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Abstract: Patients recovering in critical care units are continuously monitored for their hemodynamic states and 

accordingly given proper medication. The widely monitored hemodynamic variable is the Mean Arterial Pressure 

(MAP), which is regulated by infusion of vasoactive drugs like Sodium Nitroprusside (SNP). Presently, physicians 

check the patients’ MAP at regular intervals. This task is time-consuming and if automated, allows the physicians to 

attend to other critical parameters, which cannot be measured. Automation of the drug infusion based on the MAP 

would lead to continuous regulation of the hemodynamic variable enabling speedier recovery. This study attempts to 

automate the regulation of the drug infusion system using a model predictive controller. The controller’s 

performance was tested for three types of patient models. The controller tracks the set point changes and maintains 

the mean arterial pressure within the required values. 
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INTRODUCTION 

 

Critical care patients recovering in Intensive Care 

Units (ICUs) are continuously monitored for any 

hemodynamic instability and given proper medication. 

One such important parameter is the Mean Arterial 

Pressure (MAP), which is high in patients after a 

surgery. This is treated by infusing vasoactive drugs 

like Sodium Nitroprusside (SNP). The drug is 

administered either as a bolus injection or as a 

controlled continuous release. The second method is 

preferred, as it reduces the blood pressure gradually 

over time. The control problem is to find the correct 

dose that quickly lowers the blood pressure to the 

desired  level,  while  avoiding  a  drug  overdose (Hahn 

et al., 2002). To obtain the optimal outcomes in 

individual patients, physicians adjust the infusion rates 

or doses of the drug manually at frequent intervals 

(Uemura and Sugimachi, 2013). 

The manual control of the MAP using the SNP is 

not straightforward as this pressure-controlling 

mechanism varies among different patients (Behbehani 

and Cross, 1991). In addition, manual adjustments are 

monotonous, hence the need to automate the drug 

infusion system. As the SNP is a fast acting and an 

extremely potent drug, control systems have been 

developed to automatically administer the infusion of 

the drug for reducing and regulating the MAP (Ying 

and Sheppard, 1990). The regulation of MAP has been 

experimented with different control algorithms (Isaka 

and Sebald, 1993). 

Various experiments done with the automated 

setup have proved to be superior to the manual methods 

(Gao and Joo Er., 2006). Many researchers have also 

experimented with multidrug control where the MAP 

and the Cardiac Output (CO) of the patient were 

controlled using the SNP and the Dopamine (DP). 

Nirmala et al. (2011) and Nirmala and Veena Abirami 

(2010) have discussed the multivariable problem of 

controlling the MAP and the CO using two drugs 

namely the SNP and the DP. The authors had applied 

the MPC strategy to the SISO problem, but with only 

one patient model with constraints on the manipulated 

variable (Nirmala et al., 2013a, b). 

The objective of this study is to study the 

performance of the MPC designed to control the drug 

infusion system for the regulation of MAP for three 

patient models-sensitive, nominal and insensitive 

patients. In addition, this performance is compared with 

that of the performance of an Internal Model Controller 

applied to the same system for the three patient models 

(Hahn et al., 2002). 
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Fig. 1: Schematic diagram of the proposed closed-loop drug infusion system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Open loop response of the drug infusion system 

 
MATERIALS AND METHODS 

 
Closed loop drug infusion system: Figure 1 shows the 
schematic diagram of the proposed closed-loop drug 
infusion system. The MAP is measured and given to the 
MPC, which compares the measured value with the 
desired value and takes corrective action by regulating 
the rate of flow of the SNP. Medical experts decide the 
reference (set-point) values. 
 
Process model: The patient is modeled by a first order 
transfer function with dead time as given in (1). This 
model has been adapted from Hahn et al. (2002): 
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The parameters in (1) are described in Table 1 with 

their range (Hahn et al., 2002). The open-loop response 

of the drug infusion system in (1) was studied for a unit 

step change in SNP. Figure 2 gives the response 

obtained and shows that an increase in SNP decreases 

the MAP. 

 
Model predictive control: In general, a predictive 
control algorithm solves an on-line and optimal control 
problem subject to system dynamics and variable 
constraints. The system model is given in (2): 
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where, 
x (k) ∈  ℜ��

 
= The states 

u (k) ∈  ℜ�� = Manipulated inputs  
y (k) ∈  ℜ�� = The measured outputs 
 

The vectors dp (k) and dm (k) are unmeasured 
disturbances to the state dynamics (process noise) and 
the outputs (measurement noise), respectively. The 
controller predicts the future behavior of the actual 
system over a time interval defined by a lower and an 
upper prediction horizon, denoted by Nw and Np, 
respectively. The optimal input to the plant is calculated 
by minimizing a cost function defined along the 
prediction horizon. This function is specified as a sum 
of quadratic future errors between the reference 
trajectory and predicted plant output and the predicted 
control effort and is given in (3): 
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The cost function (3) is subject to the constraints 

specified on the inputs, outputs and inputs increments 
as given in (4): 
 

                                      (4) 
 
where, 
Q (i)  = The positive definite error weighting 

matrix 
R (i)  = The positive semi-definite control 

weighting matrix 
ŷ ((k + i) /k) = The vector of predicted output signals 
r (k + i)  = The vector of future set-points  
∆ u ((k + i) /k) = The vector of future control actions 
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Fig. 3: Basic principle of MPC strategy 

 
Table 1: Specifications of model parameters for transfer function in (1) and their range of values  

Parameter Units Avg. Min. Max.

