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Abstract: In this study a Dynamically Controlled Particle Swarm Optimization (DCPSO) method has been 
developed to solve Economic Emission Short-Term Hydrothermal Scheduling (EESTHS) problem of power system 
with a variety of operational and network constraints. The inertial, cognitive and social behavior of the swarm is 
modified by introducing exponential functions for better exploration and exploitation of the search space. A new 
concept of preceding and aggregate experience of particle is proposed which makes PSO highly efficient. A 
correction algorithm is suggested to handle various constraints related to hydrothermal plants. The overall 
methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement. 
The effectiveness of the proposed method is investigated on two standard hydrothermal test systems considering 
various operational constraints. The application results show that the proposed DCPSO method is very promising. 
 
Keywords: Constriction functions, emission minimization, fuel cost minimization, particle swarm optimization, 

prohibited operating zones, ramp rate limits, short-term hydrothermal scheduling, valve-point loading 
effect 

 
INTRODUCTION 

 
In the present competitive business environment, 

there has been a worldwide trend to optimally manage 
the available hydrothermal resources to efficiently and 
economically meet the energy demand while honoring 
the environmental concerns. The main objective of 
Short-Term Hydrothermal Scheduling (STHS) problem 
is to simultaneously schedule the water discharge of 
hydro generators and active power generations of 
thermal generators to minimize the fuel cost of thermal 
units while ensuring the optimum use of available water 
reserves and satisfying operational and network 
constraints. However, thermal power plants based on 
fossil fuels releases significant amount of harmful 
pollutants such as oxides of carbon, sulphur and 
nitrogen, etc., which not only affect human, animals 
and plants but also contribute towards alarming global 
warming. This has forced electric utilities all over the 
world to reduce the plant emission level below certain 
specified limits. Therefore, the STHS problem also 
includes the minimization of emissions from thermal 
plants to honor environmental concerns. When the 
pollutant emission is considered in the STHS problem, 
it becomes an Economic Emission Short-Term 
Hydrothermal Scheduling (EESTHS) problem. The 
EESTHS problem is a highly complex, nonlinear, non-
convex, hard combinatorial problem with conflicting 
objectives. The short term multi-objective hydrothermal 

scheduling involves the solution of difficult 
optimization problem that requires efficient 
computational methods.  

In recent years computational methods based on 
meta-heuristic approaches such as Evolutionary 
Programming (EP), Simulated Annealing (SA), Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), 
Cultural Algorithm (CA), Differential Evolution (DE) 
(Mandal and Chakraborty, 2012; Zhang et al., 2013a), 
etc., were attempted to solve complex hydrothermal 
scheduling problems. These meta-heuristic approaches 
have shown higher probability in converging to a global 
optimum (Zhang et al., 2012a). The key feature of these 
artificial intelligent techniques is to maintain a good 
balance between global and local search at different 
evolutionary stages. However, most of these methods 
only can perform global search ability or local search 
ability well and thereby may fall into local optimum 
due to lack of population diversity which can require 
much more computation time to converge to a global 
optimum (Wang et al., 2012a). For SA, the tuning 
related control parameters in annealing schedule is 
difficult and it may be too slow (Wang et al., 2012b). 
The main disadvantage of GA and EP is the slow 
convergence, PSO and DE have demonstrated good 
properties of fast convergence, but the drawback of 
premature convergence degrades their performance and 
reduces their global search ability, which makes a local 
optimum   highly   probable    (Wang   et   al.,    2012b). 
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Moreover, these techniques are computationally 
demanding due to premature convergence and local 
trapping (Swain et al., 2011). 

PSO is a population based meta-heuristic 
optimization technique in which the movement of 
particles is governed by two stochastic acceleration 
coefficients, i.e., cognitive and social components and 
the inertia component (Kennedy and Eberhart, 2001). 
The personal and social best experience of particles 
provides sharing information to others and drawing 
them toward the vicinity of optimal solution quickly. 
PSO has several advantages over other meta-heuristic 
techniques in term of simplicity, convergence speed and 
robustness (Jeyakumar et al., 2006). It provides 
convergence to the global or near global point, 
irrespective of the shape or discontinuities of the cost 
function (Mahor et al., 2009). The potential of PSO to 
handle non-smooth and non-convex problem was 
demonstrated by Kennedy and Eberhart (2001) and 
Safari and Shayeghi (2011). However, the performance 
of PSO greatly depends on its parameters and it often 
suffers from the problems such as being trapped in local 
optima due to premature convergence (Safari and 
Shayeghi, 2011) or lack of efficient mechanism to treat 
the constraints (Park et al., 2010) or loss of diversity 
and  performance   in   optimization   process   (Niknam 
et al., 2011), etc. In order to enhance the exploration 
and exploitation capabilities of PSO, the components 
affecting velocity of particles should be properly 
managed and controlled.  

Several PSO versions have been reported in the 
recent past to enhance the computational efficiency of 
the PSO. A constriction factor approach was suggested 
in the velocity updating equation to assure convergence 
of PSO (Yu et al., 2007; Baskar and Mohan, 2008; 
Wang and Singh, 2008). However, the exact 
determination of this factor is computationally 
demanding. Selvakumar and Thanushkodi (2007) 
modified cognitive behavior of the swarm by 
considering worst experience of the particle. This 
method provides some additional diversity to the 
particle but showing poor local searching ability unless 
supported by a heuristic local random search. Roy and 
Ghoshal (2008) proposed Crazy PSO (CPSO), where 
the velocity of some particles, referred as ‘‘crazy 
particles”, is randomized within certain limits by 
applying a predefined probability of craziness. This 
maintains diversity for global search and better 
convergence. However, the value of predefined 
probability of craziness can only be achieved after 
several experimentations. Some attempts (Mandal and 
Chakraborty,  2012;  Wang  et  al.,  2012a;  Chaturvedi 
et al., 2008, 2009; Ivatloo, 2013) have been made to 
vary the cognitive and social behavior of the swarm by 
dynamic control of acceleration coefficients within 
maximum and minimum bounds. Again, the 
determination of limiting values of the acceleration 

