
Research Journal of Applied Sciences, Engineering and Technology 7(17): 3643-3648, 2014

DOI:10.19026/rjaset.7.717

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: November 22, 2014 Accepted: December 04, 2013 Published: May 05, 2014

Corresponding Author: K. Mahalakshmi, Department of Computer Science Engineering, School of Engineering and

Technology, Surya Group of Insitutions, Villupuram, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

3643

Research Article

Optimizing Support Vector Machine for Classifying Non Functional Requirements

1
K. Mahalakshmi,

2
R. Prabhakar and

3
V. Balakrishnan

1
Department of Computer Science Engineering, School of Engineering and Technology,

Surya Group of Insitutions, Villupuram, India
2
Department of Computer Science Engineering, Coimbatore Institute of Technology, Coimbatore, India

3
Department of Management Studies, DDE, Annamalai University, Chidabaram, India

Abstract: Problems faced in contemporary practice should be understood to improve requirements engineering
processes. System requirements are descriptions of services provided by a system and operational constraints. Non-
Functional Requirements (NFR) defines overall qualities/attributes of the system. NFR analysis is a significant
activity in this branch of engineering. In this study, a methodology for classifying NFR is presented. Inverse
Document Frequency is used for extracting the features from the NFR dataset and is classified by Support Vector
Machine (SVM). The efficiency of the SVM depends upon the parameter used with Radial Basis Function. In this
study, the RBF kernel is optimized by Artificial Bee Colony algorithm (ABC) to optimize the RBF parameters to
improve performance.

Keywords: Artificial Bee Colony algorithm (ABC), functional requirements, Non-Functional Requirements (NFR),

requirement engineering, Support Vector Machine (SVM)

INTRODUCTION

Requirements Engineering (RE) is a software

engineering branch dealing with real-world goals for,
functions of and software systems (Aljahdali et al.,
2011) constraints. This process is arguably a most
important process in software development. Much
knowledge is built up in RE’s early phase, supporting
reasoning about organizational alternatives, objectives,
implications etc.

Software requirements are requirements related to
categories in business, functional, non-functional,
performance and security (Selvakumar and Rajaram,
2011). Functional requirements reveal how products
work. Functional requirements confusion affects
product’s functionality requiring that inconsistency be
removed at the beginning. As functional requirements
deal with specific issues, they are implemented through
specific localized modules/components (Cysneiros and
Yu, 2004). Though stated informally, they can be
formalized when needed.

Non Functional Requirements (NFRs) are known as
Quality Requirements and in contrast to Functional
Requirements, NFRs reveal system constraints and
specific ideas system qualities like usability, accuracy,
performance, safety, reliability and security (Nuseibeh
and Easterbrook, 2000). This results in NFRs being
linked to Functional Requirements. Non-functional
requirements are harder to express measurably, making

their analysis harder. NFRs are system properties as a
whole and so cannot be substantiated for individual
components verification.

Similar to functional requirements, system success
is dependent on adherence to NFRs. Costly issues arise
(Slankas and Williams, 2013) when NFRs are ignored or
missed. Due to the need to analyze and implement NFRs
from various resources, system analysts should identify
and categorize NFRs quickly. As NFRs existed from the
inception of software engineering, there is no consensus
for a name or the NFR identification. They are just
referred to as the “ilities,” a system’s quality aspects.
Others label NFRs as systemic requirements.

NFR elicitation and analysis involve various people
in organizations. The word ‘stakeholder’ refers to any
person/group affected directly or indirectly by the
system. Single view ensures a look at requirements from
a specific perspective. To elicit and analyze
requirements multiple views must be considered to meet
stakeholder expectations. Non-functional requirements
for general four layered analysis architecture are seen in
Fig. 1 (Rao and Gopichand, 2012).

