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Abstract: Problems faced in contemporary practice should be understood to improve requirements engineering 
processes. System requirements are descriptions of services provided by a system and operational constraints. Non-
Functional Requirements (NFR) defines overall qualities/attributes of the system. NFR analysis is a significant 
activity in this branch of engineering. In this study, a methodology for classifying NFR is presented. Inverse 
Document Frequency is used for extracting the features from the NFR dataset and is classified by Support Vector 
Machine (SVM). The efficiency of the SVM depends upon the parameter used with Radial Basis Function. In this 
study, the RBF kernel is optimized by Artificial Bee Colony algorithm (ABC) to optimize the RBF parameters to 
improve performance. 
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INTRODUCTION 

 
Requirements Engineering (RE) is a software 

engineering branch dealing with real-world goals for, 
functions of and software systems (Aljahdali et al., 
2011) constraints. This process is arguably a most 
important process in software development. Much 
knowledge is built up in RE’s early phase, supporting 
reasoning about organizational alternatives, objectives, 
implications etc. 

Software requirements are requirements related to 
categories in business, functional, non-functional, 
performance and security (Selvakumar and Rajaram, 
2011). Functional requirements reveal how products 
work. Functional requirements confusion affects 
product’s functionality requiring that inconsistency be 
removed at the beginning. As functional requirements 
deal with specific issues, they are implemented through 
specific localized modules/components (Cysneiros and 
Yu, 2004). Though stated informally, they can be 
formalized when needed. 

Non Functional Requirements (NFRs) are known as 
Quality Requirements and in contrast to Functional 
Requirements, NFRs reveal system constraints and 
specific ideas system qualities like usability, accuracy, 
performance, safety, reliability and security (Nuseibeh 
and Easterbrook, 2000). This results in NFRs being 
linked to Functional Requirements. Non-functional 
requirements are harder to express measurably, making 

their analysis harder. NFRs are system properties as a 
whole and so cannot be substantiated for individual 
components verification. 

Similar to functional requirements, system success 
is dependent on adherence to NFRs. Costly issues arise 
(Slankas and Williams, 2013) when NFRs are ignored or 
missed. Due to the need to analyze and implement NFRs 
from various resources, system analysts should identify 
and categorize NFRs quickly. As NFRs existed from the 
inception of software engineering, there is no consensus 
for a name or the NFR identification. They are just 
referred to as the “ilities,” a system’s quality aspects. 
Others label NFRs as systemic requirements. 

NFR elicitation and analysis involve various people 
in organizations. The word ‘stakeholder’ refers to any 
person/group affected directly or indirectly by the 
system. Single view ensures a look at requirements from 
a specific perspective. To elicit and analyze 
requirements multiple views must be considered to meet 
stakeholder expectations. Non-functional requirements 
for general four layered analysis architecture are seen in 
Fig. 1 (Rao and Gopichand, 2012). 

NFRs are usually seen relatively late in 
development processes (Cleland-Huang et al., 2006). 
Stakeholder’s quality constraints from requirements 
gathering process is documented through many artifacts 
like memos, interview notes and meeting minutes with 
analysts generally failing to get a clear picture on 
system-wide NFR. NFR-Classifiers detect and classify  
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Fig. 1: General architecture for four layered analysis for non-functional requirements 

 
early aspects which are a concern for cross-cutting 
dominant system decomposition found in requirements 
specification or early design documents. Many “early 
aspects” are similar to high-level NFRs like 
performance, security, portability and usability. 
Intermediate level aspects can be logging and 
authentication and lower-level concerns focus on 
programmatic concepts like buffering and caching. The 
NFR classification helps the developers to implement 
changes and to cross check the quality of the system. 

In the current work, Support Vector Machine 
(SVM) with different kernels such as polykernel and 
Radial Basis Function (RBF) are used to classify the 
NFR. The performance of the RBF kernel is dependent 
upon the parameters C and gamma (γ). The optimum 
values of these parameters are formulated as 
optimization problem. “Swarm intelligence” and genetic 
algorithm are widely used for optimization, to maximize 
or minimize the cost function. The most common swarm 
optimizations are based on the collective behavior of the 
ants, fish schooling or social behavior of bird flocking. 
In this study, Artificial Bee Colony algorithm (ABC) is 
implemented for parameter selection of the RBF kernel 
of SVM. 

