
Research Journal of Applied Sciences, Engineering and Technology 8(21): 2211-2219, 2014
DOI:10.19026/rjaset.8.1220
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: September 03, 2014 Accepted: November 13, 2014 Published: December 05, 2014

Corresponding Author: M. Muthulakshmi, Karpagam University, Coimbatore, Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2211

Research Article

Hybrid Adaptive Routing in Network-on-chips Using KLSA with Dijkstra Algorithm

M. Muthulakshmi and A. James Albert
Karpagam University, Coimbatore, Tamil Nadu, India

Abstract: The aim of this study is to analyse dynamic programming in large scale, complex networks is more
important in the fields of scientific and engineering. Recent applications needs the analysis of scale-free networks
with many millions of nodes and edges; presenting a huge computational challenge. Employing distributed networks
on-chip infrastructure presents a unique opportunity of delivering power efficient and massive parallel accelerations.
Dynamic Programming (DP) network is a massive parallel and high throughput network architecture, which
provides real-time computation for shortest path problems. This network combines with the NoC to enable optimal
traffic control based on the online network status and, provides optimal path planning and dynamic routing with
proposed novel routing mechanics heuristic K-Step Look Ahead (KLSA) in deadlock free architecture. K-step look
ahead routing algorithm based calculating the Manhattan distance has some disadvantages and it affects the overall
performance of the routing algorithm. In order to overcome aforementioned disadvantages of manhattan distance
and improving the efficiency of K-step looks ahead algorithm proposing a dijkstra algorithm for calculating the
distance between two nodes. Here in implementation, the results are compared with existing routing schemas or
algorithms like XY, DyAD, odd-even, odd-even routing with an NoP selection scheme. The DP network presents a
simple, reliable and efficient methodology to enable adaptive routing in NoCs.

Keywords: Dijkstra algorithm, dynamic programming, K-step look ahead, network-on-chip

INTRODUCTION

The shortest path problem is a classic problem in

mathematics and computer science with applications. In
graph theory, the shortest path problem is the problem
of finding a path between two vertices (or nodes) such
that the sum of the weights of its constituent edges is
minimized. An example shown in Fig. 1 for finding the
quickest way to get from one location to another on a
road map; in this case (Cherkassky et al., 1996), the
vertices represent locations and the edges represent
segments of road and are weighted by the time needed
to travel that segment.

Formally, given a weighted graph (that is, a set Vof
vertices, a set E of edges and a real-valued weight
function f ∶ E → R) and one element vof V, find a path
P from v to a v′ of V so that is minimal among all paths
connecting v to v′.

The problem is also sometimes called the shortest
path problem, to distinguish it from the following
generalizations (Abraham et al., 2012):

The single-source shortest path problem, in which
we have to find shortest paths from a source vertex v to
all other vertices in the graph.

The single-destination shortest path problem, in
which we have to find shortest paths from all vertices in
the graph to a single destination vertex v. This can be

Fig. 1: Example for shortest path algorithm

reduced to the single-source shortest path problem by
reversing the edges in the graph.

The all-pairs shortest path problem, in which we
have to find shortest paths between every pair of
vertices v, v' in the graph.

These generalizations have significantly more
efficient algorithms than the simplistic approach of
running a single-pair shortest path algorithm on all
relevant pairs of vertices.

The most important algorithms for solving the
shortest path problem are:

• Dijkstra's algorithm solves the single-source
shortest path problems.

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2212

• Bellman-Ford algorithm solves the single-source
problem if edge weights may be negative.

• A* search algorithm solves for single pair shortest
path using heuristics to try to speed up the search.

• Floyd-Warshall algorithm solves all pairs shortest
paths.

• Johnson's algorithm solves all pairs shortest paths
and may be faster than Floyd-Warshall on sparse
graphs.

Additional algorithms and associated evaluations may
be found in Cherkassky et al. (1996).

For shortest path problems in computational
geometry, some of the practical applications such as
travelling salesman problem are the problem of finding
the shortest path that goes through every vertex exactly
once and returns to the start (Sergey et al., 2012). Unlike
the shortest path problem, which can be solved in
polynomial time in graphs without negative cycles, the
travelling salesman problem is NP-complete and, as
such, is believed not to be efficiently solvable for large
sets of data (see P = NP problem). The problem of
finding the longest path in a graph is also NP-complete.

