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Abstract: This study presents the stochastic analysis of a two unit parallel system subject to random shocks. There 
is a single server who visits immediately to do maintenance and repair of the system. The operative units in the 
system undergo for maintenance if they are affected by the impact of shocks with some probabilities. However, 
repair of the units is done when they fail due to some other reasons. The unit works as new after maintenance and 
repair. The distributions of random shocks and failure times of the unit follow negative exponential while that of 
maintenance and repair times are taken as arbitrary with different probability density functions. Using regenerative 
point technique and semi-Markov process, several measures of system effectiveness are obtained in steady state. The 
graphical behavior of MTSF, availability and profit function has been analyzed for particular values of various 
parameters and costs. Profit of the present model has also been made with the profit of the system model proposed 
by Malik and Chhillar (2012). 
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INTRODUCTION 
 

The method of cold standby redundancy has widely 
been adopted by the researchers including Murari and 
Goyal (1984) and Singh (1989) while analyzing 
systems of two or more units not only to attain better 
reliability but also to reduce the down time of the 
system. But sometimes cold standby redundancy is not 
suggestive when shocks occur during operation of the 
system. In such a situation, the units in the system may 
be may be operated in parallel mode to share the impact 
of shocks. It is a known fact that cold standby 
redundancy is better than parallel redundancy so far as 
reliability is concerned. But, no research study has been 
written by the researchers on these types of systems so 
far in the subject of reliability. However, a little work 
has been carried out by the authors including Murari 
and Al-Ali (1988) and Wu and Wu (2011) on the 
reliability modeling of shock models with the concept 
of maintenance and repairs. Shocks are the external 
environmental conditions which cause perturbation to 
the system, leading to its deterioration and consequent 
failure. The shocks may be caused by external factors 
such as fluctuation of unstable electric power, power 
failure, change in climate conditions, change of 
operator, etc., or due to internal factors such as stress 
and strain. Many systems like power generation and 
automotive industries are vulnerable to damage caused 
by shock attacking that may occur over the service life. 
Sometimes, a system may or may not be affected by the 

impact of shocks and the system may fail due to 
operation and/or due to random shocks. 

Keeping the above observations and practical 
situations in mind, here stochastic analysis of a two unit 
parallel system subject to random shocks. There is a 
single server who visits immediately to do maintenance 
and repair of the system. The operative units in the 
system undergo for maintenance if they are affected by 
the impact of shocks with some probabilities. However, 
repair of the units is done when they fail due to some 
other reasons. The unit works as new after maintenance 
and repair. The distributions of random shocks and 
failure times of the unit follow negative exponential 
while that of maintenance and repair times are taken as 
arbitrary with different probability density functions. 
Various reliability indices such as transition 
probabilities, mean sojourn times, Mean Time to 
System Failure (MTSF), availability, busy period of the 
server due to repair and maintenance, expected number 
of maintenance and repair and profit function are 
evaluated in steady state using semi-Markov process 
and regenerative point technique. The numerical results 
giving particular values to various costs and parameters 
are obtained for MTSF, availability and profit to depict 
their graphical behavior with respect to shock rate. 
 

MATERIALS AND METHODS 
 

The following are the possible transition states of 
the system:  
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Fig. 1: State transition diagram  
 
S0 =  (O, O),  S1 = (SUm, O), S2 = (SUM, SWm), S3 = 
(O, FUr), S4 = (FUR, SWm), S5 = (FUR, FWr), S6 = 
(SUM, FWr) 

The transition states S0, S1, S3, are regenerative and 
states S2, S4, S5, S6 are non-regenerative as shown in 
Fig. 1. 
 
Transition probabilities and mean sojourn times: 
Simple probabilistic considerations yield the following 
expressions for the non-zero elements: 
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It can be easily verified that:  
 

p00 + p01 + p03 = p10 + p11 + p12 + p16 = p21 = p30 + p33 

+ p34 + p35 = p30 + p33 + p33.5 + p31.4 = p41 = p53 = p63 

= p10 + p11.2 + p11 + p13.6 = 1                                  (3) 

The  mean  sojourn  times i for m (t) = ି݁ߠఏ௧, g 
(t) = ି݁ߙఈ௧ are: 
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where, 
 

00 01 03 0m m m    ,
10 11 12 16 1m m m m     , 

30 33 34 35 3m m m m     , 

10 11 11.2 13.6 1m m m m     ,

30 33 33.5 31.4 3m m m m                                     
(5) 

 
RESULTS AND DISCUSSION 

 
Reliability and Mean Time to System Failure 
(MTSF): Let ϕi (t) be the cdf of first passage time from 
regenerative state i to a failed state. Regarding the 
failed state as absorbing state, we have the following 
recursive relations for ϕi (t): 
 

