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Abstract: The aim of this study is to analyse dynamic programming in large scale, complex networks is more 
important in the fields of scientific and engineering. Recent applications needs the analysis of scale-free networks 
with many millions of nodes and edges; presenting a huge computational challenge. Employing distributed networks 
on-chip infrastructure presents a unique opportunity of delivering power efficient and massive parallel accelerations. 
Dynamic Programming (DP) network is a massive parallel and high throughput network architecture, which 
provides real-time computation for shortest path problems. This network combines with the NoC to enable optimal 
traffic control based on the online network status and, provides optimal path planning and dynamic routing with 
proposed novel routing mechanics heuristic K-Step Look Ahead (KLSA) in deadlock free architecture. K-step look 
ahead routing algorithm based calculating the Manhattan distance has some disadvantages and it affects the overall 
performance of the routing algorithm. In order to overcome aforementioned disadvantages of manhattan distance 
and improving the efficiency of K-step looks ahead algorithm proposing a dijkstra algorithm for calculating the 
distance between two nodes. Here in implementation, the results are compared with existing routing schemas or 
algorithms like XY, DyAD, odd-even, odd-even routing with an NoP selection scheme. The DP network presents a 
simple, reliable and efficient methodology to enable adaptive routing in NoCs. 
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INTRODUCTION 

 
The shortest path problem is a classic problem in 

mathematics and computer science with applications. In 
graph theory, the shortest path problem is the problem 
of finding a path between two vertices (or nodes) such 
that the sum of the weights of its constituent edges is 
minimized. An example shown in Fig. 1 for finding the 
quickest way to get from one location to another on a 
road map; in this case (Cherkassky et al., 1996), the 
vertices represent locations and the edges represent 
segments of road and are weighted by the time needed 
to travel that segment. 

Formally, given a weighted graph (that is, a set Vof 
vertices, a set E of edges and a real-valued weight 
function f ∶  E → R) and one element vof V, find a path 
P from v to a v′ of V so that is minimal among all paths 
connecting v to v′. 

The problem is also sometimes called the shortest 
path problem, to distinguish it from the following 
generalizations (Abraham et al., 2012): 

The single-source shortest path problem, in which 
we have to find shortest paths from a source vertex v to 
all other vertices in the graph. 

The single-destination shortest path problem, in 
which we have to find shortest paths from all vertices in 
the graph to a single destination vertex v. This can be  

 
 
Fig. 1: Example for shortest path algorithm 
 
reduced to the single-source shortest path problem by 
reversing the edges in the graph. 

The all-pairs shortest path problem, in which we 
have to find shortest paths between every pair of 
vertices v, v' in the graph. 

These generalizations have significantly more 
efficient algorithms than the simplistic approach of 
running a single-pair shortest path algorithm on all 
relevant pairs of vertices. 

The most important algorithms for solving the 
shortest path problem are: 

 

• Dijkstra's algorithm solves the single-source 
shortest path problems. 
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• Bellman-Ford algorithm solves the single-source 
problem if edge weights may be negative. 

• A* search algorithm solves for single pair shortest 
path using heuristics to try to speed up the search. 

• Floyd-Warshall algorithm solves all pairs shortest 
paths. 

• Johnson's algorithm solves all pairs shortest paths 
and may be faster than Floyd-Warshall on sparse 
graphs.  
 

Additional algorithms and associated evaluations may 
be found in Cherkassky et al. (1996). 

For shortest path problems in computational 
geometry, some of the practical applications such as 
travelling salesman problem are the problem of finding 
the shortest path that goes through every vertex exactly 
once and returns to the start (Sergey et al., 2012). Unlike 
the shortest path problem, which can be solved in 
polynomial time in graphs without negative cycles, the 
travelling salesman problem is NP-complete and, as 
such, is believed not to be efficiently solvable for large 
sets of data (see P = NP problem). The problem of 
finding the longest path in a graph is also NP-complete. 