coefficients is a difficult task, as it required many 
simulations. Coelho and Lee (2008) randomized 
cognitive and social behavior of the swarm using 
chaotic sequences and Gaussian distribution, 
respectively. Selvakumar and Thanushkodi (2009) 
proposed Civilized Swarm Optimization (CSO) by 
combining Society-Civilization Algorithm (SCA) with 
PSO to improve its communication. The proposed 
algorithm provides clustered search that results in better 
exploration and exploitation of the search space but 
needs several experimentations to determine the 
optimum values of the control parameters of CSO. 
Efforts have also been made to suggest a new 
formulation of the control equation (Safari and 
Shayeghi, 2011; Vlachogiannis and Lee, 2009). Safari 
and Shayeghi (2011) proposed Iteration PSO (IPSO) 
where one additional velocity component pertaining to 
the best fitness of the current iteration is added in the 
control equation of the conventional PSO to avoid local 
trappings, but parameter setting is essential. 
Vlachogiannis and Lee (2009) suggested new control 
equation in Improved Coordinated Aggregation PSO 
(ICAPSO) for better communication among particles to 
enhance local search. They allowed particles to interact 
with its own best experience along with all other 
particles have better experience on aggregate basis, 
instead of the global best experience. However, the 
authors’ accepted that the performance of the proposed 
method is quite sensitive to various parameters settings 
and their tuning is essential. Chaotic PSO (CPSO) of 
Jiejin et al. (2007) proposed adapted inertia weight 
which varies dynamically with fitness value for 
exploration and chaotic local search was used to 
determine the particle position for better exploitation. 
The Improved PSO (IPSO) of Park et al. (2010) 
suggested chaotic inertia weight that decreases and 
oscillates simultaneously under the decreasing line in a 
chaotic manner. In this way, additional diversity is 
introduced but it requires tuning of chaotic control 
parameters. 

This study presents a Dynamically Controlled 
Particle Swarm Optimization (DCPSO) method to 
efficiently solve EESTHS problem. Several measures 
have been suggested in the control equation of the PSO 
for better control of particles' movement in the search 
space. A new concept of preceding experience of the 
particle is suggested to memories just previous 
experience to improve the cognitive behavior of the 
particle. In addition, the communication with the swarm 
is improved by introducing Root Mean Square (RMS) 
component of velocity in the social behavior of the 
particles. Further, the PSO operators are dynamically 
controlled by introducing exponential constriction 
functions to regulate velocities of particles. The 
proposed method effectively regulates the velocity of 
particles during their flights so as to ensure both global 
exploration and local  exploitation.  The  economic  and 
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environmental objectives are combined in fuzzy 
framework to solve this multi-objective optimization 
problem. The proposed PSO is then applied to optimize 
the EESTHS problem while considering certain 
important thermal and hydro plants constraints such as: 
system power balance constraints, power generation 
limit constraints, reservoir storage volume limit 
constraints, water discharge rate limit constraints, water 
dynamic balance constraints, initial and final reservoir 
storage volume limit constraints, valve-point loading 
effect, Prohibited Operating Zones (POZs), ramp rate 
limits and network power loss, etc. The effectiveness of 
the proposed method has been tested for EESTHS of 
two standard test generating systems. 
 

METHODOLOGY 

 
Problem formulation: The EESTHS is a multi-
objective multi-constraint optimization problem. In 
which, two conflicting objectives, i.e., fuel cost and 
polutants emission are simultaniously optimized while 
satisfying several equality and inequality constraints. 
These objectives and constraints can be mathematically 
defined as described below. 
 
Generator fuel cost function: As hydro-generating 
units do not incur any fuel cost, the hydrothermal 
scheduling problem is aimed to minimize the total fuel 
cost of the thermal plants while ensuring the optimum 
use of hydro resources (Mandal and Chakraborty, 2008) 
over the predicted load demand for specified period of 
time. The large turbine thermal generators usually have 
a number of fuel admission valves which are operated 
in sequence to meet out load demand variations. The 
opening of a valve increases the throttling losses rapidly 
and thus the incremental heat rate rises suddenly. This 
valve-point loading effect introduces ripples in the heat-
rate curves and can be modelled as sinusoidal function 
in the cost function. Therefore, the fuel cost objective 
function for the EESTHS problem may be stated as. 
Minimize: 
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where,  
ai, bi, ci : The cost coefficients  
ei and fi : The valve-point effect coefficients of the i

th 
generator  

Psit : The real power output of the ith generator for 
the tth schedule interval  

Ns : The number of thermal generating units in the 
system 

 
Pollutant emission function: The pollutant emission 
produced by thermal plants can be expressed as a sum 

of a quadratic and an exponential function and can be 
expressed as: 
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where, αi, βi, γi , ξi and λi are the emission coefficient of 
the ith generator. 
Subject to the following constraints. 
 
Constraints: 
System power balance: The sum of total power 
generation of all thermal and hydro plants must be 
equal to the sum of total power demand plus the 
network power loss. The network power loss can be 
evaluated using B-coefficient loss formula. Therefore, 
the system power balance equation may be stated as: 
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(3) 

 
where,  
Psit, Phjt : Power generation from the i

th thermal 
and the j

th hydro generator at the t
th 

schedule interval  
Ns, Nh : The respective total number of 

generators in the system  
B, B0 and B00 : B-coefficients: 
 

2 2

1 2 3 4 5 6hjt j hjt j hjt j hjt hjt j hjt j hjt j
P C V C Q C V Q C V C Q C= + + + + +  

1 2 3 4 5 6hjt j hjt j hjt j hjt hjt j hjt j hjt jP C V C Q C V Q C V C Q C= + + + + +                                      (4) 

 
where,  
Qhjt, Vhjt : The water release and reservoir storage 

volume of the j
th hydro plant at the t

th 
schedule interval  

C1j, C2j, C3j, C4j, C5j and C6j : The power generation 
confidents of the jth hydro plant 

 
Power generation limits: For stable operation, power 
output of each generator is restricted within its 
minimum and maximum limits. The generator power 
limits are expressed as: 
 

min max

si si siP P P≤ ≤                                             (5) 

 
m in max

hj hj hjP P P≤ ≤                                                (6)  

 
Reservoir storage volume limits: The reservoir 
storage volume limit of each hydro plant is restricted 
within its minimum and maximum limits and is 
expressed as: 
 

,min ,maxhj hjt hjV V V≤ ≤                                             (7) 
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Water discharge rate limits: The water discharge rate 
limit of each hydro plant is restricted within its 
minimum and maximum limits and is expressed as: 
 

,min ,maxhj hjt hjQ Q Q≤ ≤                              (8) 

