
Research Journal of Applied Sciences, Engineering and Technology 8(12): 1429-1434, 2014

DOI:10.19026/rjaset.8.1117

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: May 31, 2014 Accepted: June 20, 2014 Published: September 25, 2014

Corresponding Author: Bahareh Nakisa, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1429

Research Article

Balancing Exploration and Exploitation in Particle Swarm Optimization on
Search Tasking

Bahareh Nakisa, Mohammad Naim Rastgoo and Md. Jan Norodin
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi,

Selangor, Malaysia

Abstract: In this study we present a combinatorial optimization method based on particle swarm optimization and
local search algorithm on the multi-robot search system. Under this method, in order to create a balance between
exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between
target and the robot become less than specific measure then a local search algorithm is performed. The local search
encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental
results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet
the challenges of robotic applications that can be described as optimization problems.

Keywords: Exploration and exploitation, local search algorithm, particle swarm optimization, search tasking

INTRODUCTION

One of the appropriate tasks for mobile robotic is

searching for one or more target in unknown
environments. By equipping the robots with sensors,
they can detect the target and exploring the search
space. Robotics search is useful especially when the
environment is hazardous or dangerous to humans.
Examples include locating mines for de-mining (Acar
et al., 2003; Gage, 1995), finding victims in a disaster
area (Kantor et al., 2003) and planetary exploration
(Landis, 2003). Search task by using multi-robot system
is more beneficial than the single robots because it can
be done in parallel and also reduce the search time
taken to reach the target and improving the robustness
against failure of single agents by redundancy as well
as individual simplicity (Sahin, 2005). By adding more
robots the robustness and scalability of the system
increase. Although, the search task has been extensively
studied but multi-robot system to search is not well
explored and is developed recently.

One of the most important algorithms in this
domain is Particle Swarm Optimization (PSO) that is
introduced by Eberhart and Kennedy (1995). Since this
time, this technique has been used to solve a variety of
optimization problems. Recently, many researches have
been inspired from Particle Swarm Optimization to
investigate search strategies on the multi-robot systems.
One of the first versions of PSO algorithm, which
demonstrated has an acceptable performance in
searching task on the multi-robot system, is introduced
by Doctor et al. (2004). Hereford (2006) introduced a

method namely Distributed PSO which eliminate the
central robot to coordinate all the robots. This method
demonstrated that is scalable for large number of
robots. Hereford et al. (2007) proposed a new method
that simplified the previous method and eliminate the
global communication among the robots at each
iteration and they do all the calculations locally until
they found the better position. The result shows that this
method is done successfully on the multi-robot search
with three robots or more. Adaptations of PSO have
been used for multi-robot odor search in several
instances (Jatmiko et al., 2006; Marques et al., 2006).

While biologically motivated algorithms such as
PSO are very effective in providing optimal solutions,
they can be further improved by maintaining the correct
balance between exploration and exploitation (Holland,
1992; Clerc and Kennedy, 2002). Because, in the first
iterations the exploration is done in PSO while after
some iterations the exploitation is preferred. Many
researchers invented many methods to create an
efficient balance between exploration and exploitation
by hybridizing PSO algorithm.

Vesterstroøm et al. (2002) borrowed the idea of
division of labor from research on insect swarm
algorithms. In their hybrid particle swarm model,
individuals in the swarm were assigned, after some
number of iterations without improvement, to conduct
local search. Local search was implemented by placing
a particle at the population’s global best position with a
new random velocity vector. The division of labor
modification was intended to improve performance on
unimodal problems; this improvement was seen, though

Res. J. Appl. Sci. Eng. Technol., 8(12): 1429-1434, 2014

1430

performance on multimodal functions was not
significantly improved.

Another method that uses the hybridization is
Optimization of a Profiled Corrugated Horn Antenna by
Robinson et al. (2002). In this method, they hybridized
the two algorithms PSO and GA by switching from one
to the other after several hundred iterations. They
realized that PSO to GA (PSO-GA) is the best and
noted that the PSO outperformed both the GA and the
GA-PSO hybrid, though the PSO-GA hybrid performed
best of all. The result shows that PSO more effectively
explores the search space for the best region, while GA
is effective at finding the best point once the population
has converged on a single region. In this study we
propose a new method (APSO) to create an efficient
balance between exploration and exploitation by
hybridizing Basic PSO algorithm with A-Star algorithm
(Hart et al., 1968).

