
Research Journal of Applied Sciences, Engineering and Technology 7(22): 4723-4735, 2014

DOI:10.19026/rjaset.7.858

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: January 10, 2014 Accepted: January 25, 2014 Published: June 10, 2014

Corresponding Author: M. Farida Begam, School of Computer Science, Engineering and Applications, Bharathidasan

University, Tiruchirappalli-23, Tamilnadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4723

Research Article
Ontology Based Dynamic e-Learning Flow Composition of Learning Web Services

M. Farida Begam and

Gopinath Ganapathy

School of Computer Science, Engineering and Applications, Bharathidasan University,
Tiruchirappalli-23, Tamilnadu, India

Abstract: Web Services has instigated it’s transcend and now education has been made simple through Web
Services. With the advent of Web Services, education has become far more personal, flexible and available across
global borders. Workflow is a sequence of business tasks to be realized for the execution of user’ request.
Identifying required e-learning web services and dynamic composition and realization of those services is a
challenging process. In this study we have suggested e-learning services workflow composing architecture and
relevant algorithms for matching and composing e-learning flow for the learners with different learning styles. We
suggested non logic based hybrid matching and composing algorithms which uses OWL-S profile and process
ontologies for dynamic workflow composition of e-learning web services.

Keywords: Ontology, ontology matching, OWL, semantic web, web services, workflow

INTRODUCTION

Web 1.0 was more towards presenting content over

Internet rather than providing user generated content.

The content generated was unstructured, redundant and

huge. According to W3C Director, it was only read

only web and provided one way communication. There

was very less dynamic content generated where as web

2.0 is more about collaboration, user involvement and

interaction but lacks personalization and context. Web

3.0 is about the Web becoming smarter, getting to know

the user better from browsing history and automatically

delivering content to the user that is relevant.

According to the W3C, The Semantic Web provides a

common framework that allows data to be shared and

reused across applications, enterprise and community

boundaries. Web 3.0 is about semantic web,

personalization, intelligent search and intelligent

business applications. In future web search will be

based on content not based on keywords. We need to

move to the upcoming semantic web technologies

which are sprawling to various fields. From static

content generation web is moving towards providing

the computing and data based web services.

Web Services provide a basis for interoperability
between service providers and consumers, based on the
reliable exchange of messages (Martin et al., 2007).
Upon the users request, more than one web services are
combined and serve the user. The steps involved in
invoking sequence of web services to satisfy the user's

request form the work flow. This web service or
workflow composition involves many aspects such as:

• Selection of web services

• Control flow and data flow among the services

• Integration

• Composition of web services

Achieving all these functions manually is cumbersome
and time consuming. Automated processes catch the
attention of many domains and provide benefits such as
generation of work flow on the fly, deriving business
intelligence and also it leverages to the use of new
semantic web technology such as OWL-S, WSDL,
UDDI and SOAP (W3C, 2004) provide only syntactical
support for discovery and integration of web services
and manual intervention is required in all phases of
service realization. Semantic web which is next
generation web presents intriguing challenges and
provides promising benefits. Automation can be
achieved in all phases of work flow execution using
semantic web technologies. In this study, we have
concentrated on composing workflow for e-learning
services. Semantic Web Service coordination aims at
the coherent and efficient discovery, composition,
negotiation and execution of Semantic Web Services in
a given environment and application context (Klusch
et al., 2005). Discovery involves locating web services
based on functional and non functional parameters.
Syntactical nature of WSDL doesn’t allow the
composition or orchestration of these services
dynamically or in other way with user intervention.

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4724

Discovery of candidate web services can be
accomplished using two ways. First way using
inference of WSDL documents. In this way, clustering
parameter names of operations on a set of web services
into semantically meaningful concepts and finding the
similarity helps to find the candidate services. This
trend of research work focus on input/output matching
to find a list of operations with similar inputs (outputs)
with a given inputs (outputs) of an operation and
operation matching to find a list of operations similar
with a given operation. Second way is defining standard
description language at top level of WSDL and devising
algorithms to find the capabilities of the services. This
will provide more expressiveness. In general, any
semantic service discovery framework needs to have
the following components (Klusch, 2008).

Service description: Formal means to describe the

functional and non-functional semantics of Web

Services.

Service selection: Reasoning mechanisms for service

matching, that is the pair wise comparison of service

descriptions in terms of their semantic relevance to the

query and ranking of the results based on partially or

totally ordered degrees of matching and preferences.

Discovery architecture: Environmental assumptions

on (centralized, decentralized) network topology,

service information storage (e.g., distribution of

services, ontologies, registries) and location

mechanisms and functionality of agents involved (e.g.,

service requester, provider, middle agents).

Web Services advertisement follows structure

which cannot be managed with normal RDBMS tables.

We need mechanism to store, process, retrieve and

manage these web services efficiently. Semantic web

technologies provide solution for all these

requirements. Automatic composition can be achieved

with Web Ontology language OWL-S in building

semantic web services. Learners with different

requirements or learning styles are identified based on

their behavior, actions and interactions with the system

and we provide e-learning agenda or sequence of e-

learning web services (e-learning flow) based on their

learners profile or style. In this study we have proposed

an work flow composition architecture and non logic

based hybrid matching and composing technique which

uses IOPE (Input, Output, Preconditions and Effect) as

well as text description for matching candidate e-

learning web services using on OWL-S.

MATERIALS

Semantic web is the boon for next generation to

provide the meaningful information to the Internet

world. It is the vision of W3C for the web of linked

data. Semantic web is an extension of available web,

which will unleash the revolution of new possibilities

(Berners-Lee, 2001). In many fields like medicine, bio

informatics and web search and data mining, it has got

widespread usage. It takes up its strength in different

domains and providing many knowledge based

intelligent solutions. E-learning is not an exception.

