
Research Journal of Applied Sciences, Engineering and Technology 8(8): 964-975, 2014
DOI:10.19026/rjaset.8.1058
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.

Submitted: March 29, 2014 Accepted: April 28, 2014 Published: August 25, 2014

Corresponding Author: S. Selvi, Department of Electronics and Communication Engineering, Dr. Sivanthi Aditanar College of

Engineering, Tiruchendur-628215, Tamilnadu, India, Tel.: +91 8903484336; Fax: +91 4639 243188
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

964

Research Article
Scheduling Independent Jobs on Computational Grid using Biogeography Based

Optimization Algorithm for Makespan Reduction

1S. Selvi and 2D. Manimegalai

1Department of Electronics and Communication Engineering, Dr. Sivanthi Aditanar College of
Engineering, Tiruchendur-628215,

2Department of Information Technology, National Engineering College, Kovilpatti-628503,
Tamilnadu, India

Abstract: Due to the development of information and network technologies, idle computers all over the world can
be organized and utilized to enhance the overall computation performance. Grid computing refers to the
combination of computer resources from multiple administrative domains used to reach a common goal. Grids offer
a way of using the information technology resources optimally inside an organization. As the grid environments
facilitate distributed computation, the scheduling of grid jobs has become an important issue. This study introduces a
novel approach based on Biogeography Based Optimization algorithm (BBO) for scheduling jobs on computational
grid. The proposed approach generates an optimal schedule so as to complete the jobs within a minimum period of
time. The performance of the proposed algorithm has been evaluated with Genetic Algorithm (GA), Differential
Evolution algorithm (DE), Ant Colony Optimization algorithm (ACO) and Particle Swarm Optimization algorithm
(PSO).

Keywords: Biogeography based optimization, grid computing, job scheduling, makespan

INTRODUCTION

Grid computing is a form of distributed computing

that involves coordinating and sharing computing,
application, data and storage or network resources
across dynamic and geographically dispersed
organization (Foster and Kesselmann, 2004). Grid
technologies promise to change the way organizations
tackle complex computational problems. Grid
computing is an evolving area of computing where
standards and technology are still being developed to
enable this new paradigm.

Users can share grid resources by submitting
computing tasks to grid system. The resources of
computational grid are dynamic and it belongs to
different administrative domains. The participation of
resources may be active or inactive within the grid.
Hence it is impossible for anyone to manually assign
jobs to computing resources in grids. Therefore grid job
scheduling is one of the challenging issues in grid
computing. Grid scheduling system selects the resources
and allocates the user submitted jobs to appropriate
resources in such a way that the user and application
requirements are met.

To achieve the promising potentials of tremendous
distributed resources, effective and efficient scheduling
algorithms are fundamentally important. In grid

computing, as resources are distributed in multiple
domains in the Internet, the computational and storage
nodes and the underlying networks connecting them are
heterogeneous. Thus the heterogeneity results in
different capabilities for job processing and data access.
In a Grid, resources are usually autonomous and the grid
schedulers do not have full control of the resources. The
autonomy results in the diversity in local resource
management and access control policies and hence grid
scheduler is required to be adaptive to different local
policies. Grid schedulers work in a dynamic
environment where the performance of available
resources is constantly changing. A feasible scheduling
algorithm should be able to be adaptive to dynamic
behaviors. As grid consists of a large number of
heterogeneous computing and storage sites connected
via wide area networks, grid scheduler has to select the
computation sites of an application according to
resource status and performance models. Hence the
unique characteristics of grid computing such as
heterogeneity and autonomy, performance dynamism
and resource selection make the design of scheduling
algorithms more challenging.

There are many research efforts aiming at job
scheduling on the grid. Scheduling m jobs to n resources
with an objective to minimize the total execution time
had been shown to be NP-complete (Ibarra and Ki,

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

965

1977). Therefore the use of heuristics is the defacto
approach in order to cope in practice with its difficulty.
Krauter et al. (2002) provided a useful survey on grid
resource management systems, in which most of the grid
schedulers such as AppLes, Condor, Globus, Legion,
Netsolve, Ninf and Nimrod use simple batch scheduling
heuristics. Jarvis et al. (2003) proposed the scheduling
algorithm using metaheuristics and compared First
Come First Serve heuristic with genetic algorithm to
minimize the makespan and it was found that
metaheuristics generate good quality schedules than
batch scheduling heuristics. Braun et al. (2001) studied
the comparison of the performance of batch queuing
heuristics, tabu search, genetic algorithm and simulated
annealing to minimize the makespan. The results
revealed that genetic algorithm achieved the best results
compared with batch queuing heuristics. Liu et al.
(2010) proposed a fuzzy Particle Swarm Optimization
algorithm for scheduling jobs on computational grid
with the minimization of makespan as the main
criterion. They empirically showed that their method
outperforms the genetic algorithm and simulated
annealing approach. The results revealed that the PSO
algorithm has an advantage of high speed of
convergence and the ability to obtain faster and feasible
schedules. In this study we introduce a novel approach
based on Biogeography Based optimization for
scheduling jobs on computational grid.