The ABC algorithm is based on foraging behaviour 
of honeybee swarm (Karaboga and Basturk, 2008). 
Unlike genetic algorithm, ABC does not necessitate 
crossover rate and mutation rate to obtain solution. The 
performance of the ABC algorithm is better when 
compared with differential evaluation, PSO, ACO and 
an evolutionary algorithm (Karaboga and Basturk, 
2008). ABC’s are simple, flexible to implement and 
also have the advantage of requiring less control 
parameters when compared to other optimization 
algorithms (Bolaji et al., 2013). 

In this study, a methodology for classifying NFR is 
presented. NFR dataset available in the promise data 

repository is used to evaluate the proposed 
methodology. Features are extracted using Inverse 
Document Frequency (IDF) from the NFR dataset and 
is classified by Support Vector Machine (SVM). The 
efficiency of the SVM depends upon the parameter C 
and gamma (γ) used with Radial Basis Function. In this 
study, the RBF kernel is optimized by Artificial Bee 
Colony algorithm (ABC) to optimize the RBF 
parameters to improve performance. 
 

LITERATURE REVIEW 
 

A framework for conflict analysis among NFRs 
using integrated analysis of functional and non-
functional requirements was provided by Sadana and 
Liu (2007). This identifies conflicts and analyzes them 
based on relationships between quality attributes, 
constraints and functionalities. The proposed 
framework’s output was a conflict hierarchy refining 
conflicts among non-functional requirements level-
wise. A case study was finally provided where the 
framework analyzed and detected conflicts among a 
search engine’s NFRs. 

NFR and its requirements and importance in 
various fields was surveyed by Bajpai and Gorthi 
(2012) who also investigated the effect of working for 
NFRs leading to discovery of new Functional 
Requirements. Efforts were made to show recent 
research in finding, specifying and rectifying Non-
Functional attributes. 

The first effort to seek key NFR challenges and 
issues at RE elicitation level was taken by Ullah et al. 
(2011). A primary RE engineer’s responsibility is 
elicitation of non-functional and functional 
requirements. Functional requirements reveal 
functionality to be performed while NFRs compel 
restrictions on such functionality. The Software 
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industry has raised the demand for not only required 
functionality but NFRs necessity like security, 
performance, security, usability and privacy. The 
authors discovered approaches and methods suggested 
in literature to offset such issues. 

Taxonomy for NFR in a service-oriented context 
was presented by Galster and Bucherer (2008) which 
implemented three NFR categories: process 
requirements, non-functional external requirements and 
non-functional service requirements. The taxonomy 
was capable of being applied to individual services and 
service-based systems. The taxonomy was a starting 
point and checklist to handle non-functional issues in 
service-oriented, specifically distributed environments. 

A model-based approach to focus on NFR in 
exploring its effect on system design process was 
proposed by Tsadimas et al. (2009). A requirement 
model representing how NFRs were related between 
them and to system components in overall system 
architecture was defined. SysML was adopted as 
modeling language, as it enabled requirement definition 
and could be extended. Also, requirement derivation 
process was discussed and case studies where new 
concepts were applied practically, while redesigning a 
large-scale organization’s legacy system was presented. 

Gokyer et al. (2008) introduced the use of a 
Machine Learning (ML) and natural language 
processing techniques methods to relate NFRs to 
classified "architectural concerns". The machine 
learning used in this study was SVM. A charted 
roadmap and the automated requirements engineering 
toolset for this roadmap were demonstrated. The 
approach was validated and the effectiveness of the 
toolset on the snapshot was demonstrated with a real-
life project. 
 

METHODOLOGY 
 

Inverse Document Frequency (IDF) measures a 

word’s importance. IDF appears in many heuristic 

measures in information retrieval but, IDF has itself not 

been a heuristic till now. It is defined as the logarithm 

of the ratio of documents number containing a given 

word meaning that rare words have high IDF with 

common function words like “the” having low IDF 

(Robertson, 2004). IDF measures a word’s ability to 

differentiate between documents. Text Classification 

assigns text documents to pre-defined classes set 

through a machine learning technique automatically. 