Semantic web services present one more layer above

existing web and allow the users to interact with the

web in meaningful way. It provides information in a

precise, machine interpretable form, ready for software

agents to process, share and reuse it, as well as to

understand what the terms describing the data mean

(Fayed et al., 2006). In e-Learning if processes are

described with semantics; it will make the applications

to interact in a meaningful way, in turn serves the

heterogeneous learners to acquire the knowledge

according to their perception. This approach will

enhance the leaner’s experience. Main objective of this

semantic web is to extend the current web technology

to allow the development of intelligent agents, which

can automatically and unambiguously process the

information available on millions of web pages

(Berners-Lee, 2001). These software based agents

provide appropriate infrastructure and help in achieving

development of semantic evolution of e-Learning

systems. Conceptualization, Ontologies and data

interchange formats RDF, XML, XTM (XML Topic

Maps), OWL-Web Ontology Language, OWL-S, RDF

Schema, Rule ML (Rule Mark up Initiative) and

SPARQL (W3C) are the basic technologies to develop

formal description of concepts, terms and relationships

within a given knowledge domain. Using OWL and

OWL-S, the web resources are converted to proper

knowledge representation such as semantic annotations.

These annotations can be used to support the user in

composing work flows for various business processes

including e-learning processes. Moreover, Semantic

web services provide a number of different educational

activities by transforming a static collection of

information into distributed way on the basis of

Semantic Web technology making content within the

WWW machine-processable and machine-interpretable

(Ibert et al., 2008).

Semantic web architecture: Semantic web is the next
generation of the WWW and it extends the current Web
by giving information well-defined meaning, better
enabling computers and people to collaborate. In
Semantic Web information has machine-processed and
machine-understandable semantics that enhancing the
machine readability of web content. Figure 1 illustrates
the various technologies used in different layers of
abstraction in the Semantic Web.

Unicode and URI: This is an international standard for

encoding the text. This includes all scripts in active use

today, many scripts known only by scholars and

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4725

Fig. 1: Layers of the semantic web (www.w3.org/2001/12/

semweb-fin/swlevels.png)

symbols which do not strictly represent scripts, like

mathematical and linguistic symbols. URI-Uniform

Resource Identifier is used to identify any resource such

web page, e-book, e-Learning material such as slide,

presentation and etc.

XML+NS+rdfschema: XML (eXtensible Markup

Language) XML Schema ensures that there is common

syntax used in Semantic web. XML Name Spaces allow

specifying different markup vocabularies in one

document. XML Schema serves for expressing schema

of a particular set of XML documents.

RDF+rdfschema: RDF (Resource Description Graph)

is core data representation format for semantic web. It

is based on triples subject-predicate-object that form

graph of data. RDF Schema is used to define the

vocabulary of RDF model.

Ontology vocabulary: Ontology is a formal

specification of conceptualization. It describes the

knowledge base of the particular domain. It has set of

components such as Classes, slots, facets and instances.

Concepts of the domain are represented as classes,

properties of concepts called slots describing various

features and attributes of the concepts and restrictions

on slots are called facets. There are several higher level

languages for generating Ontologies such as OIL

(Ontology Inference Layer) and DAML (DARPA

Agent Markup Language) +OIL and OWL. Wide usage

and adoption of OWL makes this language as standard

for Ontology representation language for Semantic

web. It has set of XML elements and attributes which

defines the terms and relationship among these terms in

well structured manner. It also extends the elements of

RDF and RDFS. OWL includes the concepts like union,

intersection and complement of Ontology. Cardinality

constraints on properties can be imposed on properties.

Properties can also have characteristics in OWL. On the

whole, OWL provides better way of representing

knowledge base which is required in semantic web

services. It helps us to obtain the shared understanding

of the key concepts, ensures reusability of knowledge

base and makes distributed large scale machine

processing automatic.

Ontologies are the constructs which should be well

defined, with machine readable computational

semantics, commonly acceptable understanding that

describes a particular domain. It is one of the ways of

knowledge representation. Knowledge of particular

domain is captured, stored and retrieved as ontologies.

Ontologies are involved in extracting knowledge and

making intelligent decision. Many intelligent agents use

the ontology, derive the intelligence and passes this to

other intelligent agents.

Semantic web services: Web Services are modular,
self-describing, self-contained distributed applications
that are accessible over the Internet. These loosely
coupled and contracted components that communicate
via XML based interface and encapsulate discrete
functionality. They are programmatically accessible
over standard Internet protocols which are SOAP,
WSDL and UDDI and they define standards for service
discovery, description and messaging protocols. They
provide syntactic interconnection between
heterogeneous systems. Web Services facilitate many
businesses with the availability of applications through
platform independent technology. At the core, Web
Services faster the way the business and people interact
with each other. In the field of education, Web Services
has instigated it’s transcend and now education has
been made simple through Web Services.

The mainstream XML standards for interoperation

of Web Services specify only syntactic interoperability,

not the semantic meaning of messages. Web services

based Service Oriented Architecture provides

heterogeneity and interoperability in realizing the

service request. However, there are certain deficiencies

in normal web services which use only syntactical

information descriptions, syntactic support for

discovery, composition and execution, web Service

usability, usage and integration needs to be inspected

manually. There is no semantically marked up

content/services. It does not support the Semantic Web.

Above all, dynamically combining services using

WSDL is very difficult to achieve as WSDL handles

input and output as strings rather than the necessary

concept for combining them.

Keeping ontologies as data model, Semantic web

services increases the effectiveness of the output

obtained from the WWW. It helps to improve machine

supported interpretation. Semantic web services are

realized using OWL-S Web Ontology Language for

Web Services. It defines complete description

frameworks for describing Web Services and related

aspects. It supports ontologies as underlying data model

to allow machine supported data interpretation and

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4726

define semantically driven technologies for automation

of the discovery, integration and composition of web

services and their usage process. With the advent of

Semantic Web Services, education has become far more

personal, flexible and available across global borders.

OWL-S web ontology language-services: OWL-S is

W3C standard for annotating web services. It is written

using OWL and its aim to provide general terms and

properties to describe web services. Adding semantics

to web services changes the way the web applications

work. These annotations with OWL-S help to achieve

high automation in discovering the service, invoking

and integrating/composing the service from different

other services. The OWL-S ontology is still evolving

and making connections to other development efforts,

such as those building ontologies of time and resources.