NFRs are usually seen relatively late in
development processes (Cleland-Huang et al., 2006).
Stakeholder’s quality constraints from requirements
gathering process is documented through many artifacts
like memos, interview notes and meeting minutes with
analysts generally failing to get a clear picture on
system-wide NFR. NFR-Classifiers detect and classify

Res. J. App. Sci. Eng. Technol., 7(17): 3643-3648, 2014

3644

Fig. 1: General architecture for four layered analysis for non-functional requirements

early aspects which are a concern for cross-cutting
dominant system decomposition found in requirements
specification or early design documents. Many “early
aspects” are similar to high-level NFRs like
performance, security, portability and usability.
Intermediate level aspects can be logging and
authentication and lower-level concerns focus on
programmatic concepts like buffering and caching. The
NFR classification helps the developers to implement
changes and to cross check the quality of the system.

In the current work, Support Vector Machine
(SVM) with different kernels such as polykernel and
Radial Basis Function (RBF) are used to classify the
NFR. The performance of the RBF kernel is dependent
upon the parameters C and gamma (γ). The optimum
values of these parameters are formulated as
optimization problem. “Swarm intelligence” and genetic
algorithm are widely used for optimization, to maximize
or minimize the cost function. The most common swarm
optimizations are based on the collective behavior of the
ants, fish schooling or social behavior of bird flocking.
In this study, Artificial Bee Colony algorithm (ABC) is
implemented for parameter selection of the RBF kernel
of SVM.

The ABC algorithm is based on foraging behaviour
of honeybee swarm (Karaboga and Basturk, 2008).
Unlike genetic algorithm, ABC does not necessitate
crossover rate and mutation rate to obtain solution. The
performance of the ABC algorithm is better when
compared with differential evaluation, PSO, ACO and
an evolutionary algorithm (Karaboga and Basturk,
2008). ABC’s are simple, flexible to implement and
also have the advantage of requiring less control
parameters when compared to other optimization
algorithms (Bolaji et al., 2013).

In this study, a methodology for classifying NFR is
presented. NFR dataset available in the promise data

repository is used to evaluate the proposed
methodology. Features are extracted using Inverse
Document Frequency (IDF) from the NFR dataset and
is classified by Support Vector Machine (SVM). The
efficiency of the SVM depends upon the parameter C
and gamma (γ) used with Radial Basis Function. In this
study, the RBF kernel is optimized by Artificial Bee
Colony algorithm (ABC) to optimize the RBF
parameters to improve performance.

LITERATURE REVIEW

A framework for conflict analysis among NFRs
using integrated analysis of functional and non-
functional requirements was provided by Sadana and
Liu (2007). This identifies conflicts and analyzes them
based on relationships between quality attributes,
constraints and functionalities. The proposed
framework’s output was a conflict hierarchy refining
conflicts among non-functional requirements level-
wise. A case study was finally provided where the
framework analyzed and detected conflicts among a
search engine’s NFRs.

NFR and its requirements and importance in
various fields was surveyed by Bajpai and Gorthi
(2012) who also investigated the effect of working for
NFRs leading to discovery of new Functional
Requirements. Efforts were made to show recent
research in finding, specifying and rectifying Non-
Functional attributes.

The first effort to seek key NFR challenges and
issues at RE elicitation level was taken by Ullah et al.
(2011). A primary RE engineer’s responsibility is
elicitation of non-functional and functional
requirements. Functional requirements reveal
functionality to be performed while NFRs compel
restrictions on such functionality. The Software

Res. J. App. Sci. Eng. Technol., 7(17): 3643-3648, 2014

3645

industry has raised the demand for not only required
functionality but NFRs necessity like security,
performance, security, usability and privacy. The
authors discovered approaches and methods suggested
in literature to offset such issues.

Taxonomy for NFR in a service-oriented context
was presented by Galster and Bucherer (2008) which
implemented three NFR categories: process
requirements, non-functional external requirements and
non-functional service requirements. The taxonomy
was capable of being applied to individual services and
service-based systems. The taxonomy was a starting
point and checklist to handle non-functional issues in
service-oriented, specifically distributed environments.

A model-based approach to focus on NFR in
exploring its effect on system design process was
proposed by Tsadimas et al. (2009). A requirement
model representing how NFRs were related between
them and to system components in overall system
architecture was defined. SysML was adopted as
modeling language, as it enabled requirement definition
and could be extended. Also, requirement derivation
process was discussed and case studies where new
concepts were applied practically, while redesigning a
large-scale organization’s legacy system was presented.