ϕ0 (t) = Q00 (t) Ⓢϕ0 (t) + Q01 (t) Ⓢϕ1 (t) + Q03 (t) 
Ⓢϕ3 (t) 
ϕ1 (t) = Q10 (t) Ⓢϕ0 (t) + Q11 (t) Ⓢϕ1 (t) + Q12 (t) + 
Q16 (t) ϕ3 (t) = Q30 (t) Ⓢϕ0 (t) + Q34 (t) + Q35 (t) + 
Q33 (t) Ⓢϕ3 (t)                                            (6) 

 
Taking LST of above relations (6) and solving for 
:)(

~
0 s  

We have: 
 

R* (s) =
s

s)(
~

1 0                                            (7) 

 
The reliability of the system model can be obtained 

by taking Laplace inverse transform of (7).  
The Mean Time to System Failure (MTSF) is given by: 
 

MTSF = 
s

s
os

)(
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D
                            (8) 

 
where, 
 
N1 = μ0 (1-p11) (1-p33) + μ1p01 (1-p33) + μ3p03 (1-p11) 
 
and 
 
D1 = (1-p00) (1-p11) (1-p33) -p01 p10 (1-p33) - p03 p30 

(1-p11) 
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Steady state availability: Let Ai (t) be the probability 
that the system is in up-state at instant ‘t’ given that the 
system entered regenerative state i at t = 0.  
The recursive relations for Ai (t) are given as:  
 

A0 (t) = M0 (t) + q00 (t) © A0 (t) + q01 (t) © A1 (t) + 
q03 (t) © A3 (t) 
A1 (t) = M1 (t) + q10 (t) © A0 (t) + [q11 (t) + q11.2 (t)] 
© A1 (t) + q13.6 (t) © A1 (t) 
A3 (t) = M3 (t) + q30 (t) © A0 (t) + [q33.5 (t) + q33 (t)] 
© A3 (t) + q31.4 (t) © A1 (t)                                    (9) 

 
where, Mi (t) is the probability that the system is up 
initially in state ௜ܵϵܧ is up at time t without visiting to 
any other regenerative state, we have: 
 

t)(
0 e)t(M  , )t(Me)t(M t)(

1
 , 

)t(Ge)t(M t)(
3

                                     (10) 

 
Taking LT of above relations (9) and solving for 

A0* (s), the steady state availability is given by:  
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where,  
 
N2 = [(1 - p11.2 - p11) (1 - p33 - p33.5) - p31.4p13.6] μ0 + 
[p01 (1 - p33 - p33.5) + p31.4p03] μ1 + [p01 p13.6 + p03 (1 - 
p11.2 - p11)] 3    
                 

and, 
 

D2 = [(1 - p11.2 - p11) (1 - p33 - p33.5) - p31.4p13.6] μ0 + 
[p01 (1 - p33 - p33.5) + p31.4p03] 1   + [p01p13.6 + p03 (1 - 

p11.2 - p11)] 3     
 
Busy period analysis of the server: 
Due to repair: Let BR

i (t) be the probability that the 
server is busy in repairing of the system at instant t 
given  that  the  system  entered  regenerative  state  i at 
t = 0. The recursive relation for BR

i (t) are as follows: 
 

BR 
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1 (t) + q03 (t) 

© BR
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where,  
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Now taking L.T. of relations (12) and obtain the 
value of BR

0
* (s) and by using this, the time for which 

server is busy in steady state is given by: 
 
BR

0 = N3/D2 
 

where, 
N3 = [p10 p13.6 + p03 (1 - p11.2 - p11)] 3 ( )w s and D2 is 

already defined   

                      
Due to maintenance: Let BM

0 (t) be the probability that 
the server is busy in maintenance of the system at 
instant t given that the system entered regenerative state 
i at t = 0. The recursive relation for BR

0 (t) are as 
follows: 
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Now taking L.T. of relations (13) and obtain the 

value of BM
0
* (s) and by using this, the time for which 

server is busy in steady state is given by: 
 
BM

0 = N4/D2 

 
where, 
N4 = [p01 (1 - p33 - p33.5) + p31.4p03] 1 ( )w s

 
and D2 is 

already defined 
 
Expected number of maintenance: Let ௜ܰ

ெሺݐሻ
 

the 
expected number of maintenance of the system by the 
server in (0, t) given that the system entered the 
regenerative state i at t = 0. The recursive relations for 

( )M
iN t are given as:  
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Now taking L.T. of relations (14) and obtain the 
value of NM