The Canadian traveler problem and the stochastic
shortest path problem are generalizations where either
the graph isn't completely known to the mover, changes
over time, or where actions (traversals) are probabilistic.
The shortest multiple disconnected path (Kroger, 2005)
is a representation of the primitive path network within
the framework of Reptation theory. The widest path
problem seeks a path so that the minimum label of any
edge is as large as possible. The shortest path algorithm
is implemented in the wireless sensor networks also. In
this study shortest path algorithm is used in dynamic
programming network for routing technique is used.

The Network-on-Chip (NoC) concept replaces
design specific global on-chip wires with a generic on-
chip interconnection network realized by specialized
routers that connect generic Processing Elements (PE).
Adaptive routing in a network-on-chip system is
unimportant which primarily deals on the deadlock-free
and real-time optimal decision making strategy.
Dynamic Programming (DP) network is a massive
parallel and high throughput network architecture (Mak
et al., 2011), which provides real-time computation for
shortest path problems. This network combines with the
NoC to enable optimal traffic control based on the
online network status and, provides optimal path
planning and dynamic routing with novel routing
mechanics K-Step Look Ahead (KLSA) (Lai et al.,
2009).

Instead of storing routing decisions for all
destinations in a routing table, storing a table that
provides optimal decision to local premises can enable a
suboptimal path to the destinations with a substantial
reduction on the storage requirement. The idea is that
each router computes the routing decisions for nodes
that are k steps away from the current node. A k-step

region is shown in the shaded area. If the destination is
within the k-step region, an optimal decision is readily
available in the routing table. Otherwise, a transition
node nu is selected such that the sum of the DP value to
the transition node and the Manhattan distance fromthat
node to the destination is smallest. Mostly Manhattan
distance metric is mainly based time series analysis
(Miśkiewicz, 2010). In practical implementation cannot
be found optimal distance between the nodes because of
the time series analysis and it will affect the overall
performance of the routing algorithm. A new technique
called dijkstra's algorithm is proposed and the objective
of the study is to improve the performance of the KSLA
algorithm.

LITERATURE REVIEW

Most of the existing routing algorithms are used to

find the shortest path from source to destination. Each of
these algorithms has unique technique to find shortest
path. Some of related routing algorithms are discussed
below.

In a dynamic network environment (Wang and
Crowcroft, 1992) under heavy traffic load, shortest-path
routing algorithms, particularly those that attempt to
adapt to traffic changes, frequently exhibit oscillatory
behaviors and cause performance degradation. In this
study we first examine the problems from the
perspective of control theory and decision making and
then analyze the behaviors of the shortest-path routing
algorithms in details.

The proposed algorithm adopts the enhanced
Dijkstra’s algorithm for searching the shortest route
from the gateway to each end node for first route setup
(Zuo et al., 2013). A virtual pheromone distinct from the
regular pheromone is introduced to realize pheromone
diffusion and updating. In this way, multiple routes are
searched based on the ant colony optimization
algorithm. The routes used for data transmission are
selected based on their regular pheromone values,
facilitating the delivery of data through better routes.
Link failures are then handled using route maintenance
mechanism. Simulation results demonstrate that the
proposed algorithm outperforms traditional algorithms
in terms of average end-to-end delay, packet delivery
ratio and routing overhead; moreover, it has a strong
capacity to cope with topological changes, thereby
making it more suitable for industrial wireless mesh
networks.

Dynamic Programming (DP) is a fundamental
algorithm for complex optimization and decision-
making in many engineering and biomedical systems
(Mak et al., 2010). However, conventional DP
computation based on digital implementation of the
Bellman-Ford recursive algorithm suffers from the
“curse of dimensionality” and substantial iteration
delays which hinder utility in real-time applications.
Previously, an ordinary differential equation system was

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2213

proposed that transforms the sequential DP iteration into a continuous-time parallel computational network. Here,
the network is realized using a CMOS current-mode
analog circuit, which provides a powerful computational
platform for power-efficient, compact and high-speed
solution of the Bellman formula.

Experiment of adaptive routing in an NoC system is
not negligible and is further tangled by the deadlock-free
and real-time optimal decision making requirements and
the previously proposed partially adaptive routing
approaches utilize local traffic only which directs to a
moderate improvement in traffic load balancing and
packet latency. Routing adaptations and optimal path
planning, which were considered as hardware expensive
in computer networks, are rarely studied. In this study,
we discussed Dijkstra's algorithm for optimal path in
routing.