OWL-S ontology is referred as a language for

describing services, reflecting the fact that it provides a

standard vocabulary that can be used together with the

other aspects of the OWL description language to create

service descriptions (W3C, 2004). OWL-S is not

intended to replace existing Web Services or Semantic

Web standards. It remains compliant with existing

standards and adding explicit semantics that is

operational and understandable to computer programs.

Web service community needs this which helps to

encompass comfort with descriptions of entities outside

current Web Service specifications. OWL-S enables or

motivates us to approach web services with different

scenarios of automation processes discussed below.

OWL-S is upper ontology for services i.e., it is a

general ontology not meant for any particular ontology.

It is also called foundation ontology. OWL defines the

web service on three important aspects given as what

does the service do?, How does the service work? and

How is the service invoked? OWL-S lays its basis on a

process ontology and benefits from developments in

workflow modeling as well as the agent technology

(McIlraith et al., 2001). OWL-S describes services by

three components namely, Service Profile, Service

Model and Service Grounding.

The first aspect is defined by OWL-S sub-ontology

called Profile ontology which describes the classes and

properties to answer this type of question. This is to

advertise the service. Equivalent to WSDL document in

normal web services architecture. The second aspect is

defined by the sub ontology Service Model/Process

ontology which defines all the terms need to describe

how the service works and the third aspect is defined by

the sub ontology Grounding ontology which is meant

for providing the terms used to describe how the service

can be accessed technically. These three ontologies are

connected through a high level ontology called service

ontology. This describes how these three ontologies

can work together to describe the service. The above

three ontologies are used in achieving the goals of

OWL-S such as automation, machine interpretation and

machine processing. Automatic discovery can be

achieved through Profile ontology, automatic

invocation is achieved through Grounding ontology and

automatic composition and monitoring is achieved by

Process ontology.

Survey on semantic web service composition: This

section briefly explains about various workflow

composition techniques used in real business

applications. Web service integration is the process of

finding a web service that can deliver a particular

service and composing several services in order to

achieve a particular goal, However, semantic web

service descriptions do not necessarily reference the

same ontology. Henceforth, both for finding the

adequate service and for interfacing services it is

necessary to establish the correspondences between the

terms of the descriptions of the web services.

Kim et al. (2004) specify AI planning techniques in

which rich knowledge base is used for automatic

composition. They have implemented an approach to

interactive workflow composition that incorporates:

• Knowledge-rich descriptions of the individual

components and their constraints.

• A formal algorithmic understanding of partial

workflows, based on AI planning techniques.

Using this approach, a system can analyze a partial

workflow composed by the user, notify the user of

issues to be resolved in the current workflow and

suggest to the user what actions could be taken next.

Cardoso and Amit (2003) discussed about QoS

model for work flow composition. They have brought a

model that will allow for the discovery of Web services

and for the composition of workflows based on

operational requirements such as which includes their

timeliness, quality of products delivered, cost of service

and reliability. They have recommended that a good

management of quality leads to the creation of quality

products and services, which in turn fulfills customer

expectations and achieves customer satisfaction.

Fei and Lu (2012) uses data flow driven approach

for composing scientific workflow. In this study they

have suggested a dataflow-based scientific workflow

model that separates the declaration of the workflow

interface from the definition of its functional body; a set

of workflow constructs, including Map, Reduce, Tree,

Loop and Conditional which are fully compositional

one with another, a dataflow based exception handling

approach to support hierarchical exception propagation

and user-defined exception handling are the unique

features of this study.

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4727

Table 1: Various semantic web service composition techniques

Approach

Based on

functional/QoS based Technique used Description

Chinthaka et al. (2009) Non QoS based Case based reasoning Composition of workflows based on the characteristics of the

inputs and the outputs of the reusable workflow components,

facilitating user exploitation of existing services and workflows

during workflow composition

Chiu et al. (2009) QoS based Ontology based AI

planning

Defining cost models on service completion times and error

propagation, composes service workflows which can adapt to

user’s QoS preferences

Sohrabi and McIlraith

(2010) approach

Non QoS based Situation calculus and

first order logic

The composition system uses the user preferences to generate

preferred solutions

Gil et al. (2009) QoS based Ontology based AI

technique

It assumes a distributed architecture where data and component

catalogs are separate from the workflow system, queries to

external catalogs and therefore any reasoning regarding data or

component properties is not assumed to occur within the

workflow system

Lécué et al. (2008)

approach

Non QoS based AI and DL reasoning DL reasoning between the input, output parameters (DL based

description) of service in order to infer semantic matchmaking

between parameters along with the situation calculus

Aydın et al. (2008)

approach

Non QoS based Abduction theorem and

event calculus

Abduction theorem generates a series of events as well as a set of

temporal ordering predicates, giving partial ordering of events

which are more suitable for web service composition

Lécué et al. (2008)

approach

QoS based Casual Link

Matrix(CLM) -for

functional parameters

CLM++ for non

functional parameters

Semantic connections between services are stored on CLM+

which can be used to compute the composition that represents the

possible service composition that matches the service request

Zeng et al. (2008)

approach

QoS based Forward chaining and

backward chaining used

Goal-directed service composition and optimization framework is

presented. The goal directed problem takes three inputs, the

domain specific composition rules, the description of the business

objectives and the description of the business assumptions

Ardagna and Barbara

(2007) approach

QoS based Processes with Adaptive

Web Services (PAWS),

BPEL used

SLA based constraints are used

Groenmo and Jaeger

(2005) approach

QoS based Semantic web languages Four phases:

• For constructing composition model

• We service handling based on semantic matching

• Obtaining composition model

• Composition model used

Klusch et al. (2005)

QoS based Fast forward-planner

with a HTN planning

OWL-S service composition planner, called OWLS-Xplan is

used to convert OWL-S 1.1 services to equivalent problem and

domain descriptions that are specified in the planning domain

description language PDDL 2.1 and invokes an efficient AI

planner Xplan to generate a service composition plan sequence

that satisfies a given goal.