The Canadian traveler problem and the stochastic 
shortest path problem are generalizations where either 
the graph isn't completely known to the mover, changes 
over time, or where actions (traversals) are probabilistic. 
The shortest multiple disconnected path (Kroger, 2005) 
is a representation of the primitive path network within 
the framework of Reptation theory. The widest path 
problem seeks a path so that the minimum label of any 
edge is as large as possible. The shortest path algorithm 
is implemented in the wireless sensor networks also. In 
this study shortest path algorithm is used in dynamic 
programming network for routing technique is used. 

The Network-on-Chip (NoC) concept replaces 
design specific global on-chip wires with a generic on-
chip interconnection network realized by specialized 
routers that connect generic Processing Elements (PE). 
Adaptive routing in a network-on-chip system is 
unimportant which primarily deals on the deadlock-free 
and real-time optimal decision making strategy. 
Dynamic Programming (DP) network is a massive 
parallel and high throughput network architecture (Mak 
et al., 2011), which provides real-time computation for 
shortest path problems. This network combines with the 
NoC to enable optimal traffic control based on the 
online network status and, provides optimal path 
planning and dynamic routing with novel routing 
mechanics K-Step Look Ahead (KLSA) (Lai et al., 
2009). 

Instead of storing routing decisions for all 
destinations in a routing table, storing a table that 
provides optimal decision to local premises can enable a 
suboptimal path to the destinations with a substantial 
reduction on the storage requirement. The idea is that 
each router computes the routing decisions for nodes 
that are k steps away from the current node. A k-step 

region is shown in the shaded area. If the destination is 
within the k-step region, an optimal decision is readily 
available in the routing table. Otherwise, a transition 
node nu is selected such that the sum of the DP value to 
the transition node and the Manhattan distance fromthat 
node to the destination is smallest. Mostly Manhattan 
distance metric is mainly based time series analysis 
(Miśkiewicz, 2010). In practical implementation cannot 
be found optimal distance between the nodes because of 
the time series analysis and it will affect the overall 
performance of the routing algorithm. A new technique 
called dijkstra's algorithm is proposed and the objective 
of the study is to improve the performance of the KSLA 
algorithm. 

 

LITERATURE REVIEW 

 
Most of the existing routing algorithms are used to 

find the shortest path from source to destination. Each of 
these algorithms has unique technique to find shortest 
path. Some of related routing algorithms are discussed 
below. 

In a dynamic network environment (Wang and 
Crowcroft, 1992) under heavy traffic load, shortest-path 
routing algorithms, particularly those that attempt to 
adapt to traffic changes, frequently exhibit oscillatory 
behaviors and cause performance degradation. In this 
study we first examine the problems from the 
perspective of control theory and decision making and 
then analyze the behaviors of the shortest-path routing 
algorithms in details. 

The proposed algorithm adopts the enhanced 
Dijkstra’s algorithm for searching the shortest route 
from the gateway to each end node for first route setup 
(Zuo et al., 2013). A virtual pheromone distinct from the 
regular pheromone is introduced to realize pheromone 
diffusion and updating. In this way, multiple routes are 
searched based on the ant colony optimization 
algorithm. The routes used for data transmission are 
selected based on their regular pheromone values, 
facilitating the delivery of data through better routes. 
Link failures are then handled using route maintenance 
mechanism. Simulation results demonstrate that the 
proposed algorithm outperforms traditional algorithms 
in terms of average end-to-end delay, packet delivery 
ratio and routing overhead; moreover, it has a strong 
capacity to cope with topological changes, thereby 
making it more suitable for industrial wireless mesh 
networks. 

Dynamic Programming (DP) is a fundamental 
algorithm for complex optimization and decision-
making in many engineering and biomedical systems 
(Mak et al., 2010). However, conventional DP 
computation based on digital implementation of the 
Bellman-Ford recursive algorithm suffers from the 
“curse of dimensionality” and substantial iteration 
delays which hinder utility in real-time applications. 
Previously, an ordinary differential equation system was 
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proposed that transforms the sequential DP iteration into a continuous-time parallel computational network. Here,
the network is realized using a CMOS current-mode 
analog circuit, which provides a powerful computational 
platform for power-efficient, compact and high-speed 
solution of the Bellman formula.  