 
Water dynamic balance: 
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(9) 

 
where,  
Ihjt, Shjt : The inflow and spillage of the jth hydro plant at 

the tth schedule interval, respectively  
τhj : The time delay between the jth hydro plant and 

its upstream hth plant at schedule interval t  
Nj : The number of upstream plants directly above 

the jth hydro plant 
 

Initial and end (terminal) reservoir storage volumes 
limits: 
 

0 ,    ; 1,2,... ; 1,2,..., ; 1,2,...,j jB jT jE h sV V V V j N i N t t= = ∈ ∈ ∈
   

(10) 

 
Prohibited Operating Zones (POZs): The POZs 
causes to discontinuities in the input-output relationship 
of the thermal generators. POZs divide the operating 
region between minimum and maximum generation 
limits  into  disjoint  convex  sub-regions  (Chaturvedi 
et al., 2008; Selvakumar and Thanushkodi, 2009). The 
generation limits for the ith unit with j number of POZs 
can be expressed as: 
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where,  

superscripts L and U : The lower and upper limit of 

prohibited operating zones of 

generators  

NsPZ and NPZi : The total number of generators 

with prohibited zones and the 

total number of POZs for the i
th 

generator, respectively 

 

Ramp rate limits: The output of thermal generators is 

usually assumed to be adjusted smoothly and 

instantaneously (Safari and Shayeghi, 2011). However, 

under practical circumstances ramp rate limit restricts 

the operating range of all on-line thermal units for 

adjusting the generation between two operating periods 

(Jiejin et al., 2007). The output of thermal generators 

may increase or decrease with respect to their ramp rate 

limits. The inequality constraints introduced due to up 

and down ramp rate limits are expressed as: 

 
min 0 max 0max( , ) min( , )

si sisi i si si iP P DR P P P UR− ≤ ≤ +
      

(12) 

 
If generation increases: 
 

0

si si iP P UR− ≤                                           (13) 

 

If generation decreases:   

 
0

si si iP P DR− ≤                                           (14) 

 

where,  

Psi  =  The current output power  

P
0

si  =  The previous output power 

URi  =  The up ramp rate limit  

DRi =  The down ramp rate limit of the i
th generator

 

 
 

Fig. 1: The conventional trapezoidal fuzzy membership function 
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Multi-objective formulation in fuzzy framework: In 
fuzzy domain, each objective is associated with a 
membership function. The membership function 
indicates the degree of satisfaction of the objective. The 
trapezoidal fuzzy function, as shown in Fig. 1, provides 
a linear and continuous relationship between the fuzzy 
membership function and the fuzzy index of the 
concern objective and assigns any membership value 
between 0 and 1 to the objectives. The conventional 
trapezoidal fuzzy membership function (Abido, 2006; 
Wu et al., 2010; Agrawal et al., 2008; Cai et al., 2010) 
is used to combine various objectives. 
Mathematically: 
 

m in

m in m ax

m ax

1                            

       

0                             

i i

i i i i i

i i

x x

M x C x x x

x x

µ

≤
= + ≤ ≤
 ≥

            (15) 

 
The lower and upper bounds of the desired 

objective are xmini and xmaxi respectively and can be 
varied according to the preferences of different 
operators. If xi≤xmini, a unity membership value and  if  
xi ≥xmaxi, a zero membership value is assigned. The 
coefficients M and C are decided by the lower and 
upper bounds of the fuzzy index xi and are given by: 
 

M = -1/ (xmaxi - xmini)                            (16) 
 

C = xmaxi/ (xmaxi - xmini)              (17) 
 

Now a single objective function can be used to 
solve this multi-objective EESTHS problem as to: 
 

Max µ = (µ1 µ2)
1/2

                                            (18)  
 
s.t., the generator constrains defined by (3)-(14). 
 
Proposed DCPSO: The classical PSO is initialized 
with a population of random solutions and searches for 
optima by updating particle positions. The velocity of 
the particle is influenced by the three components: 
initial, cognitive and the social component. Each 
particle updates its previous velocity and position 
vectors according to the following model (Kennedy and 
Eberhart, 1995; Shi  and  Eberhart,  1999;  Jeyakumar  
et al., 2006): 
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where,  
vi

k : The velocity of ith particle at kth iteration 
rand1 () and rand2 () : Random numbers between 0 and 1 
si

k : The position of ith particle at kth iteration 

C1, C2 : The acceleration coefficients  
pbesti : The best position of ith particle achieved based 

on its own experience  
gbesti : The best particle position based on overall 

swarm experience  
∆t : The time step, usually set to 1 sec  
W : The inertia weight which is allowed to decrease 

linearly as follows: 
 

min

max maxmin

max

( - ) ( - )W W itr itr

itrW W
×

= +
          

(21)
 

where,  
Wmin and Wmax : The minimum and maximum value of 

inertia weight respectively  
itrmax : The maximum number of iterations  
itr : The current number of iteration 
 

For better performance of PSO, the particles must 
fly with higher velocities during the early flights to 
enhance global search and should be relatively slow 
during later flights of the journey to improve local 
search. Therefore, with appropriate regulation of 
particle’s velocity during the journey, the performance 
of PSO could be improved. Initially, the impact of 
cognitive component must be high and that of the social 
component be less to ensure global exploration of the 
search space by all particles. Later on, the impact of 
social component must increase and that of the 
cognitive component must decrease to divert all 
particles towards global best to improve the 
convergence. This is essential for a good balance 
between exploration and exploitation as suggested by 
(Chaturvedi et al., 2009). Therefore, a modified control 
equation is suggested for dynamically regulating 
particle’s velocity, by suggesting suitable exponential 
constriction functions ζ1 and ζ2. In addition, the 
cognitive behavior is split to encompass best and 
preceding experience of the particle. The suggested 
control equation for the proposed DCPSO may be 
expressed as: 
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The modifications suggested in the control 

equation are explained as follows. 
 
