of

diagrams developed in Model editor. It then transform

XMI to graph structure and vice versa. The graph

structures of different versions are inputs to the Diff

comparator. The Diff comparator component

perform differencing by comparing the graph

structure and identifying the matched and

unmatched elements. It will be a plugin to Model

Editor. The output of Diff comparator i.e., the

difference results will be input to both Merger and

Version Controler component. Merge analyze

Fig. 9: Merge algo results

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

479

Fig. 10: Reference architecture

difference result based on the merge policy and

perform a three-way merge. The merge result is in form

of graph structure. This result is converted back into

XMI by XMI/GS Converter and then the merge result

can be rendered in Model Editor. Merge component

will also be a plugin to Model Editor component.

Finally evolution control mechanism will be

implemented by Version Controler based on the

inter/intra link information. Version Contorler

component takes three kinds of inputs difference

results, intra/inter link information and evolution

control policy. Based on difference results and

intra/inter links information Version Controler

implements the evolution control policy. Version

Controler component will be a plugin of versioning

system since versioning is performed by the versioning

system.

CONCLUSION

This study presents a fine-grained approach to

the problem of conflict detection and merging in

model-based Software Configuration Management

(SCM) systems. Existing SCM systems uses textual or

structured data to represent models at fine-grained

level. Representing models as textual or structured data

at fine grained level is not suitable for performing diff,

merge and evolution control activities. In these

representations changing the order of some text lines

implies changing the file which produces a difference

result for the same file when using traditional SCM

systems. Secondly these files also contain layout

information, which are not relevant for diff, merge etc

activities of the model. Therefore our approach is based

on defining graph structure to represent models data at

fine-grained level. By doing so, at one hand we are

getting the advantages of reusing the existing SCM

systems for versioning purposes and on other hand

avoiding the problems associated with textual or

structured representation when performing rest of the

SCM activities.

The presented approach is generic in a sense

that it is neither dependent on any specific tool nor

on any specific model type. Graph structure can be

used to represent any kind of model data either

domain specific or UML models. Similarly

XMI/GS Converter can be generalized to convert

any kind of textual data representing model data

into graph structure. As a future work, we work on

the prototype implementation of the proposed

solution.

REFERENCES

Mehra, A., J. Grundy and J. Hosking, 2005. A generic

approach to supporting diagram differencing and

merging for collaborative design. Proceeding of the

20th IEEE/ACM International Conference on

Automated Software Engineering (ASE’05), pp:

204-213.

Res. J. Appl. Sci. Eng. Technol., 8(4): 471-480, 2014

480

Michael, P., 2004. Version Control with Subversion.
O’Reilly and Associates, Inc., Sebastopol, CA,
USA.

Ogasawara, E., P. Rangel, L. Murta, C. Werner and
M. Mattoso, 2009. Comparison and versioning of
scientific workflows. Proceeding of the ICSE
Workshop on Comparison and Versioning of
Software Models (CVSM ’09), pp: 25-30.

Ohst, D. and U. Kelter, 2002. A fine-grained version
and configuration model in analysis and design.
Proceeding of the International Conference on
Software Maintenance (ICSM’02), pp: 521-527.

Ohst, D., M. Welle and U. Kelter, 2003. Differences

between versions of UML diagrams. Proceeding of

the 9th European Software Engineering Conference

Held Jointly with 11th ACM SIGSOFT

International Symposium on Foundations of

Software Engineering (ESEC/FSE-11), pp:

227-236.

Ohst, D., M. Welle and U. Kelter, 2004. Merging UML

documents. Technical Report, Department of

Electrical Engineering and Computer Science,

University of Siegen, Germany, 2004. Internal

Report.

Oliveira, H., L. Murta and C. Werner, 2005. Odyssey-

VCS: A flexible version control system for UML

model elements. Proceeding of the 12th

International Workshop on Software Configuration

Management (SCM’05), pp: 1-16.

Schneider, C., A. Zu¨ndorf and J. Niere, 2004.

CoObRA-a small step for development tools to

collaborative environments. Proceeding of 26th

International Conference on Software Engineering

Workshop on Directions in Software Engineering

Environments. Edinburgh, Scotland, UK.

