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Research Article 

Study of the Transient Natural Convection of a Newtonian Fluid inside an Enclosure 
Delimited by Portions of Cylinders 

 

Omar Ngor Thiam, Samba Dia, Pierre Faye, Cheikh Mbow and Joseph Sarr 
Laboratoire De Mecanique Des Fluides Et Applications, Département De Physique, Faculte  

Des Sciences Et Techniques Universite Cheikh Anta DIOP Dakar-Fann, Senegal 
 

Abstract: Using a bi-cylindrical coordinates system and a vorticity-stream function formulation, the authors study 
numerically the two dimensional unsteady natural convection of a Newtonian fluid bounded by portions of 
cylinders. A spatial discretization based on the finite difference method is used to approximate the dimensionless 
equations. While a purely implicit scheme is adopted for the time discretization. The algebraic systems of equations 
resulting from the discretization are solved by a Successive under Relaxation (SUR) method. The authors analyzed 
the effects of the Rayleigh number on the dynamic of the system. The analysis of the thermal and flow field showed 
that for Rayleigh number greater than 5.10

6
 the transfers inside the enclosure are dominated by convection. 
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INTRODUCTION 

 
The study of the natural convection in an enclosure 

delimited by portions of cylinders provides a better 
understanding of the heat transfer in various industrial 
applications such as thermal power station, solar 
collectors, fluid storage, water industrial heating and 
the flow in cylindrical shapes warehouse. 

In a theoretical and experimental study of natural 
convection in an annular sector, Sarr et al. (2001)

 
observed that the limit of the conductive regime 
corresponded to a Grash of number equal to 10

3

 and 
they also found that when the shape factor increases the 
heat transfers are more intense.  

Using a finite volume method and equations 
written in an elliptical coordinates system, (Djezzar and 
Daguenet, 2004) studied the effect of the elliptical 
shape of the lower cylinder on heat transfer. Roschina 
et al. (2005) studied the natural convection between 
two horizontal concentric cylinders with energy 
generation inside; they considered a second thermal 
Rayleigh number for the transfer through the faces, 
different from the classical one. For low Rayleigh 
numbers, they observed two types of flows with 
different vortex structure. 

Shi et al. (2006) simulated the transfer of heat by 
natural convection in a concentric horizontal annular 
space by finite difference based on lattice Boltzmann 
method, the flow and thermal field were obtained for 
Rayleigh numbers between 2.38.10

3 
to 1.02.10

5

 they 
find that if  Ra<3.20.10

4 
heat transfer is dominates by 

the conduction.  

In the study of Sankar et al. (2011), the study of the 

natural convection in a vertical ring filled with a 

saturated porous material, the analysis of a wide range 

of Rayleigh and Darcy number with various lengths of 

the heat source reveal source revealed that increasing 

ratio radius, Rayleigh number and Darcy number, 

increases heat transfer, while the heat transfer decreases 

when the length of the heating element increases. 

 

METHODOLOGY 

 

Mathematical approach: The aim of this study is to 

study the laminar natural convection in an enclosure 

delimited  by  no  concentric  portions  of cylinders 

(Fig. 1). At t<0 the enclosure is at the temperature T0 

from this date, a heat flow of constant density q
 

is 

abruptly imposes on the cylindrical wall interior θ1, the 

outer wall θ2 is maintained at a constant temperature T. 

The other two walls (η1 and η2) are thermally insulated 

(q = 0). 

To formulate and solve this problem it is assumed that:  

 

• The phenomena are two-dimensional and 

symmetrical.  

• All fluid properties are taken to be constant, with 

the exception of the density in the momentum 

equation. In this equation variations of density 

obey to the Boussinesq linear law.  

• The fluid is non absorbing and the radiative effects 

are regarded as negligible.  
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Fig. 1: Geometry of the problem 

 

• In the heat equation the viscous dissipation 
function as well as the compression effects are 
neglected. 
 
Taking into account the geometry of our enclosure, 

we employ a bi-cylindrical coordinate systems
(Moon and Spencer, 1971) in which the boundaries of 
our cavity are given by constant coordinates lines. The 
passage of Cartesian coordinates to the bi
coordinates is carried out using the following relations: 
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with b the parameter of torus pole. 

From the above assumptions and the coordinate 
transformation, the governing equations in a 
dimensionless vorticity-stream function
are:  
Stream function equation: 
 

2 2
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Momentum equation: 
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Heat equation: 
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In the heat equation the viscous dissipation 
function as well as the compression effects are 

Taking into account the geometry of our enclosure, 
coordinate systems (η, θ) 

in which the boundaries of 
our cavity are given by constant coordinates lines. The 
passage of Cartesian coordinates to the bi-cylindrical 
coordinates is carried out using the following relations:  

From the above assumptions and the coordinate 
transformation, the governing equations in a 

stream function (Ω - ψ) form 

              (1) 

1 2

*U V Pr Ra Pr T
G G

T

H Hη θ η θ η θ
 

+ + = + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂
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                                          (2) 
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The length, velocity, steam function, vorticity and 

time of reference are respectively define as:
 

2

2
, , , ,

b
b

b b

α ν
α

α
 

 

And the scale of temperature is 
��

�
. 