Inertia weight update: The role of the inertia weight is 
considered important for the PSO's convergence 
behavior. The inertia weight is employed to control the 
impact   of   the  previous  history  of  velocities  on  the 
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current velocity. Thus, the parameter W regulates the 
trade-off between the exploration and exploitation 
potential of the swarm. A large inertia weight facilitates 
exploration (searching new areas), while a small one 
tends to facilitate exploitation, i.e., fine tuning the 
current solution. A proper value of inertia weight is one 
of the deciding factors to obtain better solutions 
(Parsopoulos and Vrahatis, 2002). It is preferable to 
initially set the inertia weight to a large value, to 
promote global exploration of the search space and 
gradually decrease it to obtain refined solutions 
(Chaturvedi et al., 2009). In Shi and Eberhart (1999) 
suggested linear modulation of the inertia weight. This 
trend is followed by many researchers till date and 
some of them can be mentioned as Shi and Eberhart 
(1999), Roy and Ghoshal (2008), Coelho and Lee 
(2008), Chaturvedi et al. (2009), Selvakumar and 
Thanushkodi (2009), Safari and Shayeghi (2011) and 
Niknam et al. (2011) etc. Normally convergence 
characteristics of any search techniques follow nearly 
exponential decay. Therefore it is intuitively believed 
that exponential decay of the inertia weight function 
can provide a better balance between the global and 
local search. Thus in the proposed method, the inertia 
weight has been allowed to vary in accordance to an 
exponential decaying function rather than to decrease 
linearly. The modulations suggested to update the 
inertia weight is governed by the following relation: 
 

W = exp (-η loge (Wmax/Wmin))                (23) 
 
where, η = itr/itrmax; itrmin≤itr≤itrmax, itr is the iteration 
count which is being varied from itrmin to itrmax. 
 
Updating preceding experience: In order to improve 
diversity, the cognitive behavior was split in 
Selvakumar and Thanushkodi (2007) by considering the 
worst experience in addition to the best experience of 
particles. Although, this modification provides 
additional diversity but it results in poor cognitive 
behavior and therefore requires a local random search 
algorithm to enhance exploitation potential of the PSO. 
Therefore, in the proposed method, the concept of 
preceding experience is suggested, instead of the worst 
experience, to improve the cognitive behavior of the 
swarm. Here the current fitness of each particle is 
compared with its fitness value in the preceding 
iteration and if it is found less, it will be treated as the 
preceding experience. The preceding experience of the 
particle produces much less diversity than the worst 
particle and thus provides better exploration and 
exploitation of the search space without any additional 
local random search or else. 
 
Updating RMS experience: PSO has very poor 
communication as only local and global best positions 
are transparent to other particles (Wang and Singh, 
2008). This may leads to lack of diversity and thus 
result in poor searching ability, especially during later 

part of the search. One way to improve the 
communication among particles is to consider RMS 
component of all particles’ velocities in the control 
equation, as shown in (22). In the conventional PSO, 
the best particle is governed only by inertia weight 
component. In the proposed DCPSO, the RMS 
component also contributes towards movement of the 
best particle. This also provides some diversity due to 
improved social behavior of the swarm. This results in 
global sharing of information and particles profit from 
the discoveries and previous experience of all other 
companions during the search. 
 
Dynamic control of acceleration coefficients: The 
cognitive and social behaviors play important role in 
searching the global area and global optima. In 
conventional PSO, these behaviors are governed by 
static acceleration coefficients. However, many 
researchers (Yu et al., 2007; Coelho and Lee, 2008; 
Baskar and Mohan, 2008; Wang and Singh, 2008; 
Chaturvedi et al., 2008, 2009; Mandal and Chakraborty, 
2012; Wang et al., 2012b; Ivatloo, 2013) suggested that 
these acceleration coefficients must be dynamically 
controlled regulate particle’s velocity during the whole 
computation process but faces difficulties as discussed 
in introduction section. In the present study, following 
the logic of dynamic inertia weight, the acceleration 
coefficients are dynamically controlled by introducing 
two exponential constriction functions ζ1 and ζ2 defined 
as: 
  

1
1-  

      e  µ ηζ =                     
(24) 

 

2
2e  k

µ ηζ = ; k = ζ1 C1b / ζ2 C2                     (25)  

 
where, k is the ratio of proposed dynamic cognitive and 
social acceleration coefficients. For identical values of 
these coefficients at η = ηt: 
 

k = (C1b/C2) e
-η

t 
(µ

1
+ µ

2
)              (26) 

 
Next, for social behaviour to be ke at the end of search: 
  

k = (ke/C2) e
-µ

2                                             (27) 
 
Thus, from (26) and (27): 
 

µ2 = (1 - ηt ) /ηt× (ηtµ1 + loge (ke/C1b))         (28) 
 

For the given values of C1b, C2, µ1 and ηt, the value 
of µ2 can be obtained for the desired value of ke and 
thus can be optimized. 

The above mentioned alterations in the control 
equation of the conventional PSO regulates particles’ 
velocity within predefined bounds without any 
additional formulation as reported in many improved 
versions of PSO (Jiejin et al., 2007; Baskar and Mohan, 
2008; Roy and Ghoshal, 2008; Chaturvedi et al., 2008, 



 

 

Res. J. App. Sci. Eng. Technol., 8(13): 1544-1557, 2014 

 

1550 

1,1 2,1 ,1 1,1 2,1 ,1

1,2 2,2 ,2 1,2 2,2 ,2

     ...            ...  

    ...           ...  

.          .        ...    .           .        .         ...   .

.          .        ...

h

h

h h hN s s sN

h h hN s s sN

Q Q Q P P P

Q Q Q P P P

P =

1, 2, , 1, 2, ,

    .           .        .         ...   .

.          .        ...    .           .        .         ...   .

    ...          ...  
h sh T h T hN T s T s T sN TQ Q Q P P P

 
 
 
 
 
 
 
 
    

 
Fig. 2: Particle encoding for the proposed PSO

 

 
2009; Mahor et al., 2009; Vlachogiannis and Lee, 2009; 

Safari and Shayeghi, 2011; Niknam et al., 2011; 

Mandal and Chakraborty, 2012; Ivatloo, 2013), yet 

preserving diversity due to the stochastic nature of 

cognitive and social behaviors of the swarm. 

 
Particle encoding and initialization: The solution of 
an EESTHS problem is the set of most optimal hourly 
reservoir water discharges and thermal generations over 
the entire scheduling horizon for the desired objective 
(s) bounded by certain operational constraints. In the 
proposed PSO, the particles are encoded in real 
numbers as the set of current water discharge and 
thermal generations which is generated randomly 
within their prescribed minimum and maximum limits. 
For an individual structure P, which consists of Nh 
hydro plants, Ns thermal plants for T time intervals 
defined as follows in Fig. 2.  