To test the performance of the algorithm in the
realistic system, large quantities of computational time
may require. This limitation motivates the use of
abstracted models, which uses approximations of
details of the system, which have little impact on the
targeted performance metrics. Therefore, to validate the
effectiveness and usefulness of these algorithms, we
developed a simulation environment for conducting
simulation-based experiments in different scenarios and
report our experimental results.

MATERIALS AND METHODS

Problem formulation: This algorithm models a set of
potential solution as a swarm of particles searching in
the search space. Each particle in the swarm begins

with the randomized position (���) and randomized

velocity (���) in the n-dimensional search space. ���

represents the position of the particle index i in the j-
dimension of the search space. Particles by flying
through the search space optimized the candidate
solutions. At each iteration step each particles update its

velocity based on its past velocity (��,� (t)), its past best

position (���	
 (
)) and the global past best position

(���	
 (t)). The next position of the particle is update

based on the next velocity (��,� (
 + 1)) and the past

position (��,� (
)). The equations of PSO that executed

at each step of the algorithm are:

��,�(
 + 1) = � × ��,�(
) + �� × �� ×
����	
(
) − ��,�(
)�

+ �� × �� × (���	
(
) − ��,�
)) (1)

��,�(
 + 1) = ��,�(
 + 1) + ��,�(
) (2)

where, the inertia weight � (Shi and Eberhart, 1998)
and acceleration constant ��, �� are assumed to be
0.9…. 0.5 and 2 and 2, respectively and ��, �� are the
uniformly generated random number in the range of (0,
1). In the first iteration (t = 0), the first position of each

robot is considered for ���	
(0) and ���	
(0) is the first
position of the one of the robot that is selected
randomly. The termination criteria are also need to be
taken into account to get good solution in the
acceptable time. In this study, the termination criteria is
based on two condition:

• If one of the robots reaches the target

• The number of iterations exceeds maximum
iterations, which are assumed to be 200 iterations

The PSO-inspired multi-robot search algorithm is

motivated by using a one-to-one matching between

particles in the PSO swarm and robots in the multi-

robot system. We initially assume the robots by

accessing to the map of the search space have complete

knowledge about their location in the environment.

There are some key differences between PSO in multi-

robot search and PSO that require us to make some

modifications to the algorithm.

Search space: The real space in this study is

transformed into 2-dimensional search space that is

divided into squares (units). Each unit in search space

represents a square in the real world with a selected size

(for the algorithm itself, the size does not play any

important role). The center of each unit is considered as

a point of Interest. It means that if the robot visits the

center of the unit, the entire unit occupied by the robot.

The 2-dimensional search space in this study contains a

single target with the same size of a unit. The reason

behind of discretization is to prevent the collision

between the robots.

Robot: The geometrical shape of the robot is assumed

as a circle that has the same size of a unit. The state of

each robot in the search space is represented by six

variables (x, y, v, �� , ��, t) that are the position of the

robot in the 2-D dimensional search space, speed of the

robot, head of the robot, the determined direction of the

robot to move to the next position and time in that

position respectively. In this study there are 8 different

adjacent units around the current position of the robot

and it is supposed that the robot can move to them.

Robot path planning: Due to the discretization of

search space, path planning of a robot from its current

position to the next goal position is also discretized and

the robots must go through the center of the units. In

this study the path planning is computed by A-Star

algorithm that produces the optimal path from the start

position to the goal position.

Velocity limitation: In this study we assume the
velocity of robots is limited and they have limitation on
how quickly can move and adjust their headings. The
velocity of the robot is based on the discrete values and
at each time step it can execute just one action. The

Res. J. Appl. Sci. Eng. Technol., 8(12): 1429-1434, 2014

1431

Fig. 1: The surrounding environment of the robot in its

current position that is observed by the camera and 8

directions

velocity of the robots in this study is placed between

[- !"# , !"#] where the �!"# represent the maximum

velocity of the robot along its direction and the −�!"#

is the maximum velocity of the robot but in the reverse

direction. If the velocity of the robot is placed out of

this range we set this velocity as a Maximum velocity

value in each side.