Biogeography Based Optimization (Simon, 2008) is
a new evolutionary algorithm for global optimization
that was introduced in 2008. BBO is an application of
biogeography to evolutionary algorithms. Biogeography
is the study of the distribution of biodiversity over space
and time. It aims to analyze where organisms live and in
what abundance. Biogeography not only gives a
description of species distributions, but also a
geographical explanation. Biogeography is modeled in
terms of such factors as habitat area, immigration rate
and emigration rate and describes the evolution,
extinction and migration of species. BBO has certain
features in common with other population-based
optimization methods. Like GA and PSO, BBO can
share information between solutions. This makes BBO
applicable to many of the same types of problems that
GA and PSO are used for, including unimodal,
multimodal and deceptive functions. One distinctive
feature of BBO is that the original population is not
discarded after each generation (Simon, 2008). It is
rather modified by migration. Another distinctive
feature is that, for each generation, BBO uses the fitness
of each solution to determine its immigration and
emigration rate. BBO has also demonstrated good
performance on various unconstrained bench mark
functions (Du et al., 2009; Ma et al., 2009; Simon,
2008). It has also been applied to real-world
optimization problems, including sensor selection
(Simon, 2008), economic load dispatch problem

(Bhattacharya and Chattopadhyay, 2010), satellite image
classification (Panchal et al., 2009), rectangular micro
strip antenna design (Lohokare et al., 2009), design of
Yagi-Uda Antenna (Singh et al., 2010), traveling
salesman problem (Song et al., 2010) and robot
controller tuning (Lozovyy et al., 2011). This is a
pioneer effort in the research area of Grid scheduling,
which makes use of Biogeography Based optimization
technique to dynamically generate an optimum schedule
so as to complete the tasks within a minimum period of
time as well as utilizing the resources in an efficient
way.

METHODOLOGY

The grid job scheduling problem: A computational
grid is a hardware and software infrastructure that
provides dependable, consistent pervasive and
inexpensive access to high end computational
capabilities (Foster and Kesselmann, 2004). It is a shared
environment implemented via the deployment of a
persistent, standards-based service infrastructure that
supports the creation of and resource sharing within,
distributed communities. Resources can be computers,
storage space, instruments, software applications and
data, all connected through the Internet and a
middleware layer that provides basic services for
security, monitoring, resource management and so forth.
Resources owned by various administrative
organizations are shared under locally defined policies
that specify what is shared, who is allowed to access
what and under what conditions (Foster and Iamnitchi,
2003). The real and specific problem that underlies the
grid concept is coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual
organizations (Foster et al., 2001). For clarity, some key
terminologies (Dong and Akl, 2006) are defined as
follows.

Grid node: A grid node is an autonomous entity
composed of one or multiple resources. The
computational capacity of the node depends on its
number of CPUs, amount of memory, basic storage
space and other specifications. In other words, each
node has its own processing speed, which can be
expressed in number of Cycles per Unit Time (CPUT).

Jobs and operations: A job is considered as a single
set of multiple atomic operations/tasks. Each operation
is typically allocated to execute on one single node
without pre-emption. It has input and output data and
processing requirements in order to complete its task.
The operation has a processing length expressed in
number of cycles.

Task scheduling: A task scheduling is the mapping of
tasks to a selected group of resources which may be

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

966

Fig. 1: A logical grid scheduling architecture

distributed in multiple administrative domains. A
scheduling problem is specified by a set of machines, a
set of jobs/operations, optionality criteria,
environmental specifications and by other constraints.

The grid scheduling process and components: The
grid scheduling process can be generalized into three
stages: resource discovering and filtering, resource
selecting and scheduling according to certain objectives
and job submission (Schopf, 2001). Figure 1 depicts a
model of grid scheduling system in which functional
components are connected by two types of data flow:
resource or application information flow and task or
task scheduling command flow.

A Grid Scheduler (GS) receives applications from
grid users, selects feasible resources for these
applications according to acquired information from the
Grid Information Service (GIS) module and finally
generates application-to-resource mappings, based on
certain objective functions and predicted resource
performance. Grid schedulers usually cannot control
grid resources directly. But they work like brokers or
agents (Berman et al., 2003), or even tightly coupled
with the applications as the application-level scheduling
scheme proposes (Berman et al., 1996; Sun and Ming,
2003). They are not necessarily located in the same
domain with the resources which are visible to them.
Figure 1 shows only one grid scheduler, but in reality
multiple schedulers might be deployed and organized to
form different structures (centralized, hierarchical and
decentralized (Hamscher et al., 2000) according to

different concern, such as performance or scalability.
Grid level scheduler is referred as Meta scheduler in the
literature (Mateescu, 2003) and which is not an
indispensible component in the Grid infrastructure.

The role of GIS is to provide information about the
status of available resources to grid schedulers. GIS is
responsible for collecting and predicting the resource
state information, such as CPU capacity, memory size,
network bandwidth, software availabilities and load of a
site in a particular period. Application Profiling (AP) is
used to extract properties of applications. Analogical
Bench marking (AB) provides a measure of how well a
resource can perform a given type of job (Khokhar
et al., 1993; Siegel et al., 1996). On the basis of
knowledge from AP and AB and following a certain
performance model (Berman, 1998), cost estimation
computes the cost of candidate schedules, from which
the scheduler chooses those that can optimize the
objective functions.

The Launching and Monitoring (LM) module is
known as the ‘binder’ which implements a finally
determined schedule by submitting applications to
selected resources, staging input data and executables
and monitoring the execution of the applications.

A Local Resource Manager (LRM) is mainly
responsible for local scheduling inside a resource
domain and reporting resource information to
GIS.