The initial population is randomly created with 
predefined number of particles to maintain diversity. 
Each of these particles satisfies problem constraints 
defined by Eq. (2) to (8). Infeasible particles are not 
rejected but are corrected using a constraint handling 
algorithm as described later in the section. This 
improves the pace of PSO and thus reduces its 
computation time. The fitness of each particle is 
evaluated using Eq. (18) and then pbest, ppreceding, 
gbest and grms are initialized. The initial velocity of 
particles is assumed to be zero. 
 
Constraint handling: PSO is inherently weak in 
constraint handling (Park et al., 2010). In PSO, each 
particle represents a tentative solution. Owing to 
problem constraints, infeasible particle may appear 
when it updates its position and velocity and must be 
corrected using a suitable mechanism. Therefore, a 
repair algorithm is suggested that looks after all the 
system and network constraints whenever violated. In 
EESTHS problem, the correction algorithm consists of 
the initial and end reservoir storage constraints and 
system power balance constraint. In this correction 
algorithm, the hydro and thermal constraints are 
corrected simultaneously. The end storage volume of 
any reservoir can be expressed as a function of hydro 
water discharge, assuming the spillage in Eq. (9) to be 
zero (Zhang et al., 2012b). For handling the initial and 

end reservoir storage constraints, a dependent time 
interval d is randomly selected, which is not repeated in 
the next time interval and its discharge is calculated 
from (29) as given below: 
  

1 1 1 1,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
j

h h h

NT T T

h h h h

t m t t j d

Q j d V j initial V j end

I j t Q m t m Q j tτ
= = = = ≠

= −

+ + − −∑ ∑∑ ∑
    (29) 

 

After handling the initial and end reservoir storage 
constraints, the volume of reservoir Vh is calculated 
using (9) and satisfies its limit from (7). Then based on 
available water discharge Qh and Vh, the hydro plants 
power is calculated using (4) and satisfy its generator 
limits from (6). 

Next, the system power balance constraints are 
handled by correction algorithm. For the purpose, the 
generations of all generators are adjusted by their 
respective bounded generation limits, prohibited 
operating zones limits and ramp rate limits as given in 
Eq. (5) and (11) to (14). If the generations are less or 
more than the minimum or maximum generation limits, 
respectively then setting that generation at minimum or 
maximum bound limits as in (5). Whenever the 
generation is found to be in a prohibited zone and is 
greater or equal than the average value of its zonal 
limits, then set the generation at the upper bound, 
otherwise at the lower bound of the zone as per (11). 
The generation schedule of generators may increase or 
decrease with respect to their ramp rate limits as in 
(12). If the generation is increased, than the difference 
of current and the previous generation is set less than or 
equal to UR as per (13), otherwise the difference of 
previous and the current generation is set less than or 
equal to DR as per (14). Now the error is calculated 
from the power balance Eq. (3) and is equally 
distributed among all generators and the procedure is 
repeated till the error is reduced to a predefined 
mismatch value ϵ. In this study the mismatch is 
considered as 0.001. 
 
Elitism and termination criterion: In stochastic based 
algorithms like PSO, the solution with the best fitness 
in the current iteration may be lost in the next iteration. 
Therefore,   the  particle  with  the  best  fitness  is  kept 
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preserved for the next iteration. The algorithm is 
terminated when either all particles converge to a single 
position or the predefined maximum iteration count is 
exhausted. 
 

SIMULATION RESULTS
 

The proposed algorithm is tested on two different 
hydrothermal systems with various operational 
constraints. The value of acceleration coefficients for 
the proposed DCPSO is taken as 1.6, 0.4 and 2.0 for 
C1b, C1p and C2 respectively from (Selvakumar and 
Thanushkodi, 2007). Wmin and Wmax are taken as 0.1 and 
1.0, respectively. The population size of the proposed 
DCPSO has been taken as 20 for all case studies. The 
maximum iterations are set at 500 for all test cases. The 
proposed algorithm has been developed
MATLAB and simulations have been carried on a 
personal computer of Intel i5, 3.2 GHz and 4 GB RAM 
and the results obtained after 100 independent trails are 
compared with some recent published work. 

In this study, the coefficient of exponent 
selected to 5, as beyond 5, the term e
perceptible at the end of search. Further, it has been 
found  through  simulations  that most appropriate value
of ηt is 2/3. For this value of ηt, the optimized value of 
ke is 0.2 and corresponding value of µ2, is 3.9617 on 
 
Table 1: Limiting values of fuel cost and emission 

Case study 

Short term hydrothermal economic dispatch 
------------------------------------------------------

Fuel cost ($) 

1 41889.878313 
2 1782244.870496 

 
Table 2: Comparison results for case study 1 

Methods Cost ($)

HMOCA (Lu et al., 2011) 44344.000000
MOCA-PSO (Zhang et al., 2012a) 44627.000000
SA-MOCDE (Zhang et al., 2013a) 43165.123075
LM-MODE (Zhang et al., 2013b) 43978.141896
CM-MODE (Zhang et al., 2013a) 43748.196436
TM-MODE (Zhang et al., 2013b) 43888.960761
Proposed DCPSO 42118.472962

 

 
Fig. 3: Optimal value of water discharge for this 
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preserved for the next iteration. The algorithm is 
terminated when either all particles converge to a single 
position or the predefined maximum iteration count is 

SIMULATION RESULTS 

The proposed algorithm is tested on two different 
hydrothermal systems with various operational 
constraints. The value of acceleration coefficients for 
the proposed DCPSO is taken as 1.6, 0.4 and 2.0 for 

respectively from (Selvakumar and 
are taken as 0.1 and 

1.0, respectively. The population size of the proposed 
DCPSO has been taken as 20 for all case studies. The 
maximum iterations are set at 500 for all test cases. The 
proposed algorithm has been developed using 
MATLAB and simulations have been carried on a 
personal computer of Intel i5, 3.2 GHz and 4 GB RAM 
and the results obtained after 100 independent trails are 
compared with some recent published work.  

In this study, the coefficient of exponent µ1 is 
selected to 5, as beyond 5, the term e-µ

1
η is not 

perceptible at the end of search. Further, it has been 
that most appropriate value 

, the optimized value of 
, is 3.9617 on  

the basis of average fuel cost obtained after

independent trials of DCPSO on the case study 2. The 

EESTHS problem involved conflicting objectives of 

fuel cost and emission of thermal plants. Therefore, to 

combine the objectives in the proposed fuzzy 

framework, both economic and emission dispatch 

problems are optimized using proposed PSO to 

determine the limiting values of these objectives. These 

limiting values of fuel cost and emission of thermal 

plants are presented in Table 1.  