Classification is usually based on the text document’s 

significant words or key-features. It is a supervised 

machine learning task as classes are pre-defined. 
IDF represents scaling. When a term ‘a’ occurs in 

many documents frequently, its importance is scaled 
down due to lowered discriminative power. The IDF (a) 
is defined as follows: 

 

1 | |
( ) log

a

x
IDF a

x

+
=                                                (1) 

Term frequency and inverse document frequency 
are the two scores of TF-IDF. Term frequency is 
counting the times a term occurs in a specific 
document, while IDF is achieved through dividing total 
documents by documents where a specific word is 
repeated. Multiplying these values results in a high 
score for repeatedly and frequently occurring words in 
few documents. Scores are low for terms appearing 
frequently in many documents. 
 
Support Vector Machine (SVM): SVMs suit 
classification tasks related to and containing elements 
of non-parametric applied statistics, neural networks 
and machine like classical techniques. SVMs through 
nonlinear mapping transform original training data into 
a higher dimension (Vishwanathan and Narasimha 
Murty, 2002). Data from two classes separated by a 
hyperplane is mapped nonlinearly. SVM locates the 
hyperplane using support vectors and margins. The 
margin is the distance between hyperplane and entity. 
SVM’s advantage is that it is highly accurate and not 
liable to over-fitting. Its disadvantage is that it is time 
consuming. SVM with input vector and normal vector 
to hyperplane, leads to output u given by: 
 

.u w x b= −
r r

                                                         (2) 

 
A kernel function is defined as K (xi, xj) = ϕ (xi)

T
 ϕ 

(xj). The Radial Basis function is given as follows: 
 

2( , ) exp( || || ), 0i j i jK x x x xγ γ−= − >               (3) 

 
There are two parameters to be determined in RBF 

kernel are C and gamma (γ) and proper parameter 
setting of these parameters improves SVM 
classification accuracy. The C and γ impact the learning 
performance of the SVM (Kuba et al., 2002). The γ 
parameter defines the distance a single training example 
can reach and the C parameter trades off training 
examples misclassification against decision surface 
simplicity. Experiments are undertaken to evaluate 
SVM performance through variations of the γ and C 
parameters and by optimizing it by ABC. 

Artificial Bee Colony (ABC) algorithm is a 
recently introduced swarm-based algorithm in which 
the position of food source represents a possible 
solution to an optimization issue and a food source’s 
nectar amount corresponds to the associated solution’s 
quality (fitness) (Karaboga and Akay, 2009). The 
number of employed bees or onlooker bees equals 
number of solutions in a population. 

To begin with, ABC generates randomly 
distributed initial population P (C = 0) of SN solutions 
(food source positions), with SN denoting employed or 
onlooker bees size. Each solution xi (1, 2… SN) is a D-
dimensional vector where D is optimization parameters 
number. After initialization, the positions (solutions) 
population is subject to repeated cycles, C = 1, 2… 
MCN, of search processes of employed, onlooker and 
scout bees. 
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Fig. 2: Flowchart-ABC optimizing SVM 

 

The pseudo-code of the ABC algorithm (Kumbhar 

and Krishnan, 2011): 

 

1:  Initialize the population of solutions xi, i = 1... SN 

2:  Evaluate the population xi, Gi, i = 1, ..., NP 

3:  For cycle = 1 to MCN do 

4:  Produce new solutions vi for the employed bees 

and evaluate them. 

5:  Apply the greedy selection process. 

6: Calculate the probability values pi for the solutions 

xi 

7: Produce the new solutions vi for the onlookers 

from the solutions xi selected depending on pi and 

evaluate them. 

8:  Apply the greedy selection process. 

9: Determine the abandoned solution for the scout, if 

exist and replace it with a new randomly produced 

solution xi 

10: Memorize the best solution achieved so far. 

11:  Cycle = cycle + 1 

12:  End for 

 

To optimize the parameters C and γ, ABC is 

adapted to execute the search for optimal combination 

of (C, γ). The objective function is based on Root Mean 

Squared Error (RMSE) attained by the SVM-RBF. 

Thus, the ABC discovers the combination of (C, γ) with 

the lowest RMSE to optimize the performance. Figure 2 

shows the steps involved in the proposed methodology. 