Scheduling problem formulation: The objective of
the proposed job scheduling algorithm is to minimize

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

967

the completion time and to utilize the nodes effectively.
Any job Jj has to be processed in one of the Grid nodes
Ri until completion. Since all nodes at each stage are
identical and pre-emption is not allowed, to define a
schedule it suffices to specify the completion time for
all tasks.

The grid job scheduling problem consists of
scheduling m jobs with given processing time on n
resources. Let Jj be the independent user jobs, j = {1,
2, 3, … m}. Let Ri be the heterogeneous grid nodes,
i = {1, 2, 3, .., n}. The speed of each resource is
expressed in number of Cycles per Unit Time (CPUT).
The length of each job is expressed in number of
cycles. The information related to job length and speed
of the resource is assumed to be known based on user
supplied information, experimental data and application
profiling or other techniques (Garg et al., 2010).

Let Cij (i є {1, 2, ….n}, j є {1, 2, ….m}) be the
completion time that the grid node Ri finishes the job Jj,
∑ Ci represents the time that the resource Ri finishes all
the jobs scheduled for itself. Makespan is a measure of
the throughput of the heterogeneous computing system.
Makespan is defined as:

��������, 	
�� = max (� 	�) (1)

For example thirteen jobs with job length 6, 12, 16,

20, 24, 28, 30, 36, 40, 42, 48, 52 and 60 number of
cycles, respectively, which are allocated to three grid
nodes with speed 5, 3 and 2 CPUT, respectively. The
completion time of a particular job is its job length
divided by the speed of the grid node for which it has
been allocated.

The schedule solution with the mapping of jobs
with grid nodes is as follows.

J3, J4, J5, J9, J11 and J13, respectively are mapped to
grid node 1. J7, J10 and J12, respectively are mapped to
grid node 2.

J1, J2, J6 and J8, respectively are mapped to grid
node 3. The completion time for individual node is
given below:

∑ C1 = C1,3 + C1,4 + C1,5 + C1,9 + C1,11 + C1,13 = 41.6
∑C2 = C2,7 + C2,10 + C2,12 = 41.3333
∑C3 = C3,1 + C3,2 + C3,6 + C3,8 = 41
�������� = 	
�� = ���(� 	�) = 41.6

BBO ALGORITHM FOR SCHEDULING JOBS

ON COMPUTATIONAL GRID

This section describes the biogeography based

optimization technique and the different steps involved
therein. Methodology of application of BBO technique
to different cases of Grid Job Scheduling problem has
also been presented in this section.

BBO algorithm: Biogeography describes how species
migrate from one island to another, how new species
arise and how species become extinct. An island is any
habitat that is geographically isolated from other

habitats. Geographical areas that are well suited as
residences for biological species are said to have a high
Habitat Suitability Index (HSI). The variables that
characterize habitability are called Suitability Index
Variables (SIVs). Habitats with a high HSI tend to have
large number of species, while those with a low HSI
have a small number of species. Habitats with a high
HSI have many species that migrate to nearby habitats,
simply by virtue of the large number of species that
they host. Migration of some species from one habitat
to other habitat is known as emigration process. When
some species enter into one habitat from any other
outside habitat, it is known as immigration process.
Habitats with a high HSI have a low species
immigration rate because they are already nearly
saturated with species. By the same token, high HSI
habitats have a high emigration rate. Habitats with a
low HSI have a high species immigration rate because
of their sparse populations. This immigration of new
species to low HSI habitats may raise the HSI of that
habitat, because the suitability of a habitat is
proportional to its biological diversity. In BBO, each
individual has its own immigration rate λ and
emigration rate µ. A good solution has higher µ and
lower λ, vice versa. The immigration rate and the
emigration rate are functions of the number of species
in the habitat. They can be calculated using (2) and (3):

n

Ek
k =µ (2)

)1(
n

k
Ik −=λ

 (3)

where, I is the maximum possible immigration rate, E is
the maximum possible emigration rate, k is the number
of species of the kth individual and n is the maximum
number of species. Equation (2) and (3) are just one
method for calculating λ and µ. There are other
different options to assign them based on different
specie models (Simon, 2008).

BBO concept is based on the two major steps,
migration and mutation. Mathematically the concept of
emigration and immigration can be represented by a
probabilistic model. Let us consider the probability Ps

that the habitat contains exactly S species at time t. Ps
changes from time t to time t+∆t as follows:

tPtP

tttPttP

ssss

ssss

∆+++∆−−

+∆−∆−=∆+

1111

)1)(()(

µλ

µλ (4)

 (5)

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

968

where, λs and µs are the immigration and emigration
rates when there are S species in the habitat. If time ∆t
is small enough so that the probability of more than one
immigration or emigration can be ignored then taking
the limit of (4) as ∆t →0 gives (5).

Mutation rate of each set of solution can be
calculated in terms of species count probability using
the Eq. (6):

 −
=

max

max

1
)(

P

P
mSm s (6)

where, mmax is the maximum mutation rate and Pmax is
the maximum probability. The pseudo code for BBO
algorithm is illustrated in Algorithm 1.

Solution representation: The solution for the job
scheduling problem is used to represent individual
habitat. The complete habitat set (population) with size
N is represented in (7):

[]Ni HHHHHH321= (7)

=

NnNjNNN

nj

nj

nj

nj

SIVSIVSIVSIVSIV

SIVSIVSIVSIVSIV

SIVSIVSIVSIVSIV

SIVSIVSIVSIVSIV

SIVSIVSIVSIVSIV

H

......