Majithia et al. (2004) Non QOS based Semantic web

technology

The framework consists of 2 core and 5 supporting services

Kim et al. (2004) Non QoS based Semantic technology

with planning technique

Constructs partial work flow combines knowledge bases (that

have rich representations of components) together with planning

techniques (that can track the relations and constraints among

individual steps). And implemented system called CAT

(Composition Analysis Tool) that analyzes workflows and

generates error messages and suggestions in order to help users

compose complete and consistent workflows

Cardoso and Amit

(2003)

QoS, functional and

semantic based

matching

Uses OWL-S Provide techniques for various composition techniques of all

types

Laukkanen and Heikki (2004) designed workflow

composer agent which performs matching operation on

IOPEs description of semantic web services. Various

semantic web service composition techniques adopted

by different approaches have been listed out in the

Table 1 with description. From the information collated

in table we can ensure that OWL-S based e-learning

composition framework has not yet been addressed

elaborately.

METHODOLOGY AND DISCUSSION

In our e-learning flow composition we consider the

atomic data services. Many universities now provide

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4728

Fig. 2: A simple sequential learning style learning object/e-learning service black box description

their e-learning materials or Learning Objects as web
services. A e-learning service or learning object has the
following minimum service description in terms of
profile and process ontologies.
E_Learning service:

Input : Learning_Style
Output : OutputURL
Precondition : E-Learner follows_main_LS Sequence_

Learning_Style
Effect : E-Learner Accesses the Learning_

Object

Learning objects which are to be distributed as web
services should be annotated with proper text
description, service name and input and output
precondition and Effects are the better parameters for
matching the service with user request. E-Learner's
learning style, set of keywords related to learning style,
can be represented in text description of an template
ontology for matching. This ontology is given as input
and matched with e-learning service profile as well as
process ontology, compared and degree of matching is
considered to select the candidate e-learning service for
composition. Algorithm in learning style detection can
be used here for finding the matching candidate service.

Likewise many e-learning semantic services
available can be searched for e-learning services and
can be included in e-learning flow and this sequence is
given to execution module for execution. E-learning
Object description should contain which learning style
that learning object belongs to. This can be
computed/identified from searching the profile
ontology details such as text description, service name,
input and output as well as service category parameters

and process ontology details input, output,
preconditions and effect. Figure 2 depicts the sample e-
learning Service which is actually a Learning Object
with IOPEs listed in table.

The following listing gives an idea of how the e-
learning service or learning object can be annotated
using profile and process ontologies. Precondition and
Effect are described using KIF (Knowledge Interchange
Format).

Semantic service matching finds the similarity
between the annotations or semantics of desired service
with that of advertised service. This is the main part of
any matching algorithm. Our discovery and matching
algorithm use text description of profile ontology and
precondition and effects of process ontology of
semantic web service searched against the E-Learner's
ontology parameters such as interests, his learning style
he follows. Matching process can be non logic, logic or
hybrid. Logic based semantic matching is based on
logic inferences and description logic rules and Non
logic based match makers widely available rather than
logic one. There are variety of non logic matching
techniques such as direct, indirect, logic based,
similarity based and Graph matching. In Logic based
matching we have different types of matching such as
exact, plug-in, subsumption and fail matching. If two
services S1 and S2 preconditions and Effects exactly
same this is exact match. S1 can be substituted by S2. If
Effects of S1 matches with preconditions of S2 then S1
is prerequisite or to be finished first and then S2 to be
executed next. Effect of S1 is stricter than Effect of S2
then S1 subsumes S2. If S1's condition partially
satisfies S2 condition then it is considered as plus
match. No such mentioned match is existing then it is
fail match. There are two non logic based matching

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4729

possible such as subsumed by and nearest neighbor
matching. In hybrid subsumed by matching selects
services in such a way that requested input is sub set of
service and output data of service is slightly more
general than requested, hence, in this sense, request is
subsumed by the service. In nearest neighbor matching
as well as hybrid subsumed by matching check the
degree of text similarity between the input If matching
is based only on profile it is called black box matching
and matching is based on only process it is called glass
box matching. In the following algorithm, hybrid of
black and glass box matching is introduced to e-
learning services as we rely on learning style detection
to achieve personalization in e-learning and compute e-
learning flow. Only functional parameters such IOPEs
not sufficient to find out whether the service is to be
included in e-learning-workflow. Learning objects
which are to be distributed as web services should be
annotated with proper text description, service name
and Input, Output, Precondition and Effects and these
are the better parameters for matching the service with
user request. We consider the e-learning data services.

Matching algorithm is also based on the text
description which contains important keywords relevant
to the learning style of the learners, For example for
Sequential learning style based web service/learning
object text description may contain keywords like
Introduction, Theory, Basic, Fundamental. For Visual
learning style based web service/learning object the text
description could contain keywords like Animation,
Video, Multimedia, etc. E-Learner's learning style
identified in module second, set of keywords related to
his/her learning style, can be represented as an ontology
which we call it as Learner Service Template LST
Ontology. This is service request ontology and it is
given as input and matched with e-learning service
which we consider as Learning Service Object LSO
profile and as well as process ontology, compared.
Degree of Matching (DoM) is considered to select the
candidate e-learning service for composition. If it is
computing service, input and output parameter are the
phenomena for matching operation. In e-learning
domain, the suitable e-learning services or learning
objects to be found for composing the e-learning-
workflow. Hence the keywords in text description and
preconditions and post conditions should also be
matched against the advertised services.