Gokyer et al. (2008) introduced the use of a
Machine Learning (ML) and natural language
processing techniques methods to relate NFRs to
classified "architectural concerns". The machine
learning used in this study was SVM. A charted
roadmap and the automated requirements engineering
toolset for this roadmap were demonstrated. The
approach was validated and the effectiveness of the
toolset on the snapshot was demonstrated with a real-
life project.

METHODOLOGY

Inverse Document Frequency (IDF) measures a

word’s importance. IDF appears in many heuristic

measures in information retrieval but, IDF has itself not

been a heuristic till now. It is defined as the logarithm

of the ratio of documents number containing a given

word meaning that rare words have high IDF with

common function words like “the” having low IDF

(Robertson, 2004). IDF measures a word’s ability to

differentiate between documents. Text Classification

assigns text documents to pre-defined classes set

through a machine learning technique automatically.

Classification is usually based on the text document’s

significant words or key-features. It is a supervised

machine learning task as classes are pre-defined.
IDF represents scaling. When a term ‘a’ occurs in

many documents frequently, its importance is scaled
down due to lowered discriminative power. The IDF (a)
is defined as follows:

1 | |
() log

a

x
IDF a

x

+
= (1)

Term frequency and inverse document frequency
are the two scores of TF-IDF. Term frequency is
counting the times a term occurs in a specific
document, while IDF is achieved through dividing total
documents by documents where a specific word is
repeated. Multiplying these values results in a high
score for repeatedly and frequently occurring words in
few documents. Scores are low for terms appearing
frequently in many documents.

Support Vector Machine (SVM): SVMs suit
classification tasks related to and containing elements
of non-parametric applied statistics, neural networks
and machine like classical techniques. SVMs through
nonlinear mapping transform original training data into
a higher dimension (Vishwanathan and Narasimha
Murty, 2002). Data from two classes separated by a
hyperplane is mapped nonlinearly. SVM locates the
hyperplane using support vectors and margins. The
margin is the distance between hyperplane and entity.
SVM’s advantage is that it is highly accurate and not
liable to over-fitting. Its disadvantage is that it is time
consuming. SVM with input vector and normal vector
to hyperplane, leads to output u given by:

.u w x b= −
r r

 (2)

A kernel function is defined as K (xi, xj) = ϕ (xi)

T
 ϕ

(xj). The Radial Basis function is given as follows:

2(,) exp(|| ||), 0i j i jK x x x xγ γ−= − > (3)

There are two parameters to be determined in RBF

kernel are C and gamma (γ) and proper parameter
setting of these parameters improves SVM
classification accuracy. The C and γ impact the learning
performance of the SVM (Kuba et al., 2002). The γ
parameter defines the distance a single training example
can reach and the C parameter trades off training
examples misclassification against decision surface
simplicity. Experiments are undertaken to evaluate
SVM performance through variations of the γ and C
parameters and by optimizing it by ABC.

Artificial Bee Colony (ABC) algorithm is a
recently introduced swarm-based algorithm in which
the position of food source represents a possible
solution to an optimization issue and a food source’s
nectar amount corresponds to the associated solution’s
quality (fitness) (Karaboga and Akay, 2009). The
number of employed bees or onlooker bees equals
number of solutions in a population.

To begin with, ABC generates randomly
distributed initial population P (C = 0) of SN solutions
(food source positions), with SN denoting employed or
onlooker bees size. Each solution xi (1, 2… SN) is a D-
dimensional vector where D is optimization parameters
number. After initialization, the positions (solutions)
population is subject to repeated cycles, C = 1, 2…
MCN, of search processes of employed, onlooker and
scout bees.

Res. J. App. Sci. Eng. Technol., 7(17): 3643-3648, 2014

3646

Fig. 2: Flowchart-ABC optimizing SVM

The pseudo-code of the ABC algorithm (Kumbhar

and Krishnan, 2011):

1: Initialize the population of solutions xi, i = 1... SN

2: Evaluate the population xi, Gi, i = 1, ..., NP

3: For cycle = 1 to MCN do

4: Produce new solutions vi for the employed bees

and evaluate them.