.....................

.....................

......

......

......

......

321

44434241

33333231

22232221

11131211

 (8)

Algorithm 1 biogeography based optimization

algorithm:

Initialize the BBO parameters
Create a random set of habitats (population) H1, H2, ..,
Hn.
Compute HSI values;
while the halting criterion is not satisfied do
 Compute immigration rate λ and emigration rate µ
for each
 habitat based on HSI;

 for each habitat (solution)
 for each SIV (solution feature)

 /* Migration process */
 Select habitat Hi with probability α λi
 if Hi is selected then
 Select Hj with probability α µj
 if Hj is selected then
 Hi (SIV) ← Hj (SIV)
 end if
 end if

 /* Mutation process */
 Select Hi (SIV) based on mutation

probability mi;

Table 1: Representation of solution, (a) job-to-resource
representation for the grid job scheduling problem, (b)
mapping of jobs with grid resource

(a)
2 1 2 3 1 2 3 1 2 3 2 1 1
(b)
Grid resource 1 J2 J5 J8 J12 J13
Grid resource 2 J1 J3 J6 J9 J11
Grid resource 3 J4 J7 J10

 if Hi (SIV) is selected then

 Replace Hi (SIV) with a randomly
generated SIV;

 end if
 next for
 Recompute HSI values;
 next for

 end while

where i = 1, 2, ….. N, j = 1, 2, 3, ……n and 1≤SIV≤m
(n is the number of jobs, m is the number of Grid nodes
and SIV is the Suitability Index Variable). Here Hi is the
position vector of the habitat i. Each habitat
(chromosome) is one of the possible solutions for the
job scheduling problem. The element Hij of Hi is the jth
position component of habitat i or in other words Hij is
the jth SIV of the ith habitat. All SIVs in each habitat are
represented as integers.

 The solution is represented as an array of length
equal to the number of jobs. The value corresponding to
each position j in the array represents the SIV in a
habitat which is actually the resource to which job j was
allocated. Table 1 illustrates the representation of the
SIV for the job resource pair (13, 3). The first element
of the array denotes the first job (J1) which is assigned
to the Grid resource 2; the second element denotes the
second job (J2) which is assigned to the Grid resource 1
and so on.

Initialization of SIV: Each element of the habitat
matrix, i.e., each SIV of a given habitat set H, is
initialized randomly with the value satisfying the
resources limit Rj, where, j = 1, 2,… m (Table 1).

Now the steps of algorithm to solve grid job
scheduling are given below:

1. For initialization, choose the number of jobs i.e.,

number of SIV is n, size of habitat is N. Initialize
total number of resources and jobs. Also initialize
the BBO parameters like habitat modification
probability Pmod, mutation probability, maximum
mutation rate mmax, Maximum immigration rate I,
Maximum emigration rate E, lower and upper
bound for immigration probability per gene, λlower

and λupper, step size for numerical integration dt,
elitism parameter P, etc. Set maximum number of
iteration.

2. Each SIV of a given habitat of H matrix is
initialized using the concept mentioned in

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

969

“Initialization of SIV”. Each habitat represents a
potential solution to the given problem.

3. Calculate HSI for each habitat set of the total
habitat set for given emigration rate µ and im-
migration rate λ using Eq. (2) and (3).

4. Based on the makespan value, elite habitats are
identified. Here elite terms are used to indicate
those habitat sets which give minimum fitness
value. Top “P” habitat sets are kept as it is after
individual iteration without making any
modification on it. Valid species S in grid job
scheduling problem is identified by considering
finite fitness values of habitats.

5. Perform migration operation on those SIVs of each
non-elite habitat, selected for migration. Algorithm
2 describes the migration operation of BBO based
grid job scheduling problem.

6. For each habitat, update the probability of its
species count using Eq. (5). Then, mutate each
non-elite habitat based on its probability using
Eq. (6) and recalculate the fitness values.

7. Go to step 4 for the next iteration. This loop can be
terminated after a predefined number of iterations.

Algorithm 2 Habitat migration for grid job
scheduling:
/* To calculate species count */
for i = 1 to N

if fitness of habitat set i<∞
 Speciescount of habitat i = N-i;
else
 Speciescount of habitat i = 0;
end if

end for
/* calculate value of λ and µ for each habitat set */
for i = 1 to N

λ (i) = I * (1-Speciescount of habitat i/N);
µ (i) = E * (Speciescount of habitat i/N);

end for
λmin = min (λ); λmax = max (λ);
/ * To select habitat and SIV for generating new habitat
after migration */
for k = 1 to N
 if a randomly generated number<Pmod
 /* To normalize the immigration rate */
 λscale = λlower + (λupper - λlower) * (λ (k) -λmin)
/ (λmax - λmin)

/* To pick up a habitat from which to obtain a
feature */

 for j = 1 to n
 if a randomly generated number<λscale
 RandomNum = rand * sum (µ);
 Select = µ (1);
 SelectIndex = 1;

while (RandomNum>Select) and
(SelectIndex<N)

 SelectIndex = SelectIndex+1;
 Select = Select + µ (SelectIndex);
 endwhile

Newly generated habitat (k, j) = Old habitat
(Selectindex, j);

 /* To check the feasibility of new habitat */
 for z = 1 to n
 if Newly generated habitat (k, z) ≠ Ri,