Steady-state gain, K (1+α) mmHg (mlh-1)-1 -1.0 -0.25 -9.0 
Recirculation, α - - 0 0.4 
Initial transport delay, Ti S 30 20 60 
Recirculation time, Tc S 45 30 75 
Time constant, τ S 40 30 60 

Max.: Maximum; Min.: Minimum; Avg.: Averge 
 
Table 2: Values of parameters in (1) for different patient models 

Parameter Units Sensitive Nominal Insensitive 

Steady-state gain, K (1+α) mmHg (mlh-1)-1 -9 -1.0 -0.25 
Recirculation, α - 0 0.4 0.40 
Initial transport delay, Ti s 30 20 60 
Recirculation time, Tc s 45 30 75 
Time constant, τ s 40 30 60 

 

Figure 3 shows the basic principle of the MPC 

strategy. The presence of disturbances and plant/model 

mismatch are taken into account by implementing a 

feedback measurement and a receding horizon strategy, 

which means that only the first element of the 

computed control sequence is applied to the plant. At 

the next sampling interval, both the control horizon and 

the prediction horizon move one-step ahead and the 

entire cycle of state estimation, output prediction and 

optimization is repeated using the new measurements 

from the plant. 

 

MPC tuning: The tuning parameters of the MPC 

controller are the cost function weighting matrices R 

and Q, the control horizon Nu, the prediction horizon 

Np and the sampling time Ts. The prediction horizon 

Np determines the number of output predictions that are 

used in the optimization calculation. A long prediction 

horizon leads to better performance and a stabilizing 

effect, but increases the computation burden. 

The control horizon Nu determines the number of 

future control actions that are calculated at each 

optimization step. In general, a short control horizon 

leads to a controller that is moderately insensitive to 

uncertainties and modeling errors, whereas a long 

control horizon results in unnecessary control action 

and long computation time. The matrix Q penalizes the 

tracking errors and guides the servo performance of the 

control system. The matrix R is a move suppression 

factor that changes the aggressiveness of the controller 

and assures a smooth control action. 

Usually the tuning of these parameters in order to 
guarantee good performances, stability and robustness 
is done by simulation, even if approaches for 
developing model predictive control tuning rules exists 
(Wojsznis et al., 2003). 
 

Prediction model: For the design of a linear MPC, a 

linearized approximation of the nonlinear model in (1) 

should be obtained. In this study, the transfer function 

model in (1) is linearized and a linear state-space model 
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of the drug infusion system is obtained and used as the 
prediction model. 

 
Simulation study: Simulations were done on the drug 
infusion model represented by (1) for three kinds of 
patient models: nominal, sensitive and insensitive using 
the MPC in closed loop. The values of the parameters 
in (1) are specified for the three different kinds of 
patient model and given in Table 2 (Behbehani and 
Cross, 1991). The simulations were done with an initial 
condition of zero, which simulates a steady-state 
condition. A setpoint change of -30 mmHg was given to  
the MAP and the response of the closed-loop system 
observed for the three patient models. Figure 4 shows 
the response of the closed-loop drug infusion system 
controlled by the MPC for the step change of-
30 mmHg. Figure 5 shows the output of the controller 
for the system. The controller was tuned for a 
prediction  horizon  of  10  and  a  control  horizon  of 
2. All the simulations were carried out in 
MATLAB/SIMULINK. 

RESULTS AND DISCUSSION 

 

From Fig. 4, it is inferred that the drug infusion 

system controlled by the MPC reaches the desired value 

of -30 mmHg within a reasonable time for all the three 

patient  models.  The  results  are   compared   with  the  

response of the system controlled using the Internal 
Model Controller (IMC); another advanced control 
strategy developed in Hahn et al. (2002) and tested on 
the three models. The comparison based on the time 
domain specifications-settling time and overshoot is 
given in Table 3. From Table 3 it can be seen that the 
set-point tracking of the MPC is far better than that of 
the IMC. For all the three patient models, the settling 
time is faster when compared to the results reported in 
Hahn et al. (2002). In the case of the insensitive patient, 
the overshoot is larger in the case of MPC controlled 
system due to the fast response of the drug for the 
change in the set-point, which is a salient feature of the 
MPC. 

 

 
 

Fig. 4: Response of the closed loop drug infusion system using MPC strategy for a step change of-30 in MAP  

 

 
 

Fig. 5: Controller output for the step change of -30 in MAP 
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Table 3: Comparison of time-domain specifications for the drug infusion system with IMC and MPC 

Specification 

Sensitive 

------------------------------------------------------- 

Nominal 

------------------------------------------------ 

Insensitive 

--------------------------------- 

IMC Behbehani and 
Cross (1991) MPC 

IMC Behbehani and 
Cross (1991) MPC 

IMC Behbehani 
and Cross (1991) MPC 

Settling time 500 sec 8.1 sec 350 sec 26.9 sec  800 sec 129 sec 

Overshoot No overshoot No overshoot No overshoot 3% 16% 25% 

 
CONCLUSION 

 
This study attempts to study the performance of the 

drug infusion system controlled with MPC for three 
different types of patient models. The nominal values 
for the tuning parameters, namely the prediction 
horizon and the control horizon were arrived to achieve 
the optimum values that can be applied to all the 
models. The results show that the MPC controller 
designed and applied on the drug infusion model is 
better with respect to the settling time, but has the 
drawback of overshoot being large in the case of the 
insensitive patient model as compared with the IMC 
performance. 
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