METHODOLOGY

Shortest path computation: The graph representing all
the paths from one node to all the other nodes G = (V,
A) where V is set nodes and A is set of edges. With
n = |V| nodes, m = |A| edges and a cost associated
with each edgeu → v ∈ A, which is denoted as C�,�. The
total cost of a path p = < n0, n1, . . . , nk > is defined
by:

Cost(p) = " C#$%,#
&
#'% (1)

The shortest path of G from n# to n(is then defined

as any path p with cost as for all constituent edges ni:

Cost(p) = min " C#$%,#
&
#'% (2)

To find the cost of the shortest path from nvto nw,

it needs the notion of DP value which is the expected
cost from nv to nw. This expected cost is being
recursively updated based on the previous estimates
until it reaches its optimality condition. This algorithm
is known as DP. We denote the DP value for nv to nw at
the kth iteration as V (k)(v, w) and V ∗ (v, w) is the
optimal DP value.
The Bellman equation becomes:

V(k)(v, w) = min , V(k − 1)(u, w) + Cv, u (3)

where, V (w, w) = 0. If the recursion is expanded from
n1 to n&, the DP (Bellman, 1957) value can be
expressed as the total cost of the path from node n1 to
node n&:

V2

∗(n1, n&) =

min345,4,…,478∈9:5;
7 , :7

<" C#$%,#
&
#'% = (4)

where, destination node n> = n? and P#,(

& are the set of
paths from n# to n(, all of which have k edges.

KSLA: Consider the table based routing mechanism in
adaptive routing is routing table size. It requires the
memory allocation or register for storing process. This
requirement becomes difficulty for the system to scale
up (Dally and Towles, 2004). The method called KSLA
is introduced. This method reduces the memory
requirements and provides suboptimal solution. It stores
a table that gives optimal decision to local locations. It
can facilitate a suboptimal path to the destinations. In
KSLA shown in Fig. 2, each router calculates the
routing decisions for nodes that are k-steps far from the
current node. If the destination is inside the k-step
region, best decision is available in the table. Else, a
transition node is chosen where the sum of the DP value
to node and the Manhattan distance from that node to
destination is the smallest. These processes go over at
each hopping step. Finally, the packet reaches at the
destination in suboptimal route.

Manhattan distance: The Manhattan distance between
two nodes is the sum of the differences of their
corresponding weights.

The formula for this distance between a node
X = (X1, X2, etc.) and a point Y = (Y1, Y2, etc.) is:

D(i, n) = E ⃓X#

4
#'% − Y# ⃓ (5)

where,
n : The number of node
X# and Y# : The values of the ith node, at node X and Y

Algorithm: KSLA routing algorithm:
1: Inputs: Destination node GH

Fig. 2: Data-flow routine for the KSLA algorithm

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2214

2: Outputs: Routing direction µ (s, n)
3: Definitions: GI is the current node
S (s, n) returns the number of steps from s to n
µ (s, n) returns the routing direction of destination n at
node s; k (s) returns a set of nodes that are k steps away
from s; D (i, j) returns the Manhattan distance from GJ
to GK
4: if S (s, n) ≤k then
5: return µ (s, n)
6: else
7: for all nodes i such that iL k (s) do
8: V (s, i, d) = V (s, i) +M (N, O)
9: end for
10: µ (s, n) = PQRSNO∀JUV(I) V (s, i, n)
11: end if
12: return µ (s, n)

Disadvantages of manhattan distance: Values of MD
depend on the time series length. However in some
applications of time series analysis.

One has to compare distances between time series
in different time windows sizes.

Proposed heuristic KSLA: Extension of KSLA to
irregular and other topologies requires implementation
of other heuristics. In order to overcome this
requirement, the heuristic KSLA is proposed in this
study. Instead of calculating manhattan distance, this
proposed work use Dijkstra’s algorithm (Biswas et al.,
2013) solves shortest path problem. It provide optimal
path from source to destination. This algorithm works
from the source node, s, it grows like a graph, G, that
spans all nodes reachable from S. Nodes are added to G
in order of distance i.e., first S, then the node closest to
S, then the next closest and so on. The relaxation
method (Relax) updates the costs of all the node, v,
connected to a node, u.

The Dijkstra algorithm is comprised of the
following 5 steps:

Step 1: The process starts from node. Since the length

of the shortest path from node a to node a is 0,
then dWW = 0. The immediate predecessor node
of node a will be denoted by the symbol + so
that qW = +. Since the lengths of the shortest
paths from node a to all other nodes i ≠ a on the
shortest path are unknown, we put q# = − for
all i ≠ a. The only node which is now in a
closed state is node a. Therefore we write that
c = a.