Listing 1: profile and process ontology OWL listing:

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE uridef [

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf

syntax-ns">

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-

schema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY xsd "http://www.w3.org/2001/XML

Schema">

<!ENTITY service "http://www.daml.org/services/

owl-s/1.2/Service.owl">
<!ENTITY profile "http://www.daml.org/services/
owl-s/1.2/Profile.owl">
<!ENTITY process "http://www.daml.org/services/
owl-s/1.2/Process.owl">
<!ENTITY grounding "http://www.daml.org/services
/owl-s/1.2/Grounding.owl">
<!ENTITY javaGrounding "http://bai-hu.ethz.ch/
owlet/ont/OWLSExtensions.owl">
<!ENTITY expr "http://www.daml.org/services/owl-
s/1.2/generic/Expression.owl">
<!ENTITY swrl "http://www.w3.org/2003/11/swrl">
<!ENTITY myonto: "http://www.semanticweb.org/
lenovo/ontologies/2013/8/E_Learning_Onto#">

]>
<rdf:RDF
 xmlns:rdf="&rdf;#"
 xmlns:rdfs="&rdfs;#"
 xmlns:owl="&owl;#"
 xmlns:xsd="&xsd;#"

 xmlns:service="&service;#"

 xmlns:profile="&profile;#"

 xmlns:process="&process;#"

 xmlns:grounding="&grounding;#"

 xmlns:expr="&expr;#"

 xmlns:swrl="&swrl;#"

 xmlns:javaGrounding="&javaGrounding;#"

 xmlns="&DEFAULT;#"

 xml:base="&DEFAULT;" >

 <owl:Ontology rdf:about="">

 <owl:imports rdf:resource="&service;"/>

 <owl:imports rdf:resource="&profile;"/>

 <owl:imports rdf:resource="&process;"/>

 <owl:imports rdf:resource="&grounding;"/>

 </owl:Ontology>
 <!-- Service description -->
 <service:Service rdf:ID="E_learning_Service">
 <service:presents

rdf:resource="#E_Learning_Profile"/>
 <service:describedBy

rdf:resource="#E_Learning_Process"/>
 <service:supports

rdf:resource="#E_Learning_Grounding"/>
 </service:Service>
 <!-- Profile description -->
 <profile:Profile rdf:ID="E_Learning_Profile">
 <service:isPresentedBy

rdf:resource="#E_Learning_Service"/>

 <profile:serviceName

xml:lang="en">E_Learning_Service</profile:service

Name>

 <profile:textDescription

xml:lang="en">E_Learning_Material-Returns Java

Introduction page-belongs to Sequence_Learning_

Style</profile:textDescription>

 <profile:hasInput

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4730

rdf:resource="&myonto;#Sequence_Learning_Style"

 />

 <profile:hasOutput rdf:resource="#OutputURL"/>

 </profile:Profile>

 <process:AtomicProcess

rdf:ID="E_Learning_Java_Introduction">

 <service:describes

rdf:resource="#E_Learning_Service"/>

 <process:hasInput

rdf:resource="#Sequence_Learning_style"/>

 <process:hasOutput rdf:resource="#OutputURL"/>

</process:AtomicProcess>

<process:AtomicProcess

rdf:ID="E_Learning_Introduction">

 <process:hasInput>

 <process:Input

rdf:ID="Sequence_Learning_Style"/>

 <rdfs:subClassOf

rdf:resource="&myonto;#Learning_Style">

 <process:parameterType rdf:resource =

 "&myonto;#Sequence_Learning_Style">

 </process:hasInput>

<process:hasOutput>

 <process:Output rdf:ID="ConfirmationMessage"/>

 <process:parameterType

rdf:datatype="&xsd;#String">

 &xsd;#anyURI</process:parameterType>

 <rdfs:label>Confirmation Message</rdfs:label>

 </process:hasOutput>

<process:hasOutput>

 <process:Output rdf:ID="OutputURL"/>

 <process:parameterType

rdf:datatype="&xsd;#anyURI">

 &xsd;#anyURI</process:parameterType>

 <rdfs:label>Sequence_Learning_Material</rdfs:label>

 </process:hasOutput>

<process:hasResult>

 <process:Result>

 <process:inCondition>

 <expr:KIF-Condition>

 <expr:expressionBody>

 (exists (?E1 ?LS1)

 (and (instance ?E1 E-Learner)

 (instance ?LS1 Sequence_Learning_Style)

 (follows_main_LS ?E1 ?LS1)))

 </expr:expressionBody>

 </expr:KIF-Condition>

 </process:inCondition>

<process:inCondition>

 <expr:KIF-Condition>

 <expr:expressionBody>

 (hasStatus Learning_Object available)

 </expr:expressionBody>

 </expr:KIF-Condition>

 </process:inCondition>

 <process:inCondition>

 <expr:KIF-Condition>

 <expr:expressionBody>

 (exists (?LO1 ?LS1)

 (and (instance ?LO1 Learning_Object)

 (instance ?LS1 Sequence_Learning_Style)

 (belongs_to ?LO1 ?LS1)))

 </expr:expressionBody>

 </expr:KIF-Condition>

 </process:inCondition>

 <process:hasEffect>

 <expr:KIF-Condition>

 <expr:expressionBody>

 (exists (?E1 ?LO1)

 (and (instance ?E1 E-Learner)

 (instance ?LO1 Sequence_Learning_Style)

 (accesses ?E1 ?LO1)))

 </expr:expressionBody>

 </expr:KIF-Condition>

 </process:hasEffect>

</process:Result>

 </process:hasResult>

</process:AtomicProcess>

Our approach uses text description, as well as
IOPEs for composing our e-learning flow. This kind of
matching considered here is non logic based subsumed
by or nearest neighbor flexible approach based on
similarity checking and information retrieval. Input is
learning style of the learner and output usually a web
site or link to download the Learning Object. Learning
Objects can be reading material, puzzle, assignment,
YouTube lecture, problem to be solved or multimedia
based material (Animation, Audio/video). Figure 3
illustrates the e-learning flow composition architecture
which includes matching, discovery and composition
modules.

E-learning services which are ready for execution
and realization are called Grounded Learning Services
(GLS). Assume zero or more GLSs are already realized.
Due to nature of e-learning materials, we considered
atomic web services. When the designer wishes to add a
e-learning service to the e-learning workflow, system
starts by creating a Learner Service Template (LST)
ontology. LST contains:

• Input, Output, Precondition and Effect. Input the
name of the learning style the Learner follows

• Set of Keywords related to Learning Style be
matched with e-learning service text description
Input is the type of Learning style the learner
follows. Output is an URL of the Learning Object
to be accessed. The Fig. 4 illustrates the
construction of LST from Keywords and IOPEs
and Keywords

Structure of GLS, LST and LSO: The components
used in discovery and integration of e-learning services
have some structure or format defined. We present the
structure of all these to be used in composition process.