5: Apply the greedy selection process.

6: Calculate the probability values pi for the solutions

xi

7: Produce the new solutions vi for the onlookers

from the solutions xi selected depending on pi and

evaluate them.

8: Apply the greedy selection process.

9: Determine the abandoned solution for the scout, if

exist and replace it with a new randomly produced

solution xi

10: Memorize the best solution achieved so far.

11: Cycle = cycle + 1

12: End for

To optimize the parameters C and γ, ABC is

adapted to execute the search for optimal combination

of (C, γ). The objective function is based on Root Mean

Squared Error (RMSE) attained by the SVM-RBF.

Thus, the ABC discovers the combination of (C, γ) with

the lowest RMSE to optimize the performance. Figure 2

shows the steps involved in the proposed methodology.

RESULTS AND DISCUSSION

NFR dataset available in the promise data

repository is used to evaluate the proposed

methodology. The NFR dataset consists of 15

requirement specifications of MS student projects with

Table 1: Classification accuracy

Classifier

Classification

accuracy RMSE

SVM with polykernel 81.25 0.2864

SVM with RBF kernel gamma = 0.1 82.211 0.2714

SVM with RBF kernel gamma = 0.5 83.01 0.2687

SVM with RBF kernel gamma = 1 82.53 0.2706

SVM with ABC optimization 85.1 0.2312

Table 2: Precision, recall and F-measure

Classifier Precision Recall F-measure

SVM with polykernel 0.897 0.897 0.897

SVM with RBF kernel

gamma = 0.1

0.898 0.914 0.906

SVM with RBF kernel

gamma = 0.5

0.900 0.931 0.915

SVM with RBF kernel

gamma = 1

0.898 0.914 0.906

SVM with ABC optimization 0.917 0.948 0.932

a total of 326 NFRs and 358 FRs. NFR categories

included availability, scalability, usability and security.

Features are extracted using IDF and is classified by

SVM with various kernels and ABC optimized SVM.

The experiments are conducted with: SVM with

Polykernel, SVM with RBF Kernel gamma = 0.1, SVM

with RBF Kernel gamma = 0.5, SVM with RBF Kernel

gamma = 1 and SVM with ABC optimization. It is

observed that SVM with ABC optimization does better

than all the other classifiers. Table 1 tabulates the

classification accuracy and RMSE for all the techniques

used. Figure 3 depicts the classification accuracy for all

the techniques used.

Classification Accuracy SVM with ABC

optimization does better by 4.52% than SVM with

polykernel, by 3.39% than SVM with RBF Kernel

gamma = 0.1, by 2.45% than SVM with RBF Kernel

gamma = 0.5 and by 3.01% than SVM with RBF

Kernel gamma = 1. Figure 4 depicts the RMSE for all

the techniques used.

SVM with proposed ABC optimization decreases

the RMSE by 19.27% than SVM with polykernel and

by 14.81% than SVM with RBF Kernel gamma = 0.1,

by 13.95% than SVM with RBF Kernel gamma = 0.5

and by 14.56% than SVM with RBF Kernel

gamma = 1. Table 2 tabulates the Precision and Recall

for all the techniques used. Figure 5 depicts the

Precision and Recall for all the techniques used.

It is observed from Fig. 5 that the Precision

achieved by SVM with ABC optimization is better by

2.18% than SVM with polykernel, by 2.07% than SVM

with RBF Kernel gamma = 0.1, by 1.85% than SVM

with RBF Kernel gamma = 0.5 and by 2.07% than

SVM with RBF Kernel gamma = 1. Similarly, for

Recall SVM with ABC optimization does better by

5.37% than SVM with polykernel, by 3.58% than SVM

with RBF Kernel gamma = 0.1, by 1.79% than SVM

with RBF Kernel gamma = 0.5 and by 3.58% than

SVM with RBF Kernel gamma = 1. Figure 6 depicts the

F-Measure for all the techniques used.