 

Case study 1: In this case study, a hydrothermal system 
comprises of four cascaded hydro plants and three 
composite thermal plants with the consideration of 
valve point effect (Mandal et al

transmission loss (Lakshminarasimman and 
Subramanian, 2006) is considered. The detail data for 
this system may be referred from (Lakshminarasimman 
and Subramanian, 2008). The hourly optimal water 
discharges of hydro plants are shown in Fig. 3 and the 
optimal power generation from hydro and therma
plants are shown in Fig. 4 to understand the generating 
schedule explicitly for duration of 24 h with satisfying 
all hydrothermal constraints. A comparison result of the 
proposed method with other latest existing methods is 
presented in Table 2. 

Table 1: Limiting values of fuel cost and emission  

Short term hydrothermal economic dispatch  
---------------------------------------------------------------------------------- 

Short term hydrothermal emission dispatch
--------------------------------------------

Emission (lb) Fuel cost ($) 

17298.872400   43498.161892 
252055.948669 2344221.628553 

Cost ($) Emission (lb) Fitness Ploss (MW)

44344.000000 17408.000000 0.676917 262.683 
44627.000000 17364.000000 0.654724 297.487 
43165.123075 17464.354591 0.737775 120.612 
43978.141896 19016.555783 0.617758 122.481 
43748.196436 19038.931747 0.627637 122.527 
43888.960761 18914.371022 0.627470 122.489 
42118.472962 16526.921620 0.838216 255.040 

3: Optimal value of water discharge for this case study 1 

basis of average fuel cost obtained after 100 

independent trials of DCPSO on the case study 2. The 

EESTHS problem involved conflicting objectives of 

fuel cost and emission of thermal plants. Therefore, to 

in the proposed fuzzy 

framework, both economic and emission dispatch 

problems are optimized using proposed PSO to 

determine the limiting values of these objectives. These 

limiting values of fuel cost and emission of thermal 

In this case study, a hydrothermal system 
comprises of four cascaded hydro plants and three 
composite thermal plants with the consideration of 

et al., 2008) and 
transmission loss (Lakshminarasimman and 
Subramanian, 2006) is considered. The detail data for 
this system may be referred from (Lakshminarasimman 
and Subramanian, 2008). The hourly optimal water 
discharges of hydro plants are shown in Fig. 3 and the 
optimal power generation from hydro and thermal 
plants are shown in Fig. 4 to understand the generating 
schedule explicitly for duration of 24 h with satisfying 
all hydrothermal constraints. A comparison result of the 
proposed method with other latest existing methods is 

Short term hydrothermal emission dispatch 
------------------------------------------------------------ 

Emission (lb) 

16053.661657 
164692.600329 

Ploss (MW) CPU time (sec) 

- 
- 
1092 
1247 
1262 
1252 
131 
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Fig. 4: Optimal value of power generation for 
 

 

Fig. 5: Optimal value of water discharge for case study 2    

 

 

Fig. 6: Optimal value of power generation for case study 2

 

The table shows that the proposed method is giving 

much better result as compared to other methods in 

terms of fuel cost and emission. This is due to the fact 

that proposed method is capable of searching solution 

which is optimally utilizing water discharg

result, the thermal energy generation is less and 

consequently both fuel cost and pollutant emissions are 

better. The average CPU time of the proposed method 

is also much less than other methods due to suggested 

modifications. The detailed optimal generating schedule 
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4: Optimal value of power generation for this case study 1 

5: Optimal value of water discharge for case study 2     

6: Optimal value of power generation for case study 2 

The table shows that the proposed method is giving 

much better result as compared to other methods in 

terms of fuel cost and emission. This is due to the fact 

that proposed method is capable of searching solution 

which is optimally utilizing water discharges. As a 

result, the thermal energy generation is less and 

consequently both fuel cost and pollutant emissions are 

better. The average CPU time of the proposed method 

is also much less than other methods due to suggested 

generating schedule 

of the solution obtained using proposed method may be 

referred from Table 3. 

 

Case study 2: The proposed PSO method is applied on 

this case study consisting of the valve

POZs and ramp rate limits. This hydrothermal system

comprises of four hydro plants as in test system 1 and 

ten thermal plants taken from (Basu, 2008) with the 

consideration of valve point effect. The POZ’s are 

applied on units 2, 5, 6 and 9, respectively 

 

 

 

of the solution obtained using proposed method may be 

The proposed PSO method is applied on 

consisting of the valve-point effect, 

POZs and ramp rate limits. This hydrothermal system 

comprises of four hydro plants as in test system 1 and 

ten thermal plants taken from (Basu, 2008) with the 

consideration of valve point effect. The POZ’s are 

respectively as in Chiou 
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(2009). These zones result in four disjoint feasible sub-

regions for each of units 2, 5 and 6 and three for unit 9, 

respectively (Chiou, 2009). The hourly optimal water 

discharges of hydro plants and the optimal power 

generation from hydro and thermal plants are shown in 

Fig. 5 and 6 respectively, satisfying all hydrothermal 

constraints pertaining to EESTHS problem. The result 

of the compromise solution obtained by the proposed 

method provides the optimal fuel cost of $ 

1846428.356741 and optimal emission of lb 

165521.372386, respectively. The CPU time taken by 

the proposed method is 932 sec. There are no 

comparison results available in the literature for this test 

system. The detailed optimal thermal generating 

schedule of the solution obtained using proposed 

method may be referred from Table 4. 