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4731

Fig. 3: Architecture of e-learning flow composition

Fig. 4: LST construction

Grounded learning service: Grounded Learning
Services are to be realized and used to construct the e-
learning flow which is our main aim of the system
designed. It can be defined as tuple of:

GLS (n) = <TD, Is, Os, PC, E>

where,
n = Name of the service

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4732

TD = Text description
Is = SET of input parameters
Os = Set of output parameters
PC = Precondition
E = Set of effects respectively

The entire GLS specification is to be used by
algorithms to synthesize the workflows based on
matching of profile and process ontology. We may give
example with the following structure:

GLS (“JavaIntroduction”) = <{"E_Learning
_Material-Returns Java Introduction page-belongs
to Sequence_Learning_Style}, {“Sequential
LearningStyle”},
{“http://www.JavaIntro.com/Intro.html”},
{myonto: E-Learner myonto: follows_main_LS
myonto: Sequential Learning Style}, {myonto:E-
learner myonto: accesses myonto: Learning_
Object}>

The inputs, outputs, precondition and Effects in

this example are associated with ontological concepts
described in Learning Style detection section.

Learning service template: Learning Service
Template is used to search for candidate e-learning
service. LST contains the information that is used to
define the characteristics of the e-learning service to be
found for e-learning flow.
A LST is specified as:

LST = <lsn, lsd, Os, Is, PC, E>

Six fields exist: lsn, lsd, Os, Is, PC and E.

lsn is the name of the Web service to be found. The
name specified does not have to syntactically match
exactly with the name of the Web services to be
discovered. The lsd, Os and Is fields correspond to a
textual description and a set of output and input
parameters, Post Conditions and effects respectively, of
the Web service to be matched. LSO are also in the
same structure as that of GLS.

Semantic matching LST with existing LSOs:
Ontology operations such as ontology alignment,
ontology mapping and ontology matching and Ontology
integration are very much useful to unfold the research
in the fields like data integration, peer to peer systems,
e-commerce, information retrieval and query
answering, as well as in social networks. Among these
ontology operation we have considered ontology
matching to find the similarity between two service
profile ontologies. The name of the service, inputs and
outputs of LST need not match exactly with available
learning object. In matching process, considering only
syntactic matching of inputs and outputs will not result
better e-learning flow as we all know that
authors/providers of e-learning objects use synonyms of
the same word for their web service names and

description. Semantic match should be considered for
selecting the candidate services. For example the
learner searches for e-learning service on ontology
example diagrams, then the keywords such as diagram,
image, illustration can be considered the same and
searched. We need identify the set of keywords to be
used with each learning style. We assume that service
provider, requester and matchmaker share a basic
minimal vocabulary of primitive components together
with a set of mapping rules such as synonym relations
in the thesaurus WordNet. The final e-learning
workflow consists of all services which are
semantically matching with input, output, preconditions
and effects as well as keywords specified Textual
description in Learning Service Template. The
Learning service object is a structure that holds the
description of a real Web service. As stated earlier, we
specified Web services semantically. In matching
process the template ontology LST is matched against
list of Learning Service Objects LSO ontology.

In our Ontology matching computation, these are
possible the possible results, equality, subsumption,
consequence or disjointness. We need to find the
correspondence between LSTs IOPEs and text
description to that of LSOs i.e., find the mapping
between LST.I, with LSO.I, LST.O with LSO.O, LST.PC
with LSO.PC, LST.E with LSO.E. The textual
description of LST is divided into set of tokens and
matched with LSO textual description. Mapping
between LST.TD with LSO.lsd. Degree of Matching
function DoM (LST, LSO) is further divided into two
sub functions one for IOPEs mapping DoMf and
another for textual description DoMlsd:

DoM (LST, LSO) = (DoMf + DoMlsd) /2

Degree of alignment between two ontologies is

defined as five tuple:

<id, e1, e2, n, R>

• id is a unique identifier of the given

correspondence

• e1 and e2 are entities (e.g., XML elements such

primitive data types, properties, classes) of the first

and the second ontology, respectively

• n is a measure (typically in the (0, 1) range)

holding for the matching between e1 and e2

• R is a relation (e.g., equivalence (=), subsumption

(⊆), disjointness (⊥) holding between e1 and e2

The degree of matching between two ontologies
can be measured in the range (0, 1) is sum of all the
equivalence alignments measure and subsumption
alignments measures divided by number of total
alignments that can be considered say m. Disjoint
alignments are ignored in the process because they are

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4733

unmatched entities. Thus the degrees of matching is
given by the function as follows:

DoM (LST, LSO) = (∑ n= + ∑ n⊆) /m

While finding the matching between two entities in

ontologies synonyms to be considered as equivalence
relation.

Procedure for matching and discovery of candidate

learning object services:
Input:

• Advertised Services (Process, Profile and
Grounding Ontologies)

• Learner Service Template LST Ontology

Output: Finding the List of candidates e-learning
services/Learning Objects:

• Construct the LST ontology which is service
request ontology.

• Send the LST to Semantic matcher filters based on
subsumed by and nearest neighbor matching and
finds the degree of matching and linguistic
similarity between LST and e-learning services
objects available in web.

• Semantic Matcher returns a set of Learning Service
Object (LSO) references according to their degree
of Matching and similarity metric value based on
information retrieval with the Learner Service
Ontology.

• Consider the maximum d for dom. Filter is used to
Select the Learning service objects which have
DoM above the threshold d. Consider them as
candidate Learning Service Objects and Send them
to composer module to create the e-learning-flow.

Semantic matching: This part of the composition
process involves finding matching candidate services
based on degree of matching and syntactic similarity
between LST and advertised learning services objects.