Experiment of adaptive routing in an NoC system is 
not negligible and is further tangled by the deadlock-free 
and real-time optimal decision making requirements and 
the previously proposed partially adaptive routing 
approaches utilize local traffic only which directs to a 
moderate improvement in traffic load balancing and 
packet latency. Routing adaptations and optimal path 
planning, which were considered as hardware expensive 
in computer networks, are rarely studied. In this study, 
we discussed Dijkstra's algorithm for optimal path in 
routing. 
 

METHODOLOGY 

 
Shortest path computation: The graph representing all 
the paths from one node to all the other nodes G = (V, 
A) where V is set nodes and A is set of edges. With 
n =  |V| nodes, m =  |A| edges and a cost associated 
with each edgeu → v ∈ A, which is denoted as C�,�. The 
total cost of a path p = < n0, n1, . . . , nk > is defined 
by: 

 

Cost(p) = " C#$%,#
&
#'%                  (1) 

 
The shortest path of G from n# to n( is then defined 

as any path p with cost as for all constituent edges ni: 
 

Cost(p) = min " C#$%,#
&
#'%                 (2) 

 
To find the cost of the shortest path from nvto nw, 

it needs the notion of DP value which is the expected 
cost from nv to nw. This expected cost is being 
recursively updated based on the previous estimates 
until it reaches its optimality condition. This algorithm 
is known as DP. We denote the DP value for nv to nw at 
the kth iteration as V (k)(v, w) and V ∗ (v, w) is the 
optimal DP value. 
The Bellman equation becomes: 

 
V(k)(v, w) =  min , V(k − 1)(u, w) +  Cv, u       (3) 

where, V (w, w)  =  0. If the recursion is expanded from 
n1 to n&, the DP (Bellman, 1957) value can be 
expressed as the total cost of the path from node n1 to 
node n&: 

 
V2

∗(n1, n&) =      

min345,4,…,478∈9:5;
7 , :7

<" C#$%,#
&
#'% =                    (4) 

 
where, destination node n>  =  n? and P#,(

& are the set of 
paths from n# to n( , all of which have k edges. 
 
KSLA: Consider the table based routing mechanism in 
adaptive routing is routing table size. It requires the 
memory allocation or register for storing process. This 
requirement becomes difficulty for the system to scale 
up (Dally and Towles, 2004). The method called KSLA 
is introduced. This method reduces the memory 
requirements and provides suboptimal solution. It stores 
a table that gives optimal decision to local locations. It 
can facilitate a suboptimal path to the destinations. In 
KSLA shown in Fig. 2, each router calculates the 
routing decisions for nodes that are k-steps far from the 
current node. If the destination is inside the k-step 
region, best decision is available in the table. Else, a 
transition node is chosen where the sum of the DP value 
to node and the Manhattan distance from that node to 
destination is the smallest. These processes go over at 
each hopping step. Finally, the packet reaches at the 
destination in suboptimal route. 
 
Manhattan distance: The Manhattan distance between 
two nodes is the sum of the differences of their 
corresponding weights.  

The formula for this distance between a node 
X = (X1, X2, etc. ) and a point Y = (Y1, Y2, etc. ) is: 

 
D(i, n) = E ⃓X#

4
#'% − Y# ⃓                (5) 

 
where,  
n : The number of node  
X# and Y# : The values of the ith node, at node X and Y 
 
Algorithm: KSLA routing algorithm: 
1: Inputs: Destination node GH 

 

 
 
Fig. 2: Data-flow routine for the KSLA algorithm
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2: Outputs: Routing direction µ (s, n) 
3: Definitions: GI is the current node 
S (s, n) returns the number of steps from s to n 
µ (s, n) returns the routing direction of destination n at 
node s; k (s) returns a set of nodes that are k steps away 
from s; D (i, j) returns the Manhattan distance from GJ 
to GK  
4: if S (s, n) ≤k then 
5: return µ (s, n) 
6: else 
7: for all nodes i such that iL k (s) do 
8: V (s, i, d) = V (s, i) +M (N, O) 
9: end for 
10: µ (s, n) = PQRSNO∀JUV(I) V (s, i, n) 
11: end if 
12: return µ (s, n) 
 
Disadvantages of manhattan distance: Values of MD 
depend on the time series length. However in some 
applications of time series analysis. 