0
* (s) and by using this, the time for which 

server is busy in steady state is given by: 
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NM
0 = N5/D2 

 
where, 
N5 = (p10 + p11.2 + p13.6) [p01 (1 - p33 - p33.5) + p31.4p03] and 

D2 is already defined 
 
Expected number of repairs: Let ௜ܰ

ோሺݐሻ
 
the expected 

number of repairs of the system by the server in (0, t) 
given  that the system entered the regenerative state i at 
t = 0. The recursive relations for ௜ܰ

ோሺݐሻ are given as: 
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Now taking L.T. of relations (15) and obtain the 
value of NR

0
* (s) and by using this, the time for which 

server is busy in steady state is given by:    
 
NR

0 = N6/D2  
 

where, 
N6 = (p30 + p33.5 + p31.4) [p03 (1 - p11 - p11.2) + p01p13.6] 

and D2 is already defined 
 
Profit analysis: The profit incurred to the system 
model in steady state can be obtained as: 

P = 
0 0 1 0 2 0 3 0 4 0 5

M R M RK A K B K B K N K N K           
(16)

 
 
where, 
K0 = Revenue per unit up-time of the system 
K1 = Cost per unit time for which server is busy due to 

maintenance 
K2 = Cost per unit time for which server is busy due to 

repair 
K3 = Cost per unit maintenance of the shocked unit 
K4 = Cost per unit repair of the failed unit 
K5 = Total cost for the busy of the server and 

,଴ܣ ଴ܤ
ெ, ଴ܤ

ோ, ଴ܰ
ெ, ଴ܰ

ோ are already defined 
 
Particular cases: 

 
Suppose  g (t) = ge-gt, m (t) = θe-θt  
  

We can obtain the following results: 
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CONCLUSION 
 

In the present study some important reliability 
measures including MTSF, availability and profit for a 
two- unit parallel system subject to random shocks have 
been obtained numerically giving particular values to 
various costs with p0 = 0.6 and q0 = 0.4. The graphical 
behavior of these measures as shown in Fig. 2 to 4 go 
on decline with increase of shock rate (µ) and failure

 

 
 

Fig. 2: MTSF vs. shock rate (μ) 
 

 
 

Fig. 3: Availability vs. shock rate (μ) 
 

 
 
Fig. 4: Profit vs. shock rate (μ) 
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Fig. 5: Profit difference vs. shock rate (μ) 
 
rate (λ). However, there values increase with the 
increase of repair and maintenance rate. Thus, the study 
reveals that a parallel system in which operative units 
subject to random shocks can be made more reliable 
and profitable to use by doing repair and maintenance 
of the system with higher rates. 
 
Comparative study: As shown in Fig. 5, the profit of 
the present model has been compared with the profit of 
the model proposed by Malik and Chhillar (2012). It is 
concluded that a two-unit cold standby system subject 
to random shocks would have more profit as compare 
to the two unit parallel system. 
 

NOTATIONS 
 

E : Set of regenerative states   
O : The unit is operative and in normal 

mode                             
p0 : The probability that shock is effective 
q0 : The probability that shock is not 

effective 
µ : Constant rate of the occurrence of a 

shock 
λ : Constant failure rate of the unit 
m (t) /M (t) : pdf/cdf of maintenance time of the unit 

after the effect of a shock                   
FUr/FWr/FUR : The Unit is completely failed and under 

repair/waiting for repair/under 
Continuous repair from previous state 

SUm/SUM : Shocked unit under maintenance and 
under maintenance continuously from 
previous state  

SWm : Shocked unit waiting for maintenance 
g (t) /G (t) : pdf/cdf of repair time of the completely 

failed unit 
qij (t) /Qij (t) : pdf and cdf of direct transition time 

from a regenerative state i to a 
regenerative state j without visiting any 
other regenerative state                         

qij.k (t) /Qij.k (t) : pdf and cdf of first passage time from a 
regenerative state i to a regenerative 

State j or to a failed state j visiting state 
k once in (0, t)     

Mi (t) : Probability that the system is up 
initially in state Si ∈	E is up at time t 
without visiting to any other 
regenerative state 

Wi (t) : Probability that the server is busy in 
state Si up to time t without making 
transition to any other regenerative state 
or returning to the same via one or more 
non regenerative states 

mij : Contribution to mean sojourn time in 
state Si when system transits directly to 
state Sj (Si, Sj ϵ E) so that µi = ∑ ݉௜௝௝  

where mij = ׬ d Qij (t) = - qijݐ
*/ (0) and µi 

is the mean sojourn time in state Si  ϵ  E  
(s) /© : Symbol for Stieltjes convolution/ 

Laplace convolution 
~/* : Symbol for Laplace Stieltjes Transform 

(LST) /Laplace Transform (LT) 
/ (desh) : Symbol for derivative of the function 
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