Algorithm 1:
Match: Find advertised learning services objects LSO
S that best match in a hybrid fashion with a given
Learning Service Template LST R; returns set of (S,
degree Of Match, SIMIR (R, S)) with degree of match
(dom) is greater than or equal to maximum d unequal
FAIL and syntactic similarity value exceeding a given
threshold α:

1: function match (LST R, α, d)

2: local result, degree Of Match, hybridFilters =

{subsumed-by, nearest neighbor}

3: for all (S, dom) ∈ candidatesinputset (inputsR) ∧ (S,

dom') ∈ candidatesoutputset (outputsR) ∧ (S,

dom'') ∈ candidatespreconditionsset (preconditionsR) ∧

(S, dom''') ∈ candidatespostconditionset (postconditionsR)

∧ (S, dom''') ∈ candidatestextdescriptionset

(textdescriptionsR) do
4: degree Of Match ← AVE (dom, dom', dom'', dom''',

dom'''')

5: if degree Of Match ≥d ∧ (degree Of Match ∉

LogicFilters ∨ SIMIR (R, S) ≥α) then

6: result: = result ∪ {(S, degree Of Match, SIMIR (R,
S))}

7: end if
8: end for
9: return result
10: end function

SIMIR (R, S) similarity metric calculation function

which is meant for content-based service I/O matching.
There are variety of ways using which similarity
measure can be computed. Cohen et al. (2003) and his
colleagues suggested few top most similarity metric
measurement formulas such as, Extended Jaccard
similarity metric, Jensen-Shannon information
divergence based similarity metric.

Algorithm 2: Find Learning services objects which

input matches with that of the Learning Service

Template; returns set of (S, dom) with minimum degree

of match dom unequal FAIL.

Assume there are n number of inputs in LST (R)

and s number of inputs in LSO (S):

1: function candidatesinputset (inputsR)

2: local H, dom, r

3: // If LSO input matches with multiple LST inputs

the best degree is returned

4: H := {(S, INS,i, dom) ∈ ∪ j = 1..n candidatesinput (INRj)

| dom = argmaxl{ (S, INS,i, doml) |1≤l≤n, 1≤i≤s}}

5: //If all inputs of service S are matched by those of

the request, S can be executed and the minimum

degree of its potential match is returned

6: for all S ∈ LSOs do

7: if {(S, INS1, dom1), ···, (S, INSs, doms) } ⊆ H then

8: r := r∪ {(S, min (dom1, ···, doms))}

9: end if

10: end for

11: return

12: end function
13: function candidatesinput (INR,j) //Classify request

input concept into ontology and use the auxiliary
concept data to collect services that at least nearest
neighbor match with respect to its input

14: local r

15: r:= r ∪ {(S, INS, nearest-neighbor) | S ∈ LSO, INS

∈ inputsS, INS ≅ INR, j,}

16: r:= r ∪ { (S, INS, Hybrid-Subsumed-by) | S ∈ LSO,

INS ∈ inputsS, INS ≥ INR, j,}

17: return r

18: end function

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4734

Algorithm 2 is also applicable for output,

preconditions and post conditions (Effect) matching.

For text description matching, the text description

in LST should be broken into words. Each word can be

searched with that of LSO's text description. Synonyms

of the words can be obtained from Word Net

Thesaurus.

Algorithm 3: Find Learning services objects which text

description matches with that of the Learning Service

Template; returns set of (S, dom) with minimum degree

of match dom unequal FAIL. Assume there are n

number of words in LST (R) and s number of words in

LSO (S):

1: function candidatestextdescriptionset (inputsR)

2: local H, dom, r

3: // If LSO text description word matches with each

LST text description word and the average degree

is returned

4: H := {(S, TDS,i, dom) ∈ ∪j = 1..n candidatestextdescription

(TDRj) | dom = argmaxl {(S, TDS,i, doml) |1≤l≤n,

1≤i≤s}}

5: //If all words in text description of service S are

matched by those of the request, S can be executed

and the minimum degree of its potential match is

returned

6: for all S ∈ LSOs do

7: if {(S, TDS1, dom1), ···, (S, TDSs, doms)} ⊆ H then

8: r:= r ∪{(S, AVE (dom1,…, doms))}

9: end if

10: end for

11: return

12: end function

13: function candidatestextdescription (TDR,j) //Classify

request input concept into ontology and use the

auxiliary concept data to collect services that at

least nearest neighbor match with respect to its

input

14: local r

15: for all Word Net Synonyms (TDR, j) do

16: r: = r ∪ {(S, TDS, nearest-neighbor) | S ∈ LSO,

TDS ∈ inputsS, TDS ≅ INR, j,}

17: r: = r ∪ {(S, TDS, Hybrid-Subsumed-by) | S ∈

LSO, TDS ∈ inputsS, TDS≥TDR, j,}

18: end for

19: return r

20: end function

Word Net Synonyms (TDR, j) is the function returns

the set of strings which are synonyms for j
th
 word in

Text description TD of LST R.

Procedure to compose the learning objects/learning
material: In discovery module itself the candidate
learning web services identified. Those services should

be sorted according to DoM (Degree of Semantic
Matching) and Similarity metric here.

Input: Learning Service Objects references (Grounded
Learning Service) and their ranks.

Output: E-Learning Workflow.

• Sort the services obtained from match function
according to their degree of match dom and
similarity metric obtained from the function SIMIR

().

• Use linking Documents which contain link related
information for example reading material e-
learning object should be followed by Exercise
Learning Object to arrange the learning Service
objects.

• Get the sorting order which is to be considered as
selection order or e-learning flow.

• Send the selection order or e-learning flow to the
execution function that automatically relates the
realization with the list of LSOs, causing them to
change the states to grounded services.

• A set of data mapping or linking document
presented helps to the designer suggesting a
possible interconnection among the newly created
task interfaces and the grounded task interfaces.

Execution of e-learning flow: Realizes the work flow
sequence obtained in composing module. Messaging
happens to communicate among various entities in the
sequence. Correct sequence of services executed and
sequence will be provided to the Learners.