 

DISCUSSION 

 

In order to highlights the effect of each 

modification suggested in the control equation of the 

conventional PSO, the variants of PSO so obtained are

 
Table 3: Hourly optimal hydrothermal generation (MW), total hydrothermal plant generation (MW) and Power Demand (PD) in MW for case 

study 1 

h Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 Total PD 

1 97.25174 88.45861 56.06000 131.88000 175.00000 157.31540 52.82427 758.79000 750 
2 102.02250 92.12500 0.00000 162.36000 175.00000 205.10990 53.24732 789.86470 780 
3 103.18000 92.12500 55.29000 162.36000 133.29550 108.51920 50.94848 705.71820 700 
4 103.18000 92.12500 57.76278 162.36000 144.35570 44.35124 51.49860 655.63330 650 
5 103.18000 92.08074 55.29000 162.36000 172.64140 40.00000 51.58260 677.13470 670 
6 101.38170 92.12500 55.29000 162.36000 139.06680 206.26420 50.96058 807.44830 800 
7 54.18000 92.12500 55.29000 162.36000 175.00000 300.00000 122.82870 961.78370 950 
8 103.18000 91.78715 39.93549 162.36000 175.00000 300.00000 149.78510 1022.04800 1010 
9 103.18000 92.12500 55.29000 298.68030 175.00000 300.00000 78.44557 1102.72100 1090 
10 102.49240 92.12500 49.47351 300.79770 175.00000 300.00000 72.81037 1092.69900 1080 
11 103.18000 91.98025 55.29000 306.00000 175.00000 300.00000 81.33281 1112.78300 1100 
12 102.96420 92.02704 55.29000 303.05440 175.00000 300.00000 134.42050 1162.75600 1150 
13 96.95198 92.12500 55.29000 162.36000 175.00000 300.00000 240.25350 1121.98000 1110 
14 103.18000 92.12500 55.29000 306.00000 126.96360 300.00000 55.77165 1039.33000 1030 
15 54.18000 92.12500 55.29000 306.00000 175.00000 298.31220 50.58814 1031.49500 1010 
16 103.18000 92.12500 55.29000 306.00000 170.12210 294.76560 50.74334 1072.22600 1060 
17 103.18000 92.12500 55.29000 306.00000 159.22730 292.91060 52.52588 1061.25900 1050 
18 103.18000 91.71908 55.29000 305.95660 175.00000 300.00000 101.63590 1132.78200 1120 
19 103.18000 92.12500 55.29000 306.00000 175.00000 300.00000 51.18865 1082.78400 1070 
20 103.18000 92.12500 55.29000 296.16520 170.29680 295.61990 50.00000 1062.67700 1050 
21 103.18000 91.89370 55.29000 304.03340 175.00000 131.49030 58.51507 919.40250 910 
22 103.03230 92.12500 0.00000 306.00000 101.69700 209.81340 53.85374 866.52150 860 
23 103.18000 92.12500 0.00000 162.36000 153.69300 297.85710 51.23175 860.44680 850 
24 103.18000 92.12500 0.00000 306.00000 28.42017 223.10430 51.92702 804.75650 800 

 
Table 4: Hourly optimal thermal generation (MW) and Power Demand (PD) in MW for case study 2 

h Ps1 Ps2 Ps3 Ps4 Ps5 Ps6 Ps7 Ps8 Ps9  Ps10 PD 

1 150.3145 135.0824 73.14719 60.12250 73.09238 64.60753 93.95771 60.39524 25.80512  10.00122 1036 

2 152.7755 136.1342 74.92724 63.21495 113.92950 58.92857 64.64282 59.47808 45.64452  34.11314 1110 

3 163.6348 149.7431 83.24638 71.02785 153.00000 108.10470 94.55725 87.92685 75.61859  10.51224 1258 

4 158.5592 225.0000 103.29840 66.81817 185.04080 68.55940 72.20454 66.40643 73.60091  10.00000 1406 

5 163.5136 152.1183 180.32490 66.57193 230.32229 111.01930 49.59731 72.12609 76.26497  40.00000 1480 

6 157.0634 227.8493 187.65920 82.98092 239.71110 155.65950 65.32525 89.54223 77.03692  41.05116 1628 

7 158.2829 173.0026 175.41990 129.53430 240.34880 154.80220 89.85338 116.96650 77.20967  40.34589 1702 

8 228.8521 177.9196 149.41270 170.57730 236.65190 153.00000 111.33030 115.57560 74.28285  10.34589 1776 

9 265.4918 172.4502 170.77920 220.32530 239.17010 155.23290 126.09610 115.15870 77.80921  25.63720 1924 

10 257.7395 173.4403 223.71700 263.19510 235.38720 154.00390 125.93370 114.26230 70.55660  10.27302 2022 

11 325.9551 180.9550 289.92670 297.14440 238.41270 156.47650 127.17070 116.48880 76.27877  10.00000 2106 

12 277.0785 136.3723 212.50810 292.31800 235.27720 154.17510 118.53070 109.20970 68.71316  27.29334 2150 

13 285.9942 144.7805 141.81980 280.77270 234.97740 154.56240 110.08850 107.05330 71.14630  10.00000 2072 

14 354.4572 143.6573 74.72884 293.61940 220.51540 157.51730 111.17190 105.66420 77.55448  33.66489 1924 

15 277.2234 137.5332 78.33379 248.09830 173.39090 113.11810 86.63765 79.49281 50.28965  10.00000 1776 

16 213.0226 142.8459 76.13266 208.46400 134.38980 93.88054 70.78334 59.26877 46.94505  40.00000 1554 

17 184.3690 141.6066 105.73710 180.05710 89.02448 93.18400 45.67678 50.59568 72.24922  55.00000 1480 

18 158.4919 143.6845 179.29240 153.21610 114.57800 132.00000 68.77292 68.79370 71.13436  25.00000 1628 

19 153.9222 159.0121 202.79410 176.25250 168.00000 157.75420 80.90711 89.23959 76.29788  10.00000 1776 

20 227.5640 174.5286 144.24990 216.06000 210.43910 154.67020 104.18770 112.59930 69.07836  28.24286 1972 

21 168.3856 158.3285 105.22910 256.92730 234.58420 153.85820 124.35390 113.21830 75.31950  23.38279 1924 

22 150.0000 135.0000 73.00000 206.92730 210.00000 103.85820 94.35386 83.21830 45.31950  19.66139 1628 

23 159.1412 135.0000 75.68429 191.58650 170.66870 62.77332 74.51851 66.40171 45.72873  10.52075 1332 

