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Abstract: In this study we present a combinatorial optimization method based on particle swarm optimization and 
local search algorithm on the multi-robot search system. Under this method, in order to create a balance between 
exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between 
target and the robot become less than specific measure then a local search algorithm is performed. The local search 
encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental 
results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet 
the challenges of robotic applications that can be described as optimization problems. 
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INTRODUCTION 

 
One of the appropriate tasks for mobile robotic is 

searching for one or more target in unknown 
environments. By equipping the robots with sensors, 
they can detect the target and exploring the search 
space. Robotics search is useful especially when the 
environment is hazardous or dangerous to humans. 
Examples include locating mines for de-mining (Acar 
et al., 2003; Gage, 1995), finding victims in a disaster 
area (Kantor et al., 2003) and planetary exploration 
(Landis, 2003). Search task by using multi-robot system 
is more beneficial than the single robots because it can 
be done in parallel and also reduce the search time 
taken to reach the target and improving the robustness 
against failure of single agents by redundancy as well 
as individual simplicity (Sahin, 2005). By adding more 
robots the robustness and scalability of the system 
increase. Although, the search task has been extensively 
studied but multi-robot system to search is not well 
explored and is developed recently. 

One of the most important algorithms in this 
domain is Particle Swarm Optimization (PSO) that is 
introduced by Eberhart and Kennedy (1995). Since this 
time, this technique has been used to solve a variety of 
optimization problems. Recently, many researches have 
been inspired from Particle Swarm Optimization to 
investigate search strategies on the multi-robot systems. 
One of the first versions of PSO algorithm, which 
demonstrated has an acceptable performance in 
searching task on the multi-robot system, is introduced 
by Doctor et al. (2004). Hereford (2006) introduced a 

method namely Distributed PSO which eliminate the 
central robot to coordinate all the robots. This method 
demonstrated that is scalable for large number of 
robots. Hereford et al. (2007) proposed a new method 
that simplified the previous method and eliminate the 
global communication among the robots at each 
iteration and they do all the calculations locally until 
they found the better position. The result shows that this 
method is done successfully on the multi-robot search 
with three robots or more. Adaptations of PSO have 
been used for multi-robot odor search in several 
instances (Jatmiko et al., 2006; Marques et al., 2006). 

While biologically motivated algorithms such as 
PSO are very effective in providing optimal solutions, 
they can be further improved by maintaining the correct 
balance between exploration and exploitation (Holland, 
1992; Clerc and Kennedy, 2002). Because, in the first 
iterations the exploration is done in PSO while after 
some iterations the exploitation is preferred. Many 
researchers invented many methods to create an 
efficient balance between exploration and exploitation 
by hybridizing PSO algorithm. 

Vesterstroøm et al. (2002) borrowed the idea of 
division of labor from research on insect swarm 
algorithms. In their hybrid particle swarm model, 
individuals in the swarm were assigned, after some 
number of iterations without improvement, to conduct 
local search. Local search was implemented by placing 
a particle at the population’s global best position with a 
new random velocity vector. The division of labor 
modification was intended to improve performance on 
unimodal problems; this improvement was seen, though 
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performance on multimodal functions was not 
significantly improved. 

Another method that uses the hybridization is 
Optimization of a Profiled Corrugated Horn Antenna by 
Robinson et al. (2002). In this method, they hybridized 
the two algorithms PSO and GA by switching from one 
to the other after several hundred iterations. They 
realized that PSO to GA (PSO-GA) is the best and 
noted that the PSO outperformed both the GA and the 
GA-PSO hybrid, though the PSO-GA hybrid performed 
best of all. The result shows that PSO more effectively 
explores the search space for the best region, while GA 
is effective at finding the best point once the population 
has converged on a single region. In this study we 
propose a new method (APSO) to create an efficient 
balance between exploration and exploitation by 
hybridizing Basic PSO algorithm with A-Star algorithm 
(Hart et al., 1968).  

To test the performance of the algorithm in the 
realistic system, large quantities of computational time 
may require. This limitation motivates the use of 
abstracted models, which uses approximations of 
details of the system, which have little impact on the 
targeted performance metrics. Therefore, to validate the 
effectiveness and usefulness of these algorithms, we 
developed a simulation environment for conducting 
simulation-based experiments in different scenarios and 
report our experimental results. 
 