 

RESULTS AND DISCUSSION 

 

NFR dataset available in the promise data 

repository is used to evaluate the proposed 

methodology. The NFR dataset consists of 15 

requirement  specifications  of MS student projects with  

Table 1: Classification accuracy 

Classifier 

Classification 

accuracy RMSE 

SVM with polykernel 81.25 0.2864 

SVM with  RBF kernel gamma = 0.1 82.211 0.2714 

SVM with  RBF kernel gamma = 0.5 83.01 0.2687 

SVM with  RBF kernel gamma = 1 82.53 0.2706 

SVM with ABC optimization 85.1 0.2312 

 

Table 2: Precision, recall and F-measure 

Classifier Precision Recall F-measure 

SVM with polykernel 0.897 0.897 0.897 

SVM with RBF kernel 

gamma = 0.1 

0.898 0.914 0.906 

SVM with RBF kernel 

gamma = 0.5 

0.900 0.931 0.915 

SVM with RBF kernel 

gamma = 1 

0.898 0.914 0.906 

SVM with ABC optimization 0.917 0.948 0.932 

 

a total of 326 NFRs and 358 FRs. NFR categories 

included availability, scalability, usability and security. 

Features are extracted using IDF and is classified by 

SVM with various kernels and ABC optimized SVM. 

The experiments are conducted with: SVM with 

Polykernel, SVM with RBF Kernel gamma = 0.1, SVM 

with RBF Kernel gamma = 0.5, SVM with RBF Kernel 

gamma = 1 and SVM with ABC optimization. It is 

observed that SVM with ABC optimization does better 

than all the other classifiers. Table 1 tabulates the 

classification accuracy and RMSE for all the techniques 

used. Figure 3 depicts the classification accuracy for all 

the techniques used. 

Classification Accuracy SVM with ABC 

optimization does better by 4.52% than SVM with 

polykernel, by 3.39% than SVM with RBF Kernel 

gamma = 0.1, by 2.45% than SVM with RBF Kernel 

gamma = 0.5 and by 3.01% than SVM with RBF 

Kernel gamma = 1. Figure 4 depicts the RMSE for all 

the techniques used. 

SVM with proposed ABC optimization decreases 

the RMSE by 19.27% than SVM with polykernel and 

by 14.81% than SVM with RBF Kernel gamma = 0.1, 

by 13.95% than SVM with RBF Kernel gamma = 0.5 

and  by  14.56%  than  SVM  with  RBF  Kernel  

gamma = 1. Table 2 tabulates the Precision and Recall 

for all the techniques used. Figure 5 depicts the 

Precision and Recall for all the techniques used. 

It is observed from Fig. 5 that the Precision 

achieved by SVM with ABC optimization is better by 

2.18% than SVM with polykernel, by 2.07% than SVM 

with RBF Kernel gamma = 0.1, by 1.85% than SVM 

with RBF Kernel gamma = 0.5 and by 2.07% than 

SVM with RBF Kernel gamma = 1. Similarly, for 

Recall SVM with ABC optimization does better by 

5.37% than SVM with polykernel, by 3.58% than SVM 

with RBF Kernel gamma = 0.1, by 1.79% than SVM 

with RBF Kernel gamma = 0.5 and by 3.58% than 

SVM with RBF Kernel gamma = 1. Figure 6 depicts the 

F-Measure for all the techniques used. 
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Fig. 3: Classification accuracy 

 

 

 

 
 
 
 

 
 
 
 
 
 

 

 

 

 
 
 
Fig. 4: RMSE 

 

 

 

 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
Fig. 5: Precision and recall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 6: F-measure 

 

From Fig. 6 it is observed that the F-Measure 

achieved by SVM with ABC optimization is better by 

3.75% than SVM with polykernel, by 2.78% than SVM 

with RBF Kernel gamma = 0.1, by 1.82% than SVM 

with RBF Kernel gamma = 0.5 and by 2.78% than 

SVM with RBF Kernel gamma = 1. So the proposed 

approach used in this research gives the better solution 

for the NFR analysis. 

 

CONCLUSION 

 

When RE is taken as a continual task in the project, 

RE process model is iterative and its activities ensued 

across multiple phases, making process models seem 

iterative. A preliminary step to determine NFRs is by 

identifying its type and categories. Operating conditions 

are the first (high-level) step in identifying business 

requirements. SVM is utilized as classifier in this 

approach with ABC being used for optimization. 

Experiments reveal the proposed approach’s improved 

results and achieve better performance. Classification 

Accuracy achieved by SVM with ABC optimization is 

better by 2.45 to 4.52% than other SVM Kernels. 
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