Fitness function: We assume each robot has a camera

to capture the picture from the part of environment.

This camera can only observe 7 units from the current

position of the robot. When the robot uses the camera to

find the target, if the target is placed in the range of

view of the camera then evaluates the fitness function

otherwise it returns zero. The fitness function in this

study is as follows:

0 < %&
'()) %*'�
&+' = , -./0
/12

, -34
312

< 1 (3)

where, po = {po1, po2, po3 … pon} is a set of pixels of
the target in the image captured by the camera and
p = {p1, p2, p3 … pn} is a set of pixels in the image
captured by the camera. In this study, the robot is able
to use their cameras in 8 different directions. Therefore,
it has the ability to observe it’s surrounding (can
observe around 7 units around itself) by rotating its
camera. When the robot stand in one unit we assume
that the robot can rotates and takes pictures in 8
directions. Figure 1 shows the 8 directions of the robot
in the current position and its surrounding environment
that is observed by the camera.

Robot collision: Using the standard PSO particle

displacement at each iteration, we will be unable to

detect any collisions that might occur along the path.

We therefore need to approximate the continuous

movement of the robots by dividing the displacement

into multiple steps and checking for collisions at each.

In multi-robot system, robots and the target have some

volume therefore they have to prevent to collide with

each other or static obstacles. In this study we use the

method that is introduced by Liu et al. (2012) to

prevent robots from possible collisions. In this new

method each robot generate its route independently and

then checks the collision between them. There are

Fig. 2: Pseudo code of APSO algorithm

separate paths for each robot from the initial position to

the goal position. The aim of this method is to find the

optimal path, which is the path with the lowest total

cost. In this new method each robot replan their route as

optimality as possible.

Hybridizing basic PSO with A-star: The proposed

algorithm (APSO), which is based on the Basic PSO, is

divided into 5 steps. The first step is initialization that

places the robots in the search space randomly with the

random initial velocity and directions. In this step the

initial value of ���	
 , ���	
 is the initial position of the

robot and the initial position of one of robots

recursively.

In the second step, the camera of the robots take a

picture from their surrounding search space of the robot

current position and the fitness function of each robot is

calculated based on the Eq. (3). The camera in this

study has a limitation and it can just observe only 7

units from the current position of the robot. Therefore,

if the target does not place in the range of view of the

camera, the robot without any information from the

target position should explore the search space. In this

study, initially the robots do not have any information

about the target position and just by applying their

camera explore the environment and try to find the

target.

The value of ���	
 and ���	
 is updated in the

second step. If the fitness function value becomes better

than any value found thus far, then the value of ���	
 is

updated. The particle with the closest position to the

goalobtains the highest value in the fitness function and

���	
 is updated. Then in the third step, there are two

strategies to calculate the next velocity of each robot. In

the next steps, if the fitness function is more than zero it

means that the target is placed in the range of view of

the camera and the robot is placed near the target and

then A-Star is executed to do the Local search,

otherwise the Basic PSO is executed to explore the

search space. Figure 2 shows the Pseudo code of APSO

algorithm.

In this study, once the fitness function become

greater than zero then the robots by applying A-star

Res. J. Appl. Sci. Eng.

algorithm move toward the target directly. Otherwise,

by using Basic PSO formulas Eq. (1) and

moves to the next position.