Step 2: In order to transform some of the temporarily
labels into permanent labels, we examine all
branches (c, i) which exit from the last node
which is in a closed state (node c). If node i is
also in a closed state, we pass the examination
on to the next node. If node i is in an open state
we obtain its first label dW# based on equation:

dW# = minZdW#, dW[+ 1(c, i)\ (6)

In which the left side of the equation is the new

label of node i. We should note that dW# appearing on the
right side of the equation is the old label for node i.

Step 3: In order to determine which node will be the

next to go from an open to a closed state, we
compare value dW# for all nodes which are in an
open state and choose the node with the smallest
dW# Let this be same node j. Node j passes from
an open to a closed state since there is no path
from a to j shorter than dW#. The path through
any other node would be longer.

Step 4: We have ascertained that j is the next node to
pass from an open state to a closed one. We then
determine the immediate predecessor node of
node j and the shortest path which leads from
node a to node j. We examine the length of all
branches (i, j) which lead from closed state
nodes to node j until we establish that the
following equation is satisfied:

dW# − l (i, j) = dW# (7)

Let this equation be satisfied for some node t. this

means that node t is the immediate predecessor of node j
on the shortest path which leads from node a to node j.
Therefore, we can write that q(= t.

Step 5: Node j is in a closed state. When all nodes in

the network are in a closed state, we have
completed the process of finding the shortest
path. Should any node still be in an open state,
we return to step 2.

Figure 3 shows that calculation of shortest path for

node s to node v using dijkstra algorithm. The algorithm
described above can also be used to find the shortest
path between two specific nodes. In this case, the
algorithm is completed when both nodes are in a closed
state.

The Heuristic KSLA Routing Algorithm is
explained in algorithm 3. This Heuristic method
provides a suboptimal solution and considerably reduces
the memory requirement in dynamic routing.

Algorithm: Heuristic KSLA routing algorithm:

1: Inputs: Destination node GH
2: Outputs: Routing direction µ (s, n)
3: Definitions: GI is the current node; S (s, n) returns
the number of steps from s to n; µ (s, n) returns the
routing direction of destination n at node s; k (s) returns
a set of nodes that are k steps away from s; DA (i, j)
returns the shortest path using Dijkstra’s algorithm
from GJ to GK

Res. J. Appl. Sci. Eng. Technol.,

(a)

 (c)

Fig. 3: Example for Dijkstra algorithm

4: if S (s, n) ≤k then
5: return µ (s, n)
6: else
7: for all nodes i such that iL k (s) do
8: V (s, i, d) = V (s, i) +DA (i, n)

Fig. 4: Sample network 1

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2215

 (b)

 (d)

9: end for
10: µ (s, n) = PQRSNO∀JUV(I) V (s, i, n)
11: end if
12: return µ (s, n)

RESULT ANALYSIS

Evaluation methodology: In order to perform a
complete evaluation of the proposed routing algorithm,
the open Noxim (Noxim, 2008), which is an open
source System C simulator for NoC of different
structures, is employed. The sample networks for the
simulations of the proposed network is shown in the
Fig. 4 to 6.

The Noxim simulator provides a virtual cycle
accurate NoC architectural model where various
performance metrics, including throughput and delay of
the on-chip communication methodologies, can be
evaluated. In order to evaluate the performance of the
proposed DP network, additional ports for
communicating the DP values are added to the Noxim
NoC router architecture. Routing tables and the table
updating scheme, as described in the previous
are also introduced to the simulator. A new DP routing
function is implemented for realizing both the global
path planning and Improved KSLA. Although a mesh
topology is considered in our experiments, the
based NoC architecture (Mak et al., 2007) ca
extended to other topological structures by
the interconnection of ports of the routers.
pattern benchmarks embedded in Noxim are

V (s, i, n)

RESULT ANALYSIS

In order to perform a
complete evaluation of the proposed routing algorithm,
the open Noxim (Noxim, 2008), which is an open
source System C simulator for NoC of different
structures, is employed. The sample networks for the

proposed network is shown in the

The Noxim simulator provides a virtual cycle
accurate NoC architectural model where various
performance metrics, including throughput and delay of

chip communication methodologies, can be
evaluated. In order to evaluate the performance of the
proposed DP network, additional ports for
communicating the DP values are added to the Noxim
NoC router architecture. Routing tables and the table-
updating scheme, as described in the previous section,
are also introduced to the simulator. A new DP routing
function is implemented for realizing both the global
path planning and Improved KSLA. Although a mesh
topology is considered in our experiments, the Noxim-