MATERIALS AND METHODS 
 
Problem formulation: This algorithm models a set of 
potential solution as a swarm of particles searching in 
the search space. Each particle in the swarm begins 

with the randomized position (���) and randomized 

velocity (���) in the n-dimensional search space. ���  

represents the position of the particle index i in the j-
dimension of the search space. Particles by flying 
through the search space optimized the candidate 
solutions. At each iteration step each particles update its 

velocity based on its past velocity (��,� (t)), its past best 

position (���	
  ()) and the global past best position 

(���	
  (t)). The next position of the particle is update 

based on the next velocity (��,� ( + 1)) and the past 

position (��,�  ()). The equations of PSO that executed 

at each step of the algorithm are:  
 

��,�( + 1) = � × ��,�() + �� ×  ��  ×
����	
() − ��,�()�           

+ ��  ×  �� × (���	
() − ��,�))                         (1) 

 
��,�( + 1) = ��,�( + 1) + ��,�()              (2) 

 
where, the inertia weight � (Shi and Eberhart, 1998) 
and acceleration constant ��, �� are assumed to be 
0.9…. 0.5 and 2 and 2, respectively and ��, �� are the 
uniformly generated random number in the range of (0, 
1). In the first iteration (t = 0), the first position of each 

robot is considered for ���	
(0) and ���	
(0) is the first 
position of the one of the robot that is selected 
randomly. The termination criteria are also need to be 
taken into account to get good solution in the 
acceptable time. In this study, the termination criteria is 
based on two condition: 
 

• If one of the robots reaches the target 

• The number of iterations exceeds maximum 
iterations, which are assumed to be 200 iterations 

 
The PSO-inspired multi-robot search algorithm is 

motivated by using a one-to-one matching between 

particles in the PSO swarm and robots in the multi-

robot system. We initially assume the robots by 

accessing to the map of the search space have complete 

knowledge about their location in the environment. 

There are some key differences between PSO in multi-

robot search and PSO that require us to make some 

modifications to the algorithm. 

 

Search space: The real space in this study is 

transformed into 2-dimensional search space that is 

divided into squares (units). Each unit in search space 

represents a square in the real world with a selected size 

(for the algorithm itself, the size does not play any 

important role). The center of each unit is considered as 

a point of Interest. It means that if the robot visits the 

center of the unit, the entire unit occupied by the robot. 

The 2-dimensional search space in this study contains a 

single target with the same size of a unit. The reason 

behind of discretization is to prevent the collision 

between the robots.  

 

Robot: The geometrical shape of the robot is assumed 

as a circle that has the same size of a unit. The state of 

each robot in the search space is represented by six 

variables (x, y, v, �� , ��, t) that are the position of the 

robot in the 2-D dimensional search space, speed of the 

robot, head of the robot, the determined direction of the 

robot to move to the next position and time in that 

position respectively. In this study there are 8 different 

adjacent units around the current position of the robot 

and it is supposed that the robot can move to them.  

 

Robot path planning: Due to the discretization of 

search space, path planning of a robot from its current 

position to the next goal position is also discretized and 

the robots must go through the center of the units. In 

this study the path planning is computed by A-Star 

algorithm that produces the optimal path from the start 

position to the goal position. 
 
Velocity limitation: In this study we assume the 
velocity of robots is limited and they have limitation on 
how quickly can move and adjust their headings. The 
velocity of the robot is based on the discrete values and 
at  each  time  step  it  can  execute  just one action. The 
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Fig. 1: The surrounding environment of the robot in its 

current position that is observed by the camera and 8 

directions 

 

velocity of the robots in this study  is  placed  between  

[- !"# ,  !"#] where the �!"#  represent the maximum 

velocity of the robot along its direction and the −�!"# 

is the maximum velocity of the robot but in the reverse 

direction. If the velocity of the robot is placed out of 

this range we set this velocity as a Maximum velocity 

value in each side.  

 

Fitness function: We assume each robot has a camera 

to capture the picture from the part of environment. 