In the A-Star algorithm, the robot starts from the
current position and continues until reaching the
determined position (Look ahead, which is equal to 1 in
this study). It means that the robot by the A
algorithm can move only one step and go to the
adjacent units by specific direction. When the robot
camera rotates, the robot can evaluate the fitness
function for all 8 directions. Then, the
selects the largest F-value that belongs to a specific
direction and the robot moves toward the adjacent cell
along this specific direction. The F-values for these
directions are calculated using the following formula:

%(') = 5(') + �(')

According to Eq. (4), the h (n) is the cost

which is assumed the fitness function value of the
robot’s current position in a specific direction. g (n) is
the cost-thus-far, which is the cost from its current
position to the next position. Due to the look ahead in
this study is one, the g (n) is also equal to one. There
are two lists in this algorithm; namely, Open and Close
list. All the acceptable directions of the robot, which
have a specific fitness function value, are stored in the
Open list and then sorted based on the Max
each direction is added to the Open list, the list is
reordered based on the biggest F-value and therefore,
the top of the list refers to the biggest
selected direction with the biggest F
from the Open list and is put in the Close list. Then, the
algorithm selects a state from the neighbor
current state of the robot and guides the robot to move
to the state with the best fitness function value. Figure 3
shows the Pseudo code of the A-Star algorithm.

In the algorithm, zero is set for all states cost

far (g (s)) to the goal firstly. In the next step, the current

location of the robot is put in the Open list. Then, the

algorithm executes several instructions within specific

time in a loop. In each time in the loop, the algorithm

deletes maximum F-value state from Open list and

stores it in Close list. In this step, the algorithm obtains

the possible actions for robot to move toward its

neighbors (children) states from deleted states. After

that, if all the possible child states are not exist in the

Open list then they will be stored in the Open List and

also their parent states stored in the other list (tree) is

stored.

RESULTS AND DISCUSSION

Simulation condition: We simulated and tested

and Basic PSO in four different initial robots position

and a target position. Figure 3 shows the search space

and the target position. In this study the search time was

selected as a measurement to compare

Res. J. Appl. Sci. Eng. Technol., 8(12): 1429-1434, 2014

1432

algorithm move toward the target directly. Otherwise,

and (2), the robot

algorithm, the robot starts from the
current position and continues until reaching the
determined position (Look ahead, which is equal to 1 in
this study). It means that the robot by the A-star
algorithm can move only one step and go to the

by specific direction. When the robot
camera rotates, the robot can evaluate the fitness
function for all 8 directions. Then, the A-star algorithm

value that belongs to a specific
direction and the robot moves toward the adjacent cell

values for these
directions are calculated using the following formula:

 (4)

is the cost-to-go,
which is assumed the fitness function value of the
robot’s current position in a specific direction. g (n) is

far, which is the cost from its current
position to the next position. Due to the look ahead in

, the g (n) is also equal to one. There
are two lists in this algorithm; namely, Open and Close
list. All the acceptable directions of the robot, which
have a specific fitness function value, are stored in the
Open list and then sorted based on the Max-heap. When
each direction is added to the Open list, the list is

value and therefore,
the top of the list refers to the biggest F-value. The

F-value pops up
the Close list. Then, the

neighbor of the
current state of the robot and guides the robot to move
to the state with the best fitness function value. Figure 3

algorithm.

, zero is set for all states cost-thus-

)) to the goal firstly. In the next step, the current

location of the robot is put in the Open list. Then, the

algorithm executes several instructions within specific

time in a loop. In each time in the loop, the algorithm

m Open list and

stores it in Close list. In this step, the algorithm obtains

the possible actions for robot to move toward its

neighbors (children) states from deleted states. After

that, if all the possible child states are not exist in the

they will be stored in the Open List and

also their parent states stored in the other list (tree) is

RESULTS AND DISCUSSION

We simulated and tested APSO

in four different initial robots position

and a target position. Figure 3 shows the search space

and the target position. In this study the search time was

 the performance

Fig. 3: Pseudo code of A-star algorithm

Fig. 4: Map of simulation search space and the 4 different

target point locations

of algorithms. In each initial robots position, each

algorithm performed 100 test cases. To calculate the

next velocity, there are two random values (

are randomly selected in each test case.