., 2007) can be easily
extended to other topological structures by modifying
the interconnection of ports of the routers. The traffic-
pattern benchmarks embedded in Noxim are used

Res. J. Appl. Sci. Eng. Technol.,

Fig. 5: Sample network 2

Fig. 6: Sample network 3

for the routing performance evaluation. These traffic
patterns, such as hot-spot random traffic and transpose,
provide a comprehensive evaluation for the routing
capability, as shown in other related works (Ascia
2008).

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2216

for the routing performance evaluation. These traffic
spot random traffic and transpose,

provide a comprehensive evaluation for the routing
capability, as shown in other related works (Ascia et al.,

The packet rejection rate for existing and proposed
method is represented in graphical representation in the
Fig. 7. By varying the packet rejection rate, different
routing algorithms produce different average packet
delivery delay and saturation point. Th

The packet rejection rate for existing and proposed
method is represented in graphical representation in the
Fig. 7. By varying the packet rejection rate, different
routing algorithms produce different average packet-
delivery delay and saturation point. The average packet-

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2217

Fig. 7: Packet rejection rate

delivery delay is used as a metric to evaluate the routing
algorithm. The DP network provides the shortest path
planning, by minimizing the packet delivery delay at
every node. For a mesh topology, the convergence time
of the network is 2√n-1 cycles. The sampling frequency
of the DP network has to be aligned with this
convergence time. Therefore, the cost and routing-table
updating periods are which is 2√n − 1 cycles. Also, the
maximum packet-delivery delay is used to evaluate the
routing performance, which is important for NoC real-
time applications. The experiments carried out refer to
an 8×8 size NoC. Traffic sources generate 8-flit packets
with an exponential distribution, the parameters of
which depend on the packet injection rate. The First in,
First Out (FIFO) buffers have a capacity of 16 flits.
Each simulation was initially run for 1000 cycles to
allow transient effects to stabilize and, afterward,
executed for 20000 cycles. Since it is a mesh topology,
the convergence time of the network is 2√n– 1 cycles
and thus, it is 15 cycles in this experiment. The
updating period for individual routing table is then set
to be 15 cycles.

The recently proposed NoP approach in Noxim
(2008) is a special case of the Improved KSLA. In NoP,
each router chooses the routing direction based on the
queue information that is two steps away from the
current node. A hill-climbing heuristic is implemented

for the routing. However, the NoP approach does not
compute the DP values for the destination nodes,
whereas a score value, which resembles the DP
expected delay, is computed on demand. For the DP
network, the DP value is computed by the DP network
and distributed to all routers. This provides a fast
decision time as only a simple lookup table is required
when the header flit arrives. In the following, the
experimental results of comparing the NoP and
Improved KSLA algorithms are discussed. A special
transpose-traffic scenario is considered with a packet
injection rate of 0.02 packet/cycle/node. The
performances of KSLA with different k, XY and NoP
routings are shown in Fig. 2. When k = 0, Improved
KSLA has the same performance as XY. This is
because the routing table is initialized following the XY
routing scheme and the routing table is never updated.
For the case of k = 2, Improved KSLA provides a
similar performance as NoP (the average delay is equal
to 124 for NoP and 108 for DP). This suggests that NoP
resembles a special case of Improved KSLA routing,
specifically, when k = 2. By increasing the k value,
the average routing delay is further reduced until it
converges to 42 packet delay/cycle/node, where
Improved KSLA resembles DP.

The average delay comparison between the
existing and proposed algorithm is shown in the

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2218

Fig. 8: Average delay comparison between existing and new using a NoP selection, XY and DP routing approaches

graphical representation in Fig. 8. It shows that average
delay for the proposed method is low compared to the
existing algorithm. The experimental results shows that
performance of the proposed algorithm is better than
the existing algorithm.