(i = 1, 2, … m)
Repeat the procedure for generating new
habitat

 end if
 end for
 else

Newly generated habitat (k, j) = Old habitat
(k. j);

 end if
 end for
 end if
 end for

SIMULATION ON BBO BASED GRID JOB

SCHEDULING ALGORITHM

Proposed BBO algorithm has been applied to grid

job scheduling problem in four different test cases for
verifying its feasibility. These are a (3, 13) -resource
job pair, a (5, 100) -resource job pair, a (8, 60) -
resource job pair and a (10, 50) -resource job pair. The
numerical simulations are carried out with the dataset
used and tested in the study (Liu et al., 2010).The
performance of the proposed algorithm is compared
with ACO, PSO, DE and GA. Specific parameter
settings of all the considered algorithms after
performing the extensive experiments are described in
Table 2. The adopted procedure for the determination
of the parameters of the proposed algorithm is detailed
in this study.

Table 2: Parameter settings for the algorithms

Algorithm Parameter name
Parameter
value

GA Size of the population 125
 Probability of crossover 1
 Probability of mutation 0.100
PSO Size of the population 125
 Particle swarm neighbourhood size 0
 Inertial constant 0.800
 Social coefficient 1.490
 Inertia weight 1.490
BBO Habitat size 125
 habitat modification probability 1.000
 Immigration probability bounds per gene [0, 1]
 Step size for numerical integration 0.200
 Maximum immigration and emigration

rate for each island
1.000

 Mutation probability 0.005
DE Size of the population 125
 Cross over factor 0.500
 Scaling factor 0.500
ACO Size of the population 125
 Pheromone update constant 20
 Exploration constant 1
 Pheromone sensitivity 1
 Visibility sensitivity 5

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

970

Table 3: Influence of parameters on BBO performance for job scheduling problem (5, 100)

Case dt

With mutation
--

Without mutation

0.005

0.05

0.5

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
1 0.1 85.447 85.549 85.480 85.463 85.921 85.523 85.454 85.683 85.511 85.450 85.736 85.521
2 0.2 85.443 85.543 85.410 85.472 85.893 85.536 85.450 85.643 85.508 85.453 85.986 85.745
3 0.4 85.449 85.765 85.537 85.454 85.562 85.505 85.448 85.651 85.513 85.469 85.741 85.652
4 0.5 85.463 85.603 85.540 85.457 85.573 85.504 85.467 85.643 85.512 85.456 85.741 85.642
5 0.8 85.464 85.545 85.514 85.448 85.603 85.511 85.448 85.621 85.509 85.468 85.663 85.556
6 1.0 85.448 85.643 85.682 85.450 85.582 85.504 85.460 85.730 85.528 85.445 85.718 85.657
7 1.2 85.454 85.822 85.520 85.468 85.637 85.522 85.452 85.645 85.498 85.476 85.685 85.533
8 1.3 85.456 85.958 85.738 85.451 85.711 85.516 85.465 85.621 85.518 85.454 85.759 85.550
9 1.5 85.458 85.582 85.499 85.453 85.676 85.520 85.456 85.579 85.503 85.455 85.677 85.613
10 2.0 85.447 85.615 85.512 85.446 85.711 85.499 85.499 85.754 85.618 85.465 85.813 85.673
Min.: Minimum; Max.: Maximum; Avg.: Average

Table 4: Effect of habitat size on results of job scheduling problem

(5, 100)

Habitat
size

No. of hits
to 85.4000
- 85.5999

Min.
makespan

Max.
makespan

Avg.
makespan

20 13 85.467 85.572 85.576
50 14 85.443 85.543 85.420
75 16 85.500 85.722 85.610
100 14 85.504 85.707 85.626
125 20 85.440 85.540 85.413
150 12 85.520 86.053 85.650
Min.: Minimum; Max.: Maximum; Avg.: Average

Determination of parameters for BBO algorithm: To
get optimal solution using the BBO algorithm, the
suitable value of the parameters like mutation
probability, step of integration dt and habitat size N
have to be determined. As the job scheduling problem
(5.100) is a large scale problem, (5.100) has been
chosen to determine the various parameters of BBO
algorithm. To find optimum values for “step size of
integration dt” and “mutation probability”, the
following procedures have been adopted:

• The habitat size is fixed at 50.

• Step of integration is increased from 0.1 to 2 in
suitable steps as shown in Table 1 and mutation
probability is changed to three different values of
0.005, 0.05 and 0.5, respectively. Performance of
BBO algorithm in grid job scheduling system for
the resource job pair (5, 100) is calculated for all
the above mentioned combinations. For each
combination, 50 independent trails have been made
with 500 iterations per trail.

• Step of integration is again increased from 0.1 to 2
in same steps for the same problem as mentioned
above and mutation probability is not considered in
this case.

• In case of BBO algorithm, based on simulation
results obtained for different combination of
parameters given in Table 3, step size of integration
dt 0.2 and mutation probability 0.005 gave better
makespan more consistently. The obtained
minimum makespan 85.443 is also less when
compared to the remaining cases.

Effect of habitat size and maximum number of
iteration on BBO algorithm: Change in habitat size
affects the performance of BBO algorithm. Large or a
small habitat size may not be capable of searching for
the minimum, particularly in complex multimodal
problems. The optimum habitat size is found to be
related to the problem dimension and complexity.
Table 4 shows the performance of the BBO algorithm
for different habitat size of 20, 50, 75, 100, 125 and
150, respectively for the resource job pair (5, 100) of
Grid job scheduling system.