One has to compare distances between time series 
in different time windows sizes. 
 
Proposed heuristic KSLA: Extension of KSLA to 
irregular and other topologies requires implementation 
of other heuristics. In order to overcome this 
requirement, the heuristic KSLA is proposed in this 
study. Instead of calculating manhattan distance, this 
proposed work use Dijkstra’s algorithm (Biswas et al., 
2013) solves shortest path problem. It provide optimal 
path from source to destination. This algorithm works 
from the source node, s, it grows like a graph, G, that 
spans all nodes reachable from S. Nodes are added to G 
in order of distance i.e., first S, then the node closest to 
S, then the next closest and so on. The relaxation 
method (Relax) updates the costs of all the node, v, 
connected to a node, u.  

The Dijkstra algorithm is comprised of the 
following 5 steps: 
 
Step 1: The process starts from node. Since the length 

of the shortest path from node a to node a is 0, 
then dWW =  0. The immediate predecessor node 
of node a will be denoted by the symbol + so 
that qW =  +. Since the lengths of the shortest 
paths from node a to all other nodes i ≠ a on the 
shortest path are unknown, we put q# = − for 
all i ≠ a. The only node which is now in a 
closed state is node a. Therefore we write that 
c =  a. 

Step 2: In order to transform some of the temporarily 
labels into permanent labels, we examine all 
branches (c, i) which exit from the last node 
which is in a closed state (node c). If node i is 
also in a closed state, we pass the examination 
on to the next node. If node i is in an open state 
we obtain its first label dW# based on equation: 

dW# = minZdW#, dW[ + 1(c, i)\                              (6) 
 
In which the left side of the equation is the new 

label of node i. We should note that dW# appearing on the 
right side of the equation is the old label for node i. 

 
Step 3: In order to determine which node will be the 

next to go from an open to a closed state, we 
compare value dW# for all nodes which are in an 
open state and choose the node with the smallest 
dW# Let this be same node j. Node j passes from 
an open to a closed state since there is no path 
from a to j shorter than dW#. The path through 
any other node would be longer. 

Step 4: We have ascertained that j is the next node to 
pass from an open state to a closed one. We then 
determine the immediate predecessor node of 
node j and the shortest path which leads from 
node a to node j. We examine the length of all 
branches (i, j) which lead from closed state 
nodes to node j until we establish that the 
following equation is satisfied:  

 
dW#  − l (i, j) = dW#                                             (7) 

  
Let this equation be satisfied for some node t. this 

means that node t is the immediate predecessor of node j 
on the shortest path which leads from node a to node j. 
Therefore, we can write that q( =  t. 
 
Step 5:  Node j is in a closed state. When all nodes in 

the network are in a closed state, we have 
completed the process of finding the shortest 
path. Should any node still be in an open state, 
we return to step 2. 

 
Figure 3 shows that calculation of shortest path for 

node s to node v using dijkstra algorithm. The algorithm 
described above can also be used to find the shortest 
path between two specific nodes. In this case, the 
algorithm is completed when both nodes are in a closed 
state. 

The Heuristic KSLA Routing Algorithm is 
explained in algorithm 3. This Heuristic method 
provides a suboptimal solution and considerably reduces 
the memory requirement in dynamic routing. 
 