CONCLUSION

This study has presented a novel DP network for
fully optimal routing in NoC. The DP network provides
on-the-fly shortest path computation by using
distributed DP and updating the routing table for
optimal path planning based on the real time network
status. The mathematical formulations and convergence
analysis of the network are presented. Two examples
are presented to exemplify the robustness of the
network and the rapid resolution of shortest path
problems in different network structures. The routing
mechanics and the KSLA routing strategy are presented
which can provide tradeoffs between routing optimality
and memory consumption. Experimental results
confirm the performance and merits of optimal routing
over other deterministic and adaptive-routing
approaches, which are based on partial and local traffic
information. The optimal DP-network-based routing
outperforms the XY routing by 28.9% and is also better

than the other adaptive-routing strategies, such as the
odd-even, by 18.4%. It has been observed that the new
KSLA approach is a generalization of other adaptive-
routing algorithm, which applies hill-climbing
heuristics for latency minimization. Moreover, the
hardware overhead for a DP network has been
examined. It was found that a DP network consumes
less than 20.6% of extra hardware area when compared
with the deterministic routing algorithms for a standard
router design. The results suggest that a DP network
offers a new and effective solution for dynamic
minimal routing in NoC and can greatly enhance the
performance of on-chip communication. The DP
network approach can be further enhanced to enable
fault tolerance and dynamic power management in
NoCs to reduce power dissipation, which will be
investigated in our future work.

REFERENCES

Abraham, I., A. Fiat, A.V. Goldberg and
R.F.F. Werneck, 2012. Highway dimension,
shortest paths and provably efficient algorithms.
Proceeding of ACM-SIAM Symposium on
Discrete Algorithms, pp: 782-793.

Res. J. Appl. Sci. Eng. Technol., 8(21): 2211-2219, 2014

2219

Ascia, G., V. Catania, M. Palesi and D. Patti, 2008.
Implementation and analysis of a new selection
strategy for adaptive routing in networks-on-chip.
IEEE T. Comput., 57(6): 809-820.

Bellman, R., 1957. Dynamic Programming. Princeton
University Press, Princeton, NJ.

Biswas, S.S., B. Alam and M.N. Doja, 2013.
Generalization of Dijkstra’s algorithm for
extraction of shortest paths in directed multigraphs.
J. Comput. Sci., 9(3): 377-382.

Cherkassky, B.V., A.V. Goldberg and T. Radzik, 1996.
Shortest paths algorithms: Theory and
experimental evaluation. Math. Program., 73(2):
129-174.

Dally, W. and B. Towles, 2004. Principles and
Practices of Interconnection Networks. Morgan
Kaufmann, San Mateo, CA.

Kroger, M., 2005. Shortest multiple disconnected path
for the analysis of entanglements in two-and three-
dimensional polymeric systems. Comput. Phys.
Commun., 168: 209-232.

Lai, D.T., A. Shilton, E. Charry, R. Begg and
M. Palaniswami, 2009. A machine learning
approach to k-step look-ahead prediction of gait
variables from acceleration data. Proceeding of the
31st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society,
2009: 384-387.

Mak, T., K.P. Lam, H.S. Ng and G. Rachmuth, 2010. A
CMOS current-mode dynamic programming
circuit. IEEE T. Circuits Syst., 57(12): 3112-3123.

Mak, T., P.Y.K. Cheung, K.P. Lam and W. Luk, 2011.
Adaptive routing in network-on-chips using a
dynamic-programming network. IEEE T. Ind.
Electron., 58(8): 3701-3716.

Mak, T.S.T., P. Sedcole, P.Y.K. Cheung and W. Luk,
2007. A hybrid analog-digital routing network for
NoC dynamic routing. Proceeding of 1st
International Symposium Networks-on-Chip
(NOCS, 2007), pp: 173-182.

Miśkiewicz, J., 2010. Analysis of time series
correlation. the choice of distance metrics and
network structure. Proceeding of the 5th
Symposium on Physics in Economics and Social
Sciences. Warszawa, Poland.

Noxim, 2008. Network-on-Chip Simulator. Retrieved
form: http://sourceforge.net/projects/noxim.

Sergey, I., J. Midtgaard and D. Clarke, 2012.
Calculating graph algorithms for dominance and
shortest path. In: Gibbons, J. and P. Nogueira
(Eds.), MPC 2012. LNCS 7342, Springer-Verlag,
Berlin, Heidelberg, pp: 132-156.

Wang, Z. and J. Crowcroft, 1992. Analysis of shortest-
path routing algorithms in a dynamic network
environment. ACM Comput. Commun. Rev.,
22(2): 63-71.

Zuo, Y., Z. Ling and Y. Yuan, 2013. A hybrid multi-
path routing algorithm for industrial wireless mesh
networks. EURASIP J. Wirel. Comm., 2013: 82.