The overall performance APSO

the number of iterations that were found) and then

compared with Basic PSO. Figure 4 compares the

performance of APSO with Basic PSO

initial robots positions. The figures show the search

times (number of iterations passed) for both

Basic PSO algorithms. In this Study, the search space is

assumed to be bounded with borders and thus, the

robots cannot go outside the search

condition approximation of the actual robot searching,

the search space in our simulation is a hard border. It is

assumed that when the next positions of the robots were

set out of the search space, it should reverse and be

placed inside the search space. For the simulation

results the inertia coefficient, �, was set to 0.9…. 0.5

and the both coefficient ��, �� were set to 2. We set an

initial value for v (velocity) for each robot to simulate

the behavior of a physical robot. Only

used; therefore, the lbest topology was identical to the

gbest topology. In this study, we adapted the PSO

algorithm to the multi-robot search

Map of simulation search space and the 4 different

. In each initial robots position, each

algorithm performed 100 test cases. To calculate the

next velocity, there are two random values (��, ��) that

are randomly selected in each test case.

APSO was evaluated (i.e.,

the number of iterations that were found) and then

. Figure 4 compares the

Basic PSO in four different

initial robots positions. The figures show the search

(number of iterations passed) for both APSO and

algorithms. In this Study, the search space is

assumed to be bounded with borders and thus, the

robots cannot go outside the search space. Due to the

condition approximation of the actual robot searching,

the search space in our simulation is a hard border. It is

assumed that when the next positions of the robots were

set out of the search space, it should reverse and be

the search space. For the simulation

, was set to 0.9…. 0.5

were set to 2. We set an

(velocity) for each robot to simulate

the behavior of a physical robot. Only three robots were

topology was identical to the

y, we adapted the PSO

search system; therefore,

Res. J. Appl. Sci. Eng. Technol., 8(12): 1429-1434, 2014

1433

 (a) (b)

 (c) (d)

Fig. 5: The result of the search times of APSO and basic PSO algorithms with different initial robots position, (a) initial robots

position 1, (b) initial robots position 2, (c) initial robots position 3, (d) initial robots position 4

unlike most of the PSO studies that have tracked the

function value, our simulation searched the target

function. The simulation stopped when the robot reach

the target or when the maximum number of iterations

(200 iterations) occurred.

Simulation result: To evaluate the effectiveness of the

APSO and Basic PSO we made several simulation runs.

We used the combination of an initial target positions

and four initial robot positions to made the worst case

in each test case. In this study, to compare the

performance of algorithms the search time was

considered as a measurement. In each test case, each

algorithm performed 100 runs. To calculate the next

velocity, there are two random values (��, ��) that are

randomly selected in each test case. The overall

performance of APSO was evaluated (i.e., the number

of iterations that were found) and then compared with

Basic PSO. Figure 5 compares the performance of

APSO with Basic PSO in 4 different initial robots

position and shows the search times (number of

iterations passed) for both APSO and Basic PSO

algorithms.

The results demonstrate that APSO need lesser

search time to reach the target than the Basic PSO. In

the first initial robots positions (Fig. 5a), APSO

algorithm can reach the target between 20-30 iterations

whereas the search time of Basic PSO is between 20-

110 iterations. The number of iteration in test case 2

(Fig. 5b) for both algorithm is under 50 iteration while

APSO can find and reach the target in lesser time

(around 25-30 iterations). As can be seen from the

Fig. 5d, the search time of both algorithm is more than

the other test cases and this is because of more distance

between the target and initial robots positions. Although

the search time in both algorithm is more but APSO has

a better performance compared with Basic PSO.

CONCLUSION

We developed and tested a biologically inspired

search strategy for multi-robot. This technique is a

Res. J. Appl. Sci. Eng. Technol., 8(12): 1429-1434, 2014

1434

hybridization of basic PSO with A* algorithm that is
called APSO. One of the problems of Basic PSO on the
multi-robot search system that APSO can solve is
creating a balance between exploration and
exploitation. In some cases the robot is near to the
target and the fitness function value is high enough but
the Basic PSO algorithm guide the robot to move to the
positions which causing move away from the target that
increase the search time. To decrease the search time
and increases the global convergence, the A* algorithm
(Local search algorithm) is used in this study to guides
the robot to moves toward the target directly. When the
robot see the target by applying A* algorithm can
reaches the target in lesser search time instead of usinf
Basic PSO formula. The results on the simulation of
Multi-robot search system show that APSO has a better
performance compared with Basic PSO algorithm and
can reach the target in lesser search time.