Algorithm: Heuristic KSLA routing algorithm: 
 
1: Inputs: Destination node GH 
2: Outputs: Routing direction µ (s, n) 
3: Definitions: GI is the current node; S (s, n) returns 
the number of steps from s to n; µ (s, n) returns the 
routing direction of destination n at node s; k (s) returns 
a set of nodes that are k steps away from s; DA (i, j) 
returns the shortest path using Dijkstra’s algorithm 
from GJ to GK  
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(a)                                             
 

 
 

                        (c)                                           
 
Fig. 3: Example for Dijkstra algorithm 
 
4: if S (s, n) ≤k then 
5: return µ (s, n) 
6: else 
7: for all nodes i such that iL k (s) do 
8: V (s, i, d) = V (s, i) +DA (i, n) 
 

 
Fig. 4: Sample network 1 
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        (b) 

 

    (d) 

9: end for 
10: µ (s, n) = PQRSNO∀JUV(I) V (s, i, n)
11: end if 
12: return µ (s, n) 
 

RESULT ANALYSIS

 
Evaluation methodology: In order to perform a 
complete evaluation of the proposed routing algorithm, 
the open Noxim (Noxim, 2008), which is an open 
source System C simulator for NoC of different 
structures, is employed. The sample networks for the 
simulations of the proposed network is shown in the 
Fig. 4 to 6.  

The Noxim simulator provides a virtual cycle 
accurate NoC architectural model where various 
performance metrics, including throughput and delay of 
the on-chip communication methodologies, can be 
evaluated. In order to evaluate the performance of the 
proposed DP network, additional ports for 
communicating the DP values are added to the Noxim
NoC router architecture. Routing tables and the table
updating scheme, as described in the previous
are also introduced to the simulator. A new DP routing 
function is implemented for realizing both the global 
path planning and Improved KSLA. Although a mesh 
topology is considered in our experiments, the
based NoC architecture (Mak et al., 2007) ca
extended to other topological structures by
the interconnection of ports of the routers.
pattern benchmarks embedded in Noxim are

V (s, i, n) 

RESULT ANALYSIS 

In order to perform a 
complete evaluation of the proposed routing algorithm, 
the open Noxim (Noxim, 2008), which is an open 
source System C simulator for NoC of different 
structures, is employed. The sample networks for the 

proposed network is shown in the 

The Noxim simulator provides a virtual cycle 
accurate NoC architectural model where various 
performance metrics, including throughput and delay of 

chip communication methodologies, can be 
evaluated. In order to evaluate the performance of the 
proposed DP network, additional ports for 
communicating the DP values are added to the Noxim 
NoC router architecture. Routing tables and the table-
updating scheme, as described in the previous section, 
are also introduced to the simulator. A new DP routing 
function is implemented for realizing both the global 
path planning and Improved KSLA. Although a mesh 
topology is considered in our experiments, the Noxim-

., 2007) can be easily 
extended to other topological structures by modifying 
the interconnection of ports of the routers. The traffic-
pattern benchmarks embedded in Noxim are used
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Fig. 5: Sample network 2 
 

 

Fig. 6: Sample network 3 
 

for the routing performance evaluation. These traffic 
patterns, such as hot-spot random traffic and transpose, 
provide a comprehensive evaluation for the routing 
capability, as shown in other related works (Ascia 
2008).  
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for the routing performance evaluation. These traffic 
spot random traffic and transpose, 

provide a comprehensive evaluation for the routing 
capability, as shown in other related works (Ascia et al., 

The packet rejection rate for existing and proposed 
method is represented in graphical representation in the 
Fig. 7. By varying the packet rejection rate, different 
routing algorithms produce different average packet
delivery delay and saturation point. Th

 

 

The packet rejection rate for existing and proposed 
method is represented in graphical representation in the 
Fig. 7. By varying the packet rejection rate, different 
routing algorithms produce different average packet-
delivery delay and saturation point. The average packet-
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Fig. 7: Packet rejection rate 
 