Res. J. App. Sci. Eng. Technol., 7(17): 3643-3648, 2014

3647

Fig. 3: Classification accuracy

Fig. 4: RMSE

Fig. 5: Precision and recall

Fig. 6: F-measure

From Fig. 6 it is observed that the F-Measure

achieved by SVM with ABC optimization is better by

3.75% than SVM with polykernel, by 2.78% than SVM

with RBF Kernel gamma = 0.1, by 1.82% than SVM

with RBF Kernel gamma = 0.5 and by 2.78% than

SVM with RBF Kernel gamma = 1. So the proposed

approach used in this research gives the better solution

for the NFR analysis.

CONCLUSION

When RE is taken as a continual task in the project,

RE process model is iterative and its activities ensued

across multiple phases, making process models seem

iterative. A preliminary step to determine NFRs is by

identifying its type and categories. Operating conditions

are the first (high-level) step in identifying business

requirements. SVM is utilized as classifier in this

approach with ABC being used for optimization.

Experiments reveal the proposed approach’s improved

results and achieve better performance. Classification

Accuracy achieved by SVM with ABC optimization is

better by 2.45 to 4.52% than other SVM Kernels.

REFERENCES

Aljahdali, S., J. Bano and N. Hundewale, 2011. Goal

oriented requirements engineering: A review.

Proceeding of the International Conference on

Computer Applications in Industry and

Engineering, pp: 328-333.

Bajpai, V. and R.P. Gorthi, 2012. On non-functional

requirements: A survey. Proceeding of the 2012

IEEE Students' Conference on Electrical,

Electronics and Computer Science (SCEECS), pp:

1-4.

0

R
M

S
E

S
V

M
 w

it
h

p
ol

y
ke

rn
el

S
V

M
 w

it
h
 R

B
F

ke
rn

el
 g

am
m

a
=

 0
.1

S
V

M
 w

it
h
 R

B
F
 k

er
ne

l

g
am

m
a

=
 0

.5
S
V

M
 w

it
h
 R

B
F
 k

er
n
el

g
am

m
a

=
 1

S
V

M
 w

it
h
 A

B
C

o
pt

im
iz

at
io

n

Technique used

0.15

0.20

0.05

0. 01

0.25

0.30

0.35 RMSE

V
a
lu

e
s

S
V

M
 w

it
h

p
ol

y
ke

rn
el

S
V

M
 w

it
h
 R

B
F

ke
rn

el
 g

am
m

a
=

 0
.1

S
V

M
 w

it
h
 R

B
F
 k

er
ne

l

g
am

m
a

=
 0

.5
S
V

M
 w

it
h
 R

B
F
 k

er
n
el

g
am

m
a

=
 1

S
V

M
 w

it
h
 A

B
C

o
pt

im
iz

at
io

n

Technique used

0.90

0.92

0.88

0.89

0.93

0.94

0.96 Precision

0.87

0.91

0.95 Recall

F
-M

e
a
su

re

S
V

M
 w

it
h

p
ol

y
ke

rn
el

S
V

M
 w

it
h
 R

B
F

ke
rn

el
 g

am
m

a
=

 0
.1

S
V

M
 w

it
h
 R

B
F

 k
er

ne
l

g
am

m
a

=
 0

.5
S
V

M
 w

it
h
 R

B
F
 k

er
ne

l

g
am

m
a

=
 1

S
V

M
 w

it
h
 A

B
C

o
pt

im
iz

at
io

n

Technique used

0.90

0.92

0.88

0.89

0.93

0.94 F-Measure

0.87

0.91

79

80

81

82

83

84

85

86
C

la
ss

if
ic

a
ti

o
n

 a
c
cu

ra
c
y

S
V

M
 w

it
h

p
ol

yk
er

n
el

S
V

M
 w

it
h

R
B

F

ke
rn

el
 g

am
m

a
=

 0
.1

S
V

M
 w

it
h
 R

B
F
 k

er
n
el

g
am

m
a

=
 0

.5
S
V

M
 w

it
h
 R

B
F
 k

er
n
el

g
am

m
a

=
 1

S
V

M
 w

it
h
 A

B
C

op
ti
m

iz
at

io
n

Technique used

Classification accuracy

Res. J. App. Sci. Eng. Technol., 7(17): 3643-3648, 2014

3648

Bolaji, A.L., A.T. Khader, M.A. Al-Betar and

M.A. Awadallah, 2013. Artificial bee colony

algorithm, its variants and applications: A survey.