24 150.0000 135.0000 73.00000 141.58650 120.66870 57.00000 44.51851 47.00000 20.00000  10.00000 1184 
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classified as ‘b’, ‘c’, ‘d’ and ‘e’; ‘a’ refers to the 
conventional PSO, ‘b’ refers to ‘a’ with exponential 
modulations in inertia weight, ‘c’ refers to ‘b’ with 
preceding experience added in the cognitive 
component, ‘d’ refers to ‘c’ with RMS experience 
added in the social component and ‘e’ refers to the 
proposed DCPSO. A comparison of t
convergence characteristics for PSO and its variants are 
shown in Fig. 7. It can be observed from the figure that 
while subsequently modifying the 
cognitive and the social components in the control 
equation of PSO, the convergence characteristics are 
progressively improved. It can be observed that ‘a’ 
shows better exploration capability, but exploitation is 
poor. In ‘b’, the swarm rushes towards the area of 
global optima quickly, but shows poor convergence. 
The exploitation potential is improved in ‘c’, however it 
still stuck in local optima. The effect of adding RMS
component in the social behavior of the swarm is 
observed in ‘d’ showing better performance of PSO due
to introduction of additional diversity. Finally, when 
constriction functions are employed in ‘e’, a marked 
improvement is observed in both exploration and 

 
Fig. 7: Convergence of best fitness with iterations for case study 2
 

 
Fig. 8: Enlarged view of Fig. 7 
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‘b’, ‘c’, ‘d’ and ‘e’; ‘a’ refers to the 
to ‘a’ with exponential 

modulations in inertia weight, ‘c’ refers to ‘b’ with 
preceding experience added in the cognitive 
component, ‘d’ refers to ‘c’ with RMS experience 
added in the social component and ‘e’ refers to the 
proposed DCPSO. A comparison of the set of 
convergence characteristics for PSO and its variants are 
shown in Fig. 7. It can be observed from the figure that 

 inertia weight, 
cognitive and the social components in the control 

characteristics are 
progressively improved. It can be observed that ‘a’ 
shows better exploration capability, but exploitation is 
poor. In ‘b’, the swarm rushes towards the area of 
global optima quickly, but shows poor convergence. 

al is improved in ‘c’, however it 
still stuck in local optima. The effect of adding RMS 

of the swarm is 
‘d’ showing better performance of PSO due 

to introduction of additional diversity. Finally, when 
constriction functions are employed in ‘e’, a marked 
improvement is observed in both exploration and 

exploitation potentials of PSO. An enlarged view of 
Fig. 7 is shown in Fig. 8 showing a comparison o
exploitation potentials of PSO variants. It is clearly 
shown ‘a’, ‘b’ and ‘c’, are unable to avoid local 
trappings. However it is somewhat improved in ‘d’, but 
in ‘e’ many local trappings are avoided till the end of 
search. Similar conclusions can be dra

In fact, higher initial cognitive component (best 
experience) makes DCPSO is more competent to 
explore wider search space during the initial phase and 
therefore identify the region of global optima. On the 
other hand, cognitive component (preceding 
experience) fine tunes the cognitive 
experience) of the swarm throughout the computation 
process. During later iterations however all particles 
move with strong communication and intensively
exploit the region near the global optima owing to 
strong social component (best experience) which is 
being supplemented by the aggregate experience of the 
swarm. Therefore all particles finally converge towards 
the global minima, as can be seen from Fig. 9. Thus, the
proposed method provides better exploration 
exploitation of the search space and produces better

 

 

Convergence of best fitness with iterations for case study 2 

 

exploitation potentials of PSO. An enlarged view of 
Fig. 7 is shown in Fig. 8 showing a comparison of 
exploitation potentials of PSO variants. It is clearly 
shown ‘a’, ‘b’ and ‘c’, are unable to avoid local 
trappings. However it is somewhat improved in ‘d’, but 
in ‘e’ many local trappings are avoided till the end of 
search. Similar conclusions can be drawn from Fig. 9.  

In fact, higher initial cognitive component (best 
experience) makes DCPSO is more competent to 
explore wider search space during the initial phase and 
therefore identify the region of global optima. On the 
other hand, cognitive component (preceding 

nce) fine tunes the cognitive behavior (best 
experience) of the swarm throughout the computation 
process. During later iterations however all particles 

communication and intensively 
exploit the region near the global optima owing to 

social component (best experience) which is 
being supplemented by the aggregate experience of the 
swarm. Therefore all particles finally converge towards 
the global minima, as can be seen from Fig. 9. Thus, the 

better exploration and 
exploitation of the search space and produces better
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Fig. 9: Convergence of average fitness with iterations for case study 2 

 

quality solutions. Whereas the rest showing local 
trapping. These results also highlight that the 
corrections suggested in the control equation of the 
classical PSO is very effective. 
 

CONCLUSION 
 

The short term multi-objective hydrothermal 
scheduling problem is a highly complex combinatorial, 
nonlinear, non-convex optimization problem with 
continuous decision variables having several 
operational hydrothermal constraints. Moreover, cost 
and emission objectives of thermal plants are 
conflicting in nature and have different units. This 
further increases the complexity of the problems. This 
study presents an Efficient method to solve Short Term 
multi-objective Hydrothermal Scheduling (EESTHS) 
problem of power systems using a Dynamically 
Controlled Particle Swarm Optimization (DCPSO) 
method. The effectiveness of proposed method has been 
investigated on two different test systems having 
variety of operational and network constraints. The 
application results show that the proposed method is 
computationally efficient and is usually not trapped in 
local minima. The application results are also compared 
with latest existing stochastic search techniques. The 
comparison shows that proposed method is capable of 
giving better results than the existing PSO and other 
stochastic based methods. This may be due to the fact 
that DCPSO essentially aims to regulate particle 
velocity during its whole course of flight in such a 
fashion so as to enhance exploration and exploitation 
capabilities of the PSO. The operators in DCPSO are 
made to vary by introducing exponential constriction 
functions. Moreover, the concept of preceding and 
aggregate experience of the particle is introduced to 
maintain a good balance between cognitive and social 
behavior of the swarm. These modifications guide the 
swarm to identify the area where the global optima may 

exist. Thereafter, particles have suitable velocities to 

wandering within in this area to explore global or near 

global  solution.  Further,  it  has  been  observed  that  

in DCPSO the particle is accelerated more 

comprehensively than in the classical PSO. It is 

noteworthy that the proposed DCPSO is free from any 

mechanism to avoid local trapping, squeezing the 

search space and does not require any empirical 

formula to bound particle’s velocity. Moreover, the 

proposed algorithm is robust as it generates better 

quality solutions irrespective of the initial position of 

the particles. The proposed method can be extended to 

solve EESTHS problems with the inclusion of more 

objectives and constraints like reserve capacity of 

thermal plants, network security, network congestion 

etc. 
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