The theoretical background, architecture and
algorithms for composition have been devised and
discussed elaborately. The Learning Management
System which incorporates this e-learning service
composition is under implementation using Java, Jena
API, Protégé knowledge management tool and OWL
match making tool such as OWL-MX.

CONCLUSION

This study provides novel insight on how learning
objects which are provided as e-learning services can be
discovered and composed using hybrid non logic based
matching. Algorithms are devised. For particular
course/subject the learning objects are to be converted
as data services and the interfaces can be modeled in
such a way that user interaction, behavior captured and
learning style detected for that user and provide the e-
learning flow which consists set of learning objects for
learning the subject. Suggested architecture and
algorithms can also be utilized in any other domain
other than e-learning where personalization and
semantic web based context aware applications are to
be focused. Learning is endless. World Wide Web plays
a significance role in current academic community as
well as in industry world. The days have gone when
teacher centric learning methodologies are

Res. J. Appl. Sci. Eng. Technol., 7(22): 4723-4735, 2014

4735

predominantly adhered. Now education has no
constraints or barriers such as time, space and people.
Learning through web has become mandate requisite in
all way of life. Semantic Web Services facilitate this
personalized e-learning with the availability of
applications through platform independent technology.
At the core, semantic web services provide meaningful
information and faster the way the business and people
interact with each other.

REFERENCES

Ardagna, D. and P. Barbara, 2007. Adaptive service

composition in flexible processes. IEEE T.
Software Eng., 33(6): 369-384.

Aydın, O., K.C. Nihan and C. Ilyas, 2008. Automated
web services composition with the event calculus.
Proceeding of the 8th International Workshop on
Engineering Societies in the Agents World.
Springer Berlin, Heidelberg, pp: 142-157.

Berners-Lee, T., J. Hendler and O. Lassila, 2001. The
Semantic Web. Scientific American, pp: 29-37.

Cardoso, J. and S. Amit, 2003. Semantic e-workflow
composition. J. Intell. Inf. Syst., 21(3): 191-225.

Chinthaka, E., J. Ekanayake, D. Leake and B. Plale,
2009. CBR based workflow composition assistant.
Proceeding of the World Conference on Services-I,
pp: 352-355.

Chiu, D., S. Deshpande, G. Agrawal and L. Rongxing,
2009. A dynamic approach toward QoS-aware
service workflow composition. Proceeding of the
IEEE International Conference on Web Services,
(ICWS, 2009).

Cohen, W., P. Ravikumar and S. Fienberg, 2003. A
comparison of string distance metrics for name-
matching tasks. Proceeding of the IJCAI-03
Workshop on Information Integration on the Web
(IIWeb-03), DBLP.

Fayed, G., D. Sameh, A. Hasna, A.M. Jihad,
E.A. Samir and E. Hosam, 2006. E-learning model
based on semantic web. Int. J. Comput. Inf. Sci.,
4(2): 63-71.

Fei, X. and S. Lu, 2012. A data flow based scientific
workflow composition framework. IEEE T. Serv.
Comput., 5(1): 45-58.

Gil, Y., P.A. González-Calero, J. Kim, J. Moody and
V. Ratnakar, 2011. A semantic framework for
automatic generation of computational workflows
using distributed data and component catalogues.
J. Exp. Theor. Artif. In., 23.4(2011): 389-467.

Groenmo, R. and M.C. Jaeger, 2005. Model-driven

semantic web service composition. Proceeding of

the 12th Asia-Pacific Software Engineering

Conference (APSEC, 2005), pp: 8.

Ibert, B.I., C. Evandro, S. Elvys and A. Pedro, 2008.

Towards new generation of web-based educational

systems: The convergence between artificial and

human agents. IEEE Multidisciplinary Eng. Educ.

Mag., 3(1): 17-24.

Kim, J., S. Marc and G. Yolanda, 2004. An intelligent

assistant for interactive workflow composition.

Proceedings of the 9th International Conference on

Intelligent User Interfaces (IUI, 2004), pp:

125-131.

Klusch, M., 2008. Semantic Web Service Description.

Chapter 3, CASCOM: Intelligent Service

Coordination in the Semantic Web. ISBN: 978-3-

7643-8575-0.

Klusch, M., A. Gerber and M. Schmidt, 2005. Semantic

web service composition planning with owls-xplan.

Proceedings of the AAAI Fall Symposium on

Semantic Web and Agents. AAAI Press, Arlington

VA, USA.

Laukkanen, M. and H. Heikki, 2004. Composing

workflows of semantic web services. Ws So Ag

Te., Springer, US, pp: 209-228.

Lécué, F., S. Eduardo and F.P. Luís, 2008. A

framework for dynamic web services composition.

Ws So Ag Te., Birkhäuser, Basel, 2: 59-75.

Majithia, S., D.W. Walker and W.A. Gray, 2004.

Automated web service composition using

semantic web technologies. Proceedings of the

International Conference on Autonomic

Computing, pp: 306-307.

Martin, D., M. Burstein, D. McDermott, S. McIlraith,

M. Paolucci, K. Sycara, D.L. McGuinness, E. Sirin

and N. Srinivasan, 2007. Bringing semantics to

web services with OWL-S. World Wide Web,

10(3): 243-277.

McIlraith, S.A., T.C. Son and H. Zeng, 2001. Semantic

Web Services. IEEE Intell. Syst., pp: 46-63.

Sohrabi, S. and S.A. McIlraith, 2010. Preference-based

web service composition: A middle ground

between execution and search. Proceeding of the

9th International Semantic Web Conference on the

Semantic Web (ISWC, 2010). Springer, Berlin,

Heidelberg, pp: 713-729.

W3C, 2004. OWL-S: Semantic Markup for Web

Services. Technical Report. Retrieved from: http://

www.w3.org/Submission/OWL-S/ .

Zeng, L., A.H.H. Ngu, B. Benatallah, R. Podorozhny

and H. Lei, 2008. Dynamic composition and

optimization of web services. Distrib. Parallel.

Dat., 24(1-3): 45-72.