This camera can only observe 7 units from the current 

position of the robot. When the robot uses the camera to 

find the target, if the target is placed in the range of 

view of the camera then evaluates the fitness function 

otherwise it returns zero. The fitness function in this 

study is as follows: 

 

0 < %&'()) %*'�&+' = , -./0
/12

, -34
312

< 1              (3) 

 
where, po = {po1, po2, po3 … pon} is a set of pixels of 
the  target  in  the  image  captured  by  the  camera  and  
p = {p1, p2, p3 … pn} is a set of pixels in the image 
captured by the camera. In this study, the robot is able 
to use their cameras in 8 different directions. Therefore, 
it has the ability to observe it’s surrounding (can 
observe around 7 units around itself) by rotating its 
camera. When the robot stand in one unit we assume 
that the robot can rotates and takes pictures in 8 
directions. Figure 1 shows the 8 directions of the robot 
in the current position and its surrounding environment 
that is observed by the camera. 
 

Robot collision: Using the standard PSO particle 

displacement at each iteration, we will be unable to 

detect any collisions that might occur along the path. 

We therefore need to approximate the continuous 

movement of the robots by dividing the displacement 

into multiple steps and checking for collisions at each. 

In multi-robot system, robots and the target have some 

volume therefore they have to prevent to collide with 

each other or static obstacles. In this study we use the 

method that is introduced by Liu et al. (2012) to 

prevent robots from possible collisions. In this new 

method each robot generate its route independently and 

then   checks   the   collision  between  them.  There  are  

 
 

Fig. 2: Pseudo code of APSO algorithm 

 

separate paths for each robot from the initial position to 

the goal position. The aim of this method is to find the 

optimal path, which is the path with the lowest total 

cost. In this new method each robot replan their route as 

optimality as possible.  

 

Hybridizing basic PSO with A-star: The proposed 

algorithm (APSO), which is based on the Basic PSO, is 

divided into 5 steps. The first step is initialization that 

places the robots in the search space randomly with the 

random initial velocity and directions. In this step the 

initial value of ���	
 , ���	
  is the initial position of the 

robot and the initial position of one of robots 

recursively. 

In the second step, the camera of the robots take a 

picture from their surrounding search space of the robot 

current position and the fitness function of each robot is 

calculated based on the Eq. (3). The camera in this 

study has a limitation and it can just observe only 7 

units from the current position of the robot. Therefore, 

if the target does not place in the range of view of the 

camera, the robot without any information from the 

target position should explore the search space. In this 

study, initially the robots do not have any information 

about the target position and just by applying their 

camera explore the environment and try to find the 

target. 

The value of ���	
  and ���	
  is updated in the 

second step. If the fitness function value becomes better 

than any value found thus far, then the value of ���	
 is 

updated. The particle with the closest position to the 

goalobtains the highest value in the fitness function and 

���	
  is updated. Then in the third step, there are two 

strategies to calculate the next velocity of each robot. In 

the next steps, if the fitness function is more than zero it 

means that the target is placed in the range of view of 

the camera and the robot is placed near the target and 

then A-Star is executed to do the Local search, 

otherwise the Basic PSO is executed to explore the 

search space. Figure 2 shows the Pseudo code of APSO 

algorithm. 

In this study, once the fitness function become 

greater than zero then the robots by applying A-star 
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algorithm move toward the target directly. Otherwise,

by using Basic PSO formulas Eq. (1) and

moves to the next position. 

In the A-Star algorithm, the robot starts from the 
current position and continues until reaching the 
determined position (Look ahead, which is equal to 1 in 
this study). It means that the robot by the A
algorithm can move only one step and go to the 
adjacent units by specific direction. When the robot 
camera rotates, the robot can evaluate the fitness 
function for all 8 directions. Then, the 
selects the largest F-value that belongs to a specific 
direction and the robot moves toward the adjacent cell
along this specific direction. The F-values for these 
directions are calculated using the following formula:
 

%(') = 5(') + �(')                            

 
According to Eq. (4), the h (n) is the cost

which is assumed the fitness function value of the 
robot’s current position in a specific direction. g (n) is 
the cost-thus-far, which is the cost from its current 
position to the next position. Due to the look ahead in 
this study is one, the g (n) is also equal to one. There 
are two lists in this algorithm; namely, Open and Close 
list. All the acceptable directions of the robot, which 
have a specific fitness function value, are stored in the 
Open list and then sorted based on the Max
each direction is added to the Open list, the list is 
reordered based on the biggest F-value and therefore, 
the top of the list refers to the biggest 
selected direction with the biggest F
from the Open list and is put in the Close list. Then, the 
algorithm selects a state from the neighbor 
current state of the robot and guides the robot to move 
to the state with the best fitness function value. Figure 3 
shows the Pseudo code of the A-Star algorithm.