A habitat size of 125 resulted in achieving global
solutions more consistently for the test system. From
Table 4, it is found that the habitat size 125 recorded
the best result compared with other habitat sizes.
Increasing the habitat size beyond this value did not
produce any significant improvement; rather it
increases the simulation time which is not desirable in
real-time problems.

The nature of convergence of BBO algorithm had
been observed for all kind of problems by few tests.
After that, the number of iterations had been fixed as
100. In the proposed algorithm, the parameters are set
as specified in Table 2.

Comparative study: All the jobs and the nodes were
submitted at one time. Each experiment (for each
algorithm) was repeated 25 times with different random
seeds. Each trail had a fixed number of 100 iterations.
The makespan values of the best solutions throughout
the optimization run were recorded and the averages
and the standard deviations were calculated from the 25
different trails. The grid scheduling algorithm should
generate the schedules as fast as possible in a grid
environment. So the completion time is used as one of
the criteria for improving their performance.

Solution quality: Table 5 shows the performance
comparison of BBO algorithm with ACO, PSO, GA
and DE. Figure 2 illustrates the performance for the pair
(3, 13). As the performance plot of PSO had many
fluctuations, it average makespan and the standard
deviation are recorded by both GA and BBO. It is
noticed that all algorithms except PSO allocate the jobs
evenly for all grid nodes from Fig. 3.

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

971

Table 5: Performance comparison between ACO, BBO, GA, DE and PSO

Algorithm Item

Instance
--
(3, 13) (5, 100) (8, 60) (10, 50)

ACO Average makespan 41.68 104.08 67.67 51.10
 Standard deviation ±0.16 ±5.71 ±7.25 ±2.36
 Time 3.96 7.90 11.83 10.02
BBO Average makespan 41.64 85.47 43.01 37.46
 Standard deviation ±0.12 ±0.02 ±0.42 ±0.68
 Time 2.73 8.73 6.16 5.40
DE Average makespan 41.68 88.05 47.10 42.08
 Standard deviation ±0.16 ±0.70 ±1.18 ±0.93
 Time 3.47 11.66 8.29 7.60
GA Average makespan 41.64 86.02 43.23 37.90
 Standard deviation ±0.12 ±0.23 ±0.54 ±0.68
 Time 3.70 9.41 7.09 6.50
PSO Average makespan 49.06 105.76 49.95 49.75
 Standard deviation ±3.65 ±3.26 ±2.00 ±1.67
 Time 5.17 10.79 8.30 7.89

Fig. 2: Performance for job scheduling (3, 13)

Fig. 3: Resource allocation for job scheduling (3, 13)

Figure 4 illustrates the performance for GA, ACO,
BBO and DE algorithms during the search process for
(5, 100). For this case, the BBO algorithm yields the
minimum average makespan and the standard
deviation.

Individual node flow time of best run is found to be
{85.22, 84.76, 85.66, 85.67, 85.51} for BBO. GA
produces the flowtime as {85.26, 85.55, 84.68, 85.76,
85.64}. The result for DE is {85.24, 86.73, 87.50,
84.97, 84.11}. ACO reports {76.71, 84.26, 83.15,
89.30, 91.93} and PSO yields {83.39, 96.8, 74.04,
79.87, 97.24}. It is realized that the performance of

Fig. 4: Performance for job scheduling (5, 100)

Fig. 5: Resource allocation for job scheduling (5, 100)

BBO and GA is good when compared with other
algorithms from Fig. 5 and 6. The average makespan
for (8, 60) is found to be 43.01 for BBO which is the
minimum value as evident from the Table 5. Individual
node flow time for this case is illustrated in Fig. 7. This
reveals that BBO is better than other algorithms.

Figure 8 illustrates the performance for the pair
(10, 50). The minimum average makespan is recorded
by BBO as 37.46 and the standard deviation for BBO
and GA is found to be the same for this case which is
also the minimum value compared with others. It is
noted that the resources are effectively utilized by BBO

0

5

Grid node

S
in

g
le

 n
o
d

e
fl

o
w

 t
im

e

10

15

20

25

30

35

40

45

50 GA

DE

ACOBBO
PSO

1 2 3

85

90

95

100

0 20 40 60 80 100 120
Iteration

M
ak

es
p
an

GA
DE
ACO
BBO

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

0 20 40 60 80 100 120
Iteration

M
ak

es
pa

n

GA
DE
ACO
BBO

0

10

1 2 3 4 5
Grid node

S
in

g
le

 n
o
d

e
fl

o
w

 t
im

e

20

30

40

50

60

70

80

90

100 GA

DE

ACOBBO
PSO

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

972

Fig. 6: Performance for job scheduling (8, 60)

Fig. 7: Resource allocation for job scheduling (8, 60)

Fig. 8: Performance for job scheduling (10, 50)

algorithm than others when referring to Fig. 9. In
general, it is found that the performance of BBO is
better and competitive with GA while producing good
quality schedules. Next DE places its remark and it is
followed by PSO and ACO in producing quality
schedules.