J. Theor. Appl. Inform. Technol., 47(2): 434-439.

Cleland-Huang, J., R. Settimi, X. Zou and P. Solc,

2006. The detection and classification of non-

functional requirements with application to early

aspects. Proceeding of the IEEE 14th IEEE

International Conference on Requirements

Engineering, pp: 39-48.

Cysneiros, L.M. and E. Yu, 2004. Non-functional

Requirements Elicitation. In: Perspectives on

Software Requirements. Kluwer Academic

Publishers, Boston, pp: 115-138.

Galster, M. and E. Bucherer, 2008. A taxonomy for

identifying and specifying non-functional

requirements in service-oriented development.

Proceedings of the 2008 IEEE Congress on

Services - Part I (SERVICES '08), pp: 345-352.

Gokyer, G., S. Cetin, C. Sener and M.T. Yondem,

2008. Non-functional requirements to architectural

concerns: ML and NLP at crossroads. Proceeding

of the 3rd International Conference on Software

Engineering Advances (ICSEA '08), Oct. 26-31,

pp: 400-406.

Karaboga, D. and B. Basturk, 2008. On the

performance of Artificial Bee Colony (ABC)

algorithm. Appl. Soft Comput., 8(1): 687-697.

Karaboga, D. and B. Akay, 2009. A comparative study

of artificial bee colony algorithm. Appl. Math.

Comput., 214(1): 108-132.

Kuba, P., P. Brazdil, C. Soares and A. Woznica, 2002.

Exploiting sampling and meta-learning for

parameter setting for support vector machines.

Proceeding of the 8th Iberoamerican Conference

on Artificial Intelligence, Learning and Data

Mining Associated with Iberamia, pp: 209-216.

Kumbhar, P.Y. and S. Krishnan, 2011. Use of Artificial

Bee Colony (ABC) algorithm in artificial neural

network synthesis. Int. J. Adv. Eng. Sci. Technol.,

11(1): 162-171.

Nuseibeh, B. and S. Easterbrook, 2000. Requirements

engineering: A roadmap. Proceedings of the ACM

Conference on the Future of Software Engineering,

pp: 35-46.

Rao, A.A. and M. Gopichand, 2012. Four layered

approach to non-functional requirements analysis.

Int. J. Comput. Sci. Issues, 8(6): 371-379.

Robertson, S., 2004. Understanding inverse document

frequency: on theoretical arguments for IDF.

J. Doc., 60(5): 503-520.

Sadana, V. and X.F. Liu, 2007. Analysis of conflicts

among non-functional requirements using

integrated analysis of functional and non-functional

requirements. Proceeding of the IEEE 31st Annual

International Computer Software and Applications

Conference (COMPSAC, 2007), 1: 215-218.

Selvakumar, J. and M. Rajaram, 2011. Performance

evaluation of requirements engineering

methodology for automated detection of non

functional requirements. Int. J. Comput. Sci. Eng.,

3(8).

Slankas, J. and L. Williams, 2013. Automated

extraction of non-functional requirements in

available documentation. Proceeding of the 1st

International Workshop on Natural Language

Analysis in Software Engineering (NaturaLiSE,

2013). San Francisco, CA.

Tsadimas, A., M. Nikolaidou and D. Anagnostopoulos,

2009. Handling non-functional requirements in

information system architecture design. Proceeding

of the IEEE 4th International Conference on

Software Engineering Advances (ICSEA'09), pp:

59-64.

Ullah, S., M. Iqbal and A.M. Khan, 2011. A survey on

issues in non-functional requirements elicitation.

Proceeding of the IEEE 2011 International

Conference on Computer Networks and

Information Technology (ICCNIT), pp: 333-340.

Vishwanathan, S.V.M. and M. Narasimha Murty, 2002.

SSVM: A simple SVM algorithm. Proceedings of

the IEEE 2002 International Joint Conference on

Neural Networks (IJCNN'02), 3: 2393-2398.