REFERENCES

Acar, E.U., H. Choset, Z. Yangang and M. Schervish,

2003. Path planning for robotic demining:
Robust sensor-based coverage of unstructured
environments and probabilistic methods. Int.
J. Robot. Res., 22(7-8): 441-466.

Clerc, M. and J. Kennedy, 2002. The particle swarm-
explosion, stability and convergence in a multi-
dimensional complex space. IEEE T. Evolut.
Comput., 6: 58-73.

Doctor, S., G.K. Venayagamoorthy and V.G. Gudise,
2004. Optimal PSO for collective robotic search
applications. Proceeding of the Congress on
Evolutionary Computation (CEC, 2004), 2:
1390-1395.

Eberhart, R. and J. Kennedy, 1995. A new optimizer
using particle swarm theory. Proceeding of the 6th
International Symposium on Micro Machine and
Human Science (MHS'95).

Gage, D.W., 1995. Many-robot MCM search systems.
Proceeding of the Autonomous Vehicles in Mine
Countermeasures Symposium. Monterey, CA, pp:
4-7.

Hart, P.E., N.J. Nilsson and B. Raphael, 1968. A formal
basis for the heuristic determination of minimum
cost paths. IEEE T. Syst. Sci. Cyb., 4(2): 100-107.

Hereford, J.M., 2006. A distributed particle swarm
optimization algorithm for swarm robotic
applications. Proceeding of the IEEE Congress on
Evolutionary Computation (CEC, 2006).

Hereford, J., M. Siebold and S. Nichols, 2007. Using
the particle swarm optimization algorithm for
robotic search applications. Proceeding of IEEE
Symposium on Swarm Intelligence (SIS, 2007),
pp: 53-59.

Holland, J.H., 1992. Adaptation in Natural and

Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial

Intelligence. The MIT Press, Cambridge.

Jatmiko, W., K. Sekiyama and T. Fukuda, 2006. A

PSO-based mobile sensor network for odor source

localization in dynamic environment: Theory,

simulation and measurement. Proceeding of the

IEEE Congress on Evolutionary Computation.

Vancouver, BC, Canada, July 16-21, pp:

1036-1043.

Kantor, G., S. Singh, R. Peterson, D. Rus, A. Das,

V. Kumar, G. Pereira and J. Spletzer, 2003.

Distributed search and rescue with robot and sensor

teams. Proceeding of the 4th International

Conference on Field and Service Robotics, Japan.

Landis, G.A., 2003. Robots and humans: Synergy in

planetary exploration. Acta Astronaut., 55(12):

985-990.

Liu, F., A. Narayanan and Q. Bai, 2012. Effective

methods for generating collision free paths for

multiple robots based on collision type. Proceeding

of the 11th International Conference on

Autonomous Agents and Multi-agent Systems,

Vol. 3.

Marques, L., U. Nunes and A.T. de Almeida, 2006.

Particle swarm based OL-factory guided search.

Auton. Robot., 20: 277-287.

Robinson, J., S. Sinton and Y. Rahmat-Samii, 2002.

Particle swarm, genetic algorithm and their

hybrids: Optimization of a profiled corrugated horn

antenna. Proceeding of the IEEE International

Symposium in Antennas and Propagation Society,

pp: 314-317.

Sahin, E., 2005. Swarm robotics: From sources of

inspiration to domains of application. In: Şahin,

E. and W. Spears (Eds.), Swarm Robotics

Workshop: State-of-the-Art Survey. Berlin,

Germany, Lect. Notes Comput. Sci., 3342: 10-20.

Shi, Y. and R. Eberhart, 1998. A modified particle

swarm optimizer. Proceeding of the IEEE

International Conference on Evolutionary

Computation and IEEE World Congress on

Computational Intelligence.

Vesterstroøm, J.S., J. Riget and T. Krink, 2002.

Division of labor in particle swarm optimization.

Proceeding of the IEEE Congress on Evolutionary

Computation (CEC, 2002). Honolulu, HI,

Piscataway, pp: 1570-1575.