delivery delay is used as a metric to evaluate the routing 
algorithm. The DP network provides the shortest path 
planning, by minimizing the packet delivery delay at 
every node. For a mesh topology, the convergence time 
of the network is 2√n-1 cycles. The sampling frequency 
of the DP network has to be aligned with this 
convergence time. Therefore, the cost and routing-table 
updating periods are which is 2√n − 1 cycles. Also, the 
maximum packet-delivery delay is used to evaluate the 
routing performance, which is important for NoC real-
time applications. The experiments carried out refer to 
an 8×8 size NoC. Traffic sources generate 8-flit packets 
with an exponential distribution, the parameters of 
which depend on the packet injection rate. The First in, 
First Out (FIFO) buffers have a capacity of 16 flits. 
Each simulation was initially run for 1000 cycles to 
allow transient effects to stabilize and, afterward, 
executed for 20000 cycles. Since it is a mesh topology, 
the convergence time of the network is 2√n– 1 cycles 
and thus, it is 15 cycles in this experiment. The 
updating period for individual routing table is then set 
to be 15 cycles.  

The recently proposed NoP approach in Noxim 
(2008) is a special case of the Improved KSLA. In NoP, 
each router chooses the routing direction based on the 
queue information that is two steps away from the 
current node. A hill-climbing heuristic is implemented 

for the routing. However, the NoP approach does not 
compute the DP values for the destination nodes, 
whereas a score value, which resembles the DP 
expected delay, is computed on demand. For the DP 
network, the DP value is computed by the DP network 
and distributed to all routers. This provides a fast 
decision time as only a simple lookup table is required 
when the header flit arrives. In the following, the 
experimental results of comparing the NoP and 
Improved KSLA algorithms are discussed. A special 
transpose-traffic scenario is considered with a packet 
injection rate of 0.02 packet/cycle/node. The 
performances of KSLA with different k, XY and NoP 
routings are shown in Fig. 2. When k =  0, Improved 
KSLA has the same performance as XY. This is 
because the routing table is initialized following the XY 
routing scheme and the routing table is never updated. 
For the case of k =  2, Improved KSLA provides a 
similar performance as NoP (the average delay is equal 
to 124 for NoP and 108 for DP). This suggests that NoP 
resembles a special case of Improved KSLA routing, 
specifically, when k =  2. By increasing the k value, 
the average routing delay is further reduced until it 
converges to 42 packet delay/cycle/node, where 
Improved KSLA resembles DP. 

The average delay comparison between the 
existing and proposed algorithm is shown in the
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Fig. 8: Average delay comparison between existing and new using a NoP selection, XY and DP routing approaches 
 
graphical representation in Fig. 8. It shows that average 
delay for the proposed method is low compared to the 
existing algorithm. The experimental results shows that 
performance of the proposed algorithm is better than 
the existing algorithm.  
 

CONCLUSION 

 

This study has presented a novel DP network for 
fully optimal routing in NoC. The DP network provides 
on-the-fly shortest path computation by using 
distributed DP and updating the routing table for 
optimal path planning based on the real time network 
status. The mathematical formulations and convergence 
analysis of the network are presented. Two examples 
are presented to exemplify the robustness of the 
network and the rapid resolution of shortest path 
problems in different network structures. The routing 
mechanics and the KSLA routing strategy are presented 
which can provide tradeoffs between routing optimality 
and memory consumption. Experimental results 
confirm the performance and merits of optimal routing 
over other deterministic and adaptive-routing 
approaches, which are based on partial and local traffic 
information. The optimal DP-network-based routing 
outperforms the XY routing by 28.9% and is also better  

than the other adaptive-routing strategies, such as the 
odd-even, by 18.4%. It has been observed that the new 
KSLA approach is a generalization of other adaptive-
routing algorithm, which applies hill-climbing 
heuristics for latency minimization. Moreover, the 
hardware overhead for a DP network has been 
examined. It was found that a DP network consumes 
less than 20.6% of extra hardware area when compared 
with the deterministic routing algorithms for a standard 
router design. The results suggest that a DP network 
offers a new and effective solution for dynamic 
minimal routing in NoC and can greatly enhance the 
performance of on-chip communication. The DP 
network approach can be further enhanced to enable 
fault tolerance and dynamic power management in 
NoCs to reduce power dissipation, which will be 
investigated in our future work. 
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