In the algorithm, zero is set for all states cost

far (g (s)) to the goal firstly. In the next step, the current 

location of the robot is put in the Open list. Then, the 

algorithm executes several instructions within specific 

time in a loop. In each time in the loop, the algorithm 

deletes maximum F-value state from Open list and 

stores it in Close list. In this step, the algorithm obtains 

the possible actions for robot to move toward its 

neighbors (children) states from deleted states. After 

that, if all the possible child states are not exist in the 

Open list then they will be stored in the Open List and 

also their parent states stored in the other list (tree) is 

stored. 

 

RESULTS AND DISCUSSION

 

Simulation condition: We simulated and tested 

and Basic PSO in four different initial robots position 

and a target position. Figure 3 shows the search space

and the target position. In this study the search time was 

selected as a measurement to compare  
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algorithm move toward the target directly. Otherwise, 

and (2), the robot 

algorithm, the robot starts from the 
current position and continues until reaching the 
determined position (Look ahead, which is equal to 1 in 
this study). It means that the robot by the A-star 
algorithm can move only one step and go to the 

by specific direction. When the robot 
camera rotates, the robot can evaluate the fitness 
function for all 8 directions. Then, the A-star algorithm 

value that belongs to a specific 
direction and the robot moves toward the adjacent cell 

values for these 
directions are calculated using the following formula: 

                           (4) 

is the cost-to-go, 
which is assumed the fitness function value of the 
robot’s current position in a specific direction. g (n) is 

far, which is the cost from its current 
position to the next position. Due to the look ahead in 

, the g (n) is also equal to one. There 
are two lists in this algorithm; namely, Open and Close 
list. All the acceptable directions of the robot, which 
have a specific fitness function value, are stored in the 
Open list and then sorted based on the Max-heap. When 
each direction is added to the Open list, the list is 

value and therefore, 
the top of the list refers to the biggest F-value. The 

F-value pops up 
the Close list. Then, the 

neighbor of the 
current state of the robot and guides the robot to move 
to the state with the best fitness function value. Figure 3 

algorithm. 

, zero is set for all states cost-thus-

)) to the goal firstly. In the next step, the current 

location of the robot is put in the Open list. Then, the 

algorithm executes several instructions within specific 

time in a loop. In each time in the loop, the algorithm 

m Open list and 

stores it in Close list. In this step, the algorithm obtains 

the possible actions for robot to move toward its 

neighbors (children) states from deleted states. After 

that, if all the possible child states are not exist in the 

they will be stored in the Open List and 

also their parent states stored in the other list (tree) is 

RESULTS AND DISCUSSION 

We simulated and tested APSO 

in four different initial robots position 

and a target position. Figure 3 shows the search space 

and the target position. In this study the search time was 

 the performance 

 

Fig. 3: Pseudo code of A-star algorithm 

 

 

Fig. 4: Map of simulation search space and the 4 different 

target point locations 

 

of algorithms. In each initial robots position, each 

algorithm performed 100 test cases. To calculate the 

next velocity, there are two random values (

are randomly selected in each test case. 