The associated initial and boundary conditions for 
the problem considered are: 
 

At 0t <  
( , ) ( , ) ( , ) ( , ) ( , ) 0U V Tη θ η θ ψ η θ η θ η θ= = =Ω = =

 
At t>0 the boundary conditions are the following 

ones: 
 

• On the inner cylinder (θ = θ1): 
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              (3) 

                           (4) 

The length, velocity, steam function, vorticity and 
time of reference are respectively define as: 

 

The associated initial and boundary conditions for 

( , ) ( , ) ( , ) ( , ) ( , ) 0U V Tη θ η θ ψ η θ η θ η θ= = =Ω = =
  

(5) 

the boundary conditions are the following 
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              (7) 
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• On the outer cylinder (θ = θ2): 
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• On the wall η1 and η2: 
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• On the symmetry axis (η = 0): 

 

0
U V Tψ
η η η η η
∂ ∂ ∂ ∂ ∂Ω

= = = = =
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The local and the average Nusselt number and 

friction coefficient relative to the lower cylindrical are 
defined by:  
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TP is the dimensionless temperature of the outer 

cylinder (θ = θ2). 

 
Numerical formulation: Equations

 
numerically using a finite difference method. The 
spatial discretization is made by a finite difference 
method. A fully implicit procedure is
treating the temporary derivatives (Bejan, 2004)
resulting algebraic equations were solved by Successive 
under Relaxation method (SUR) (Patankar,
iterative process is repeat until there is no significant 
change of the value F compared to the criterion of 
convergence: 
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                           (8) 

0               (9) 

                          (10) 

            (11) 
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                         (13) 

0             (14) 

The local and the average Nusselt number and 
friction coefficient relative to the lower cylindrical are 

      .

.     .

Nu Nu Nu ds

Cf Cf Cf ds

            (15) 

s the dimensionless temperature of the outer 

 
are integrated 

numerically using a finite difference method. The 
spatial discretization is made by a finite difference 

fully implicit procedure is retaining for 
(Bejan, 2004). The 

resulting algebraic equations were solved by Successive 
Patankar, 1980). The 

iterative process is repeat until there is no significant 
change of the value F compared to the criterion of 

                         (16) 

 

(a) 

 

 

(b) 

 

Fig. 2: Variation of the nusselt number and the minimal of the 

stream function against 

 

 

Fig. 3: Isotherms observed for Sarr at Gr

Thiam at Ra = 107 

 

where, n is the incrementing index of the iterative 

process and εr his precision. 

The grid size selected is equal to

uniform grid spacing in both directions, (Fig. 2) shows 

the influence of the grid system according to the 

instantaneous average Nusselt number 

cylinder (θ = θ1) and the minimum value of the stream

function  ψmin,   the   Rayleigh   number

Ra = 5.10
6
. All the results are obtained with

and a time step ∆t = 5.10
-4

 s retained to carry out all 

 

 

number and the minimal of the 

 

Isotherms observed for Sarr at Gr = 0.1.107 and for 

is the incrementing index of the iterative 

The grid size selected is equal to (71*71), with 

uniform grid spacing in both directions, (Fig. 2) shows 

the influence of the grid system according to the 

instantaneous average Nusselt number ������ on the inner 

and the minimum value of the stream-

number   is  fixed  at  

All the results are obtained with Pr = 0.7 
s retained to carry out all 
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numerical tests. Refining this time step results in minor 

changes of the transient patterns. 

In order to validate our results, we compare them 

with those of Sarr et al. (2001). In Fig. 3 we can see on 

the right our isotherms obtained for Ra = 10
7
 and on the 

left those observed experimentally by Sarr et al. (2001) 

for a Grash of number Gr = 0.1.10
7
. 

Although the geometries and the boundary 

conditions are not rigorously identical, the topology of 

the isotherms is quite similar.  

 

RESULTS AND DISCUSSION 

 

Flow fields, temperature fields and heat transfer for 

various values of the Rayleigh number are examined in 

this section. The main results are shown in Fig. 4 to 8. 

These figures show the effects of changing Rayleigh 

number between 10
6
 and 10

7
. Flow and temperature 

fields are shown respectively in terms of streamlines 

and isotherms. Owing to the symmetrical boundary 

conditions, the flows in the left and right of the 

symmetry axis are identical except for the sense of 

rotation.  

When Ra<5.10
6 

(Fig. 4) the circulation of the fluid 

is weak. At the first moments, the isotherms are curves 

almost parallel with the profile of the enclosure. In this 

case the distribution of the temperatures is simply 

decreasing from the hot wall towards the cold wall. The 

flow consists of a single and large clockwise cell 

(dotted line). Fluid particles move upwards under the 

action of the buoyancy along the hot inner cylinder then 

go down in the vicinity of the cold wall from the 

external cylinder. With time, the parallelism of the 

isotherms with the active wall weakens; one observes 

also the formation of a boundary layer thermal. Indeed, 

the isotherm lines instead of progressing towards the 

upper wall are gradually getting closer to the lower 

wall. 