Computational efficiency: In general, for large (R, J)
pairs, the completion time is comparatively larger. BBO
usually spent the least time for allocating all the jobs on
the grid node, GA was the second. For large resource
job pair, the completion time of PSO is competitive
with DE as referred from Table 5. ACO had to spend
more time to complete the scheduling. It is noted that

Fig. 9: Resource allocation for job scheduling (10, 50)

Fig. 10: Pareto front obtained by three algorithms for (8, 60)

Fig. 11: Pareto front obtained by three algorithms for (5, 100)

BBO usually spends the shortest time to accomplish the
various job scheduling tasks and produces the best
results among all the five algorithms considered.

0

10

1 2 3 4 5
Grid node

S
in

g
le

 n
od

e
fl

o
w

 t
im

e

20

30

40

50

60 GA

DE

ACOBBO
PSO

6 7 8

36

40

0 20 40 60 80 100 120
Iteration

M
ak

es
p
an

GA
DE
ACO
BBO

38

48

50

42

44

46

52

54

56

40

50

55

70

0 20 40 60 80 100 120
Iteration

M
ak

es
p

an

GA
DE
ACO
BBO

45

60

65

1 2 3 4 5
Grid node

S
in

g
le

 n
o

d
e

fl
o

w
 t

im
e

GA

DE

ACOBBO
PSO

6 7 98 10
0

5

10

15

20

25

30

35

40

45

50

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

973

Fig. 12: Pareto front obtained by three algorithms for (10, 50)

Fig. 13: IH¯ measure of three algorithms for (8, 60)

Fig. 14: IH¯ measure of three algorithms for (5, 100)

Performance assessment: From Table 5, it is found
that BBO gives the best makespan value for all cases,
then GA follows next and then DE in giving better
results. Hence GA and DE are taken into account to

Fig. 15: IH¯ measure of three algorithms for (10, 50)

assess the performance with BBO. In order to compare
the performance of the proposed algorithm with other
scheduling algorithms, it is necessary to examine the
extent of minimization of the obtained non-dominated
solutions produced by each algorithm for the
considered objective and the spread of their solutions.
Figure 10 to 12 show the non-dominated solutions
obtained at the end of simulation trial (average over 25
runs) for BBO, GA and DE algorithms for 3 different
test cases.

For all problems, the solution obtained by BBO is
better than solutions found by GA and DE. In order to
present a comprehensive comparison of the overall
quality of these alternative approaches, the experiment
for each algorithm was repeated 25 times with different
random seeds for each resource job pair. The reference
set, R had been constructed by merging all of the
archival non-dominated solutions found by each of the
algorithms for a given resource job pair across 25 runs.
Then the hyper volume difference indicator IH¯
(Huband et al., 2006) had been used to measure the
differences between non-dominated fronts generated by
the algorithms and the reference set R.

The objective values are normalized to find the
hyper volume difference indicator (Huang et al., 2007).
IH¯ measures the portion of the objective space that is
dominated by R. The lower the value of IH¯, the better
the algorithm performs. Box plots for different test
cases clearly prove that BBO algorithm is better than
GA and DE (Fig. 13 to 15).

From the simulation result of BBO algorithm in
solving grid job scheduling problems, it is seen that the
performance of BBO algorithm is much better than
other optimization techniques mentioned in this study.

CONCLUSION

In this study, we analyzed the job scheduling

problems on computational grids. For scheduling

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

974

problems, we consider genetic algorithm, differential
evolution algorithm, ant colony optimization, particle
swarm optimization and BBO algorithm.

This study presents a novel grid job scheduling
approach based on BBO algorithm to optimize the

makepan and flowtime. The BBO algorithm has an

ability to find better quality solution and has better
convergence characteristics and computational

efficiency. It is clear from the results obtained by
different trials that the proposed BBO method has good

convergence property and it avoids the shortcoming of

premature convergence of other optimization
techniques to obtain better quality solution. As the

status of resource is dynamic within the grid

environment, it is necessary to produce the faster and
feasible schedules. Simulation results show that BBO is

capable of generating the solution within a minimum
period of time. The comparative study demonstrates the

efficiency and effectiveness of the proposed approach

and the IH¯ indicator shows that BBO performs better
than other algorithms. Hence BBO can be applied for

grid job scheduling problems. In future work, we will
develop adaptive BBO algorithm for multi-objective

complex scheduling problems and stochastic scheduling

problems.

REFERENCES

Berman, F., 1998. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann
Publishers, Springer-Verlag, San Mateo, CA.

Berman, F., R. Wolski, S. Figueria, J. Schopf and
G. Shao, 1996. Application-level scheduling on
distributed heterogeneous networks. Proceeding of
the 1996 ACM/IEEE Conference on
Supercomputing, Article No: 39.

Berman, F., R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli,
J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su
and D. Zagorodnov, 2003. Adaptive computing on
the grid using apples. IEEE T. Parall. Distr., 14(4):
369-382.

Bhattacharya, A. and P.K. Chattopadhyay, 2010.
Biogeography-based optimization for different
economic load dispatch problems. IEEE T. Power
Syst., 25(2): 1064-1077.

Braun, T.D., H.J. Siegel, N. Beck, D.A. Hensgen and
R.F. Freund, 2001. A comparison of eleven static
heuristics for mapping a class of independent tasks
on heterogeneous distributed system. J. Parallel
Distr. Com., 61(6): 810-837.

Dong, F. and S.G. Akl, 2006. Scheduling algorithms for
grid computing: State of the art and open problems.
Technical Report No. 2006-504. School of
Computing, Queen’s University Kingston, Ontario.