The overall performance APSO

the number of iterations that were found) and then 

compared with Basic PSO. Figure 4 compares the 

performance of APSO with Basic PSO 

initial robots positions. The figures show the search 

times (number of iterations passed) for both 

Basic PSO algorithms. In this Study, the search space is 

assumed to be bounded with borders and thus, the 

robots cannot go outside the search 

condition approximation of the actual robot searching, 

the search space in our simulation is a hard border. It is 

assumed that when the next positions of the robots were 

set out of the search space, it should reverse and be 

placed inside the search space. For the simulation 

results the inertia coefficient, �, was set to 0.9…. 0.5 

and the both coefficient ��, �� were set to 2. We set an 

initial value for v (velocity) for each robot to simulate 

the behavior of a physical robot. Only 

used; therefore, the lbest topology was identical to the

gbest topology. In this study, we adapted the PSO 

algorithm to the multi-robot search

 

 

 

Map of simulation search space and the 4 different 

. In each initial robots position, each 

algorithm performed 100 test cases. To calculate the 

next velocity, there are two random values (��, ��) that 

are randomly selected in each test case.  

APSO was evaluated (i.e., 

the number of iterations that were found) and then 

. Figure 4 compares the 

Basic PSO in four different 

initial robots positions. The figures show the search 

(number of iterations passed) for both APSO and 

algorithms. In this Study, the search space is 

assumed to be bounded with borders and thus, the 

robots cannot go outside the search space. Due to the 

condition approximation of the actual robot searching, 

the search space in our simulation is a hard border. It is 

assumed that when the next positions of the robots were 

set out of the search space, it should reverse and be 

the search space. For the simulation 

, was set to 0.9…. 0.5 

were set to 2. We set an 

(velocity) for each robot to simulate 

the behavior of a physical robot. Only three robots were 

topology was identical to the 

y, we adapted the PSO 

search system; therefore,
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      (a)                                                                  (b) 

 

   
 

    (c)                                                                 (d) 

 

Fig. 5: The result of the search times of APSO and basic PSO algorithms with different initial robots position, (a) initial robots 

position 1, (b) initial robots position 2, (c) initial robots position 3, (d) initial robots position 4 

 

unlike most of the PSO studies that have tracked the 

function value, our simulation searched the target 

function. The simulation stopped when the robot reach 

the target or when the maximum number of iterations 

(200 iterations) occurred. 

 
Simulation result: To evaluate the effectiveness of the 

APSO and Basic PSO we made several simulation runs. 

We used the combination of an initial target positions 

and four initial robot positions to made the worst case 

in each test case. In this study, to compare the 

performance of algorithms the search time was 

considered as a measurement. In each test case, each 

algorithm performed 100 runs. To calculate the next 

velocity, there are two random values (��, ��) that are 

randomly selected in each test case. The overall 

performance of APSO was evaluated (i.e., the number 

of iterations that were found) and then compared with 

Basic PSO. Figure 5 compares the performance of 

APSO with Basic PSO in 4 different initial robots 

position and shows the search times (number of 

iterations passed) for both APSO and Basic PSO 

algorithms. 

The results demonstrate that APSO need lesser 

search time to reach the target than the Basic PSO. In 

the first initial robots positions (Fig. 5a), APSO 

algorithm can reach the target between 20-30 iterations 

whereas the search time of Basic PSO is between 20-

110 iterations. The number of iteration in test case 2 

(Fig. 5b) for both algorithm is under 50 iteration while 

APSO can find and reach the target in lesser time 

(around 25-30 iterations). As can be  seen  from  the  

Fig. 5d, the search time of both algorithm is more than 

the other test cases and this is because of more distance 

between the target and initial robots positions. Although 

the search time in both algorithm is more but APSO has 

a better performance compared with Basic PSO. 

 

CONCLUSION 

 

We developed and tested a biologically inspired 

search   strategy   for  multi-robot.  This  technique  is  a 
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hybridization of basic PSO with A* algorithm that is 
called APSO. One of the problems of Basic PSO on the 
multi-robot search system that APSO can solve is 
creating a balance between exploration and 
exploitation. In some cases the robot is near to the 
target and the fitness function value is high enough but 
the Basic PSO algorithm guide the robot to move to the 
positions which causing move away from the target that 
increase the search time. To decrease the search time 
and increases the global convergence, the A* algorithm 
(Local search algorithm) is used in this study to guides 
the robot to moves toward the target directly. When the 
robot see the target by applying A* algorithm can 
reaches the target in lesser search time instead of usinf 
Basic PSO formula. The results on the simulation of 
Multi-robot search system show that APSO has a better 
performance compared with Basic PSO algorithm and 
can reach the target in lesser search time. 
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