We are in the presence of a pseudo-conductive 

mode. 

For Ra≥5.10
6 

(Fig. 5 and 6) we see that the 

deformation of the isotherms occur at an early stage. 

During a long interval of time, the isotherms 

always have a cylindrical shape and are more and more 

confined in area close to the active wall. The regime is 

still pseudo-conductive with always the presence of a 

boundary layer thermal whose thickness decreases with 

increasing  values  of  the  Rayleigh  number.  But  for  

t = 240 for Ra = 5.10
6
 and t = 192 for Ra = 10

7
, we note 

a progressive detachment of the isotherms due to the 

appearance of a trigonometric cell adjacent to the 

symmetry axis. As this trigonometric cell is developing 

pushing the clockwise cell towards the η2 coordinate 

wall, we observe a very strong distortion of isotherms. 

We have a convective mode of heat transfer. 

However, it is important to note that the thermal 

and flow field is divided into two distinct parts:  

 

• A zone close to the symmetry axis where the 

thermal front fills the annular space (related to the 

trigonometric cell) 

• A zone close to wall η (link the clockwise cell) 

where we observe always the presence of the 

thermal boundary layer  

 

The Fig. 7 shows us the variation of the average 

Nusselt number ������ on the inner cylinder (θ = θ1) 

according  to time for different Raleigh numbers. For 

Ra = 10
6
, there is a monotonous decrease of the average 

Nusselt number. As for Ra = 5.10
6
 and Ra = 10

7
, there 

is also a monotonous decrease but the occurrence of 

trigonometric cell will still lead to an increase in the 

average Nusselt number. 

A rather similar observation can be made in Fig. 8 

describing the evolution of the average coefficient of 

friction 	
���� on the inner cylinder. Indeed, if for the three

 

 
 

Fig. 4: Evolution of isotherms and streamlines at Ra = 106 
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Fig. 5: Evolution of isotherms and streamlines at 

 

 
Fig. 6: Evolution of isotherms and streamlines at 

 

 

Fig. 7: Variation of the average nusselt 

dimensionless time for various values of Ra
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Fig. 5: Evolution of isotherms and streamlines at Ra = 5.106 

Fig. 6: Evolution of isotherms and streamlines at Ra = 107 

 

nusselt number against 

dimensionless time for various values of Ra 

Fig. 8: Variation of the average friction coefficient against 

dimensionless time for various values of Ra

 

 

 

Variation of the average friction coefficient against 

dimensionless time for various values of Ra 
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values of Ra the relatively low values of 	
����
 change 

very little during time, the appearance of the 

trigonometric cell for the last two values of Ra will lead 

to a sudden and rapid growth of 	
���� . 

 

CONCLUSION 
 

This study concerns the natural convection in an 

enclosure delimited by portions of cylinders. The 

analysis of the dynamic and thermal fields has shown 

that: 

 

• For Ra≤10
6
, the mode of heat transfer is pseudo-

conductive with the formation of a thermal layer. 

The flow only consists of a clockwise cell 

occupying all the annular space.  

• For Ra≥5.10
6
, throughout the period where the 

flow is unicellular (clockwise cell) the regime is 

always pseudo-conductive with the presence of the 

thermal boundary layer. The convective mode must 

only be established with the appearance of the 

trigonometric cell, which leads to a strong 

development of thermal exchanges in the adjacent 

zones to the symmetry axis. 

 

NOMENCLATURE 

 

Latin letter: 

 

b  : Parameter of torus pole (m)  

Cf : Friction coefficient  

	�
���  : Average friction coefficient  

F : Function symbolic system representing 

the vorticity or the temperature 

G1 and G2 :  Coefficients  

and  

H :  Metric coefficients dimensionless 

 
h : Coefficient of transfer of heat by 

convection ℎ =  
�

∆�
 (Wm

-2
/K)  

Nu : Nusselt number �� =  
��

�
  

������                : Average Nusselt number  

Pr  : Prandtl number �� =
�

�
 

q  :  Heat flux density (Wm
-2

)  

Ra  :  Rayleigh number �� =  
�����

���
 

t  : Dimensionless time (s)  

T :  Dimensionless temperature (K)  

T0  :  Temperature at the initial moment (K)  

U, V : Dimensionless velocity components in the 

transformed plane  

x, y, z : Cartesian coordinates (m)  

 

Greek symbols: 

 

α  :  Thermal diffusivity (m
2
/s)  

β    :  Thermal expansion coefficient  (K
-1

)  

η, θ, z :  Bicylindrical coordinates (m)  

∆T  : Difference of temperature between the two 

cylinder activated 

∆t   : Time step (s)  

λ  : Thermal conductivity (Wm
-1

/K) 

ν  : Kinematical viscosity (m
2
/s)  

 

Centre: 

 

Ψ :  Dimensionless stream function  

Ω  : Dimensionless vorticity  
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