Du, D., D. Simon and M. Ergezer, 2009. Biogeography-
based optimization combined with evolutionary
strategy and immigration refusal. Proceeding of the
IEEE Conference on Systems, Man and
Cybernetics. San Antonio, Texas, pp: 997-1002.

Foster, I. and A. Iamnitchi, 2003. On death, taxes and
the convergence of peer-to-peer and grid
computing. Proceeding of 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkeley, CA, USA.

Foster, I. and C. Kesselmann, 2004. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, USA.

Foster, I., C. Kesselman and S. Tuecke, 2001. The
anatomy of the grid: Enabling scalable virtual
organizations. Int. J. Supercomput. Ap., 15(3):
200-220.

Garg, S.K., R. Buyya and H.J. Siegel., 2010. Time and
cost trade-off management for scheduling parallel
applications on utility grids. Future Gener. Comp.
Sy., 26(8): 1344-1355.

Hamscher, V., U. Schwiegelshohn, A. Streit and
R. Yahyapour, 2000. Evaluation of job-scheduling
strategies for grid computing. Proceeding of 1st
IEEE/ACM International Workshop on Grid
Computing (GRID’00). Bangalore, India, pp:
191-202.

Huang, V.L., A.K. Qin, K. Deb, E. Zitzler,
P.N. Suganthan, J.J. Liang, M. Preuss and
S. Huband, 2007. Problem definitions for
performance assessment on multi-objective
optimization algorithms. Technical Report,
Nanyang Technological University, Singapore.

Huband, S., P. Hingston, L. Barone and L. While, 2006.
A review of multiobjective test problems and a
scalable test problem toolkit. IEEE T. Evolut.
Comput., 10(5): 477-506.

Ibarra, O.H. and C.E. Ki, 1977. Heuristic algorithms for
scheduling independent tasks on nonidentical
processors. JACM, 24(2): 280-289.

Jarvis, S.A., D.P. Spooner, H.N. Lim Choi Keung,
G.R. Nudd, J. Cao and S. Saini, 2003. Performance
prediction and its use in parallel and distributed
computing systems. Proceeding of the IEEE/ACM
International Workshop on Performance
Modelling, Evaluation and Optimization of Parallel
and Distributed Systems. Nice, France.

Khokhar, A.A., V.K. Prasanna, M.E. Shaaban and
C.L. Wang, 1993. Heterogeneous computing:
Challenges and opportunities. IEEE Comput.,
26(6): 18-27.

Krauter, K., R. Buyya and M. Maheswaran, 2002. A
taxonomy and survey of grid resource management
systems for distributed computing. Software Pract.
Exper., 32: 135-164.

Res. J. App. Sci. Eng. Technol., 8(8): 964-975, 2014

975

Liu, H., A. Abraham and A.E. Hassanien, 2010.

Scheduling jobs on computational grids using a

fuzzy particle swarm optimization algorithm.
Future Gener. Comp. Sy., 26(8): 1336-1343.

Lohokare, M.R., S.S. Pattnaik, S. Devi, K.M. Bakwad
and J.G. Joshi, 2009. Parameter calculation of

rectangular microstrip antenna using

biogeography-based optimization. Proceeding of
Applied Electromagnetics Conference (AEMC).

Kolkata, DOI: 10.1109/AEMC.2009.5430676.
Lozovyy, P., G. Thomas and D. Simon, 2011.

Biogeography-based optimization for robot

controller tuning. Computational Modeling and
Simulation of Intellect: Current State and Future

Perspectives. IGI Global Publication, Chapter 7,

pp: 162-181.
Ma, H., S. Ni and M. Sun, 2009. Equilibrium species

counts and migration model tradeoffs for
biogeography-based optimization. Proceeding of
the IEEE Conference on Decision and Control.
Shanghai, P.R. China, pp: 3306-3310.

Mateescu, G., 2003. Quality of service on the grid via
metascheduling with resource co-scheduling and
co-reservation. Int. J. High Perform. C., 17(3):
209-218.

Panchal, V., P. Singh, N. Kaur and H. Kundra, 2009.
Biogeography based satellite image classification.
Int. J. Comput. Sci. Inform. Secur., 6(2): 269-274.

Schopf, J., 2001. Ten Actions When Super Scheduling,
document of Scheduling Working Group, Global
Grid Forum. Retrieved form: http://www.ggf.org/
documents/GFD.4.pdf, July 2001.

Siegel, H.J., H.G. Dietz and J.K. Antonio, 1996.
Software support for heterogeneous computing.
ACM Comput. Surv., 28(1): 237-239.

Simon, D., 2008. Biogeography-based optimization.
IEEE T. Evolut. Comput., 12(6): 702-713.

Singh, U., H. Singla and T. Kamal, 2010. Design of
Yagi-Uda antenna using biogeography based
optimization. IEEE T. Antenn. Propag., 58(10):
3375-3379.

Song, Y., M. Liu and Z. Wang, 2010. Biogeography-
based optimization for the traveling salesman
problems. Proceeding of the 3rd International Joint
Conference on Computational Science and
Optimization (CSO, 2010). Huangshan, Anhui,
China, pp: 295-299.

Sun, X.H. and W. Ming, 2003. Grid harvest service: A
system for long-term, application-level task
scheduling. Proceeding of 2003 International
Parallel and Distributed Processing Symposium,
ISSN: 1530-2075.

