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Abstract: In this study, a mathematical model for the integration of lot sizing and flow shop scheduling with lot 
streaming was proposed. A mixed-integer linear model for multi-product lot sizing and lot streaming problem was 
developed. Mixed-integer programming formulation is proposed which will enable user to identify optimal 
production quantities, inventory levels, sub lot sizes and sequences simultaneously. Two situations where 
considered: 1) all machines are available and 2) all machines need preventive maintenance tasks. For both situations 
a new mixed-integer formulation is developed. To demonstrate the practicality of the proposed model, numerical 
example was used. It is shown that, the best makespan can be achieved through consistent sublots with intermingling 
cases as compared to non-intermingling cases. 
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INTRODUCTION 

 
In the manufacturing industries, the used planning 

and scheduling decision-making strategy usually 
follows a hierarchical approach, in which the planning 
problem is solved first to determine the production 
plans and the scheduling problem is solved next to meet 
these plans. However, this traditional strategy presents 
a major defect, since there is no interaction between the 
two decision levels; the planning decisions generated 
might cause infeasible scheduling sub-problems (Li and 
Ierapetritou, 2010). Since the production planning 
model ignores detailed scheduling constraints, there is 
no guarantee that a feasible production schedule exists 
for the generated production plan (Li and Ierapetritou, 
2010). Therefore, considering production planning and 
scheduling in an integrated model is recommendable to 
prevent an infeasible solution. We summarize some 
works of research regarding integration of lot sizing and 
flow shop scheduling as follows. Yan and Zhang (2007) 
developed an integrated model for production planning 
and scheduling in a three-stage manufacturing system. 
Yan et al. (2003) developed an integrated production 
planning and scheduling model for automobile 
assembly lines. They solved first production planning 
model and then solved the scheduling problem by 
dispatching rules (earliest due date and smallest lots); if 
they are infeasible solutions, the neighbor plan and 
neighbor schedule definition will be used to find 
feasible initial solutions (Yan et al., 2003). Palaniappan 
and Jawahar (2011) proposed a model for simultaneous 

optimization of lot sizing and scheduling in a flow line 
assembly. The objective of their model was the 
minimization of total cost, which includes assembly, 
procurement, switchover and inventory and order 
backlog costs. However, none of the above scholars 
considered the lot streaming problem within their 
models.  

Lot streaming is a technique for splitting jobs, each 

consisting of identical items, into sublots to allow their 

overlapping on consecutive machines in multi-stage 

production systems (Chang and Chiu, 2005). Through 

lot streaming, production can be accelerated and a 

significant decrease of makespan and improved 

timeliness are with inreach (Kalir and Sarin, 2000; 

Zhang et al., 2005; Sarin and Jaiprakash, 2007; 

Feldmann and Biskup, 2008). The sublots of a lot are 

assumed to take real-valued and integer-valued sizes. 

Integersublot sizes are more appropriate for the 

manufacturing facilities (Kalir and Sarin, 2003). Two 

types of problem exist for multi-product lot streaming 

problems: 
 

• Intermingled sublots  

• Non-intermingled sublots  
 
In intermingled sublots, the sequence of sublots of job j 
can be interrupted by the sublots of job v. Otherwise, it 
is non-intermingled sublots. In the following section we 
summarize research on lot streaming problems and 
focus on the flow shop environment.  
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Biskup and Feldmann (2005) presented the first 
integer programming formulation for the single product 
lot streaming problem with variable sublots. Trietsch 
and Baker (1993) developed a linear formulation for a 
single-product lot streaming problem with consistent 
sublots. Chiu et al. (2004) and Chang and Chiu (2005) 
found that, under the same sublot type, although 
growing number of sub lots will diminish makespan, 
the marginal decrease in makespan will reduce with the 
increase of the number of sublots. Glass and Possani 
(2011) indicated that, for products with identical 
number of sublots and processing times, no advantage 
can be achieved by using variable sublot in these 
successive products. Feldmann and Biskup (2008) 
developed a mathematical model for multi-product lot 
streaming problem. They revealed that, the benefit of 
lot streaming grows not only with the number of sub 
lots but also with an increasing number of stages. 
However, all lot streaming research assumes that the 
number of identical items of the product on each 
machine is given in advance. In other words, the a lot 
sizing problem is not integrated into lot streaming 
problem. Also they assumed that machines are always 
available, in the other words; any breakdowns and 
scheduled maintenance are not allowed which it is not 
realistic. Ramezanian et al. (2013) presented a mixed-
integer programming model for lot sizing and 
scheduling problems with availability constraints; 
however, they did not consider lot streaming within 
their model. In this research, we will develop a mixed-
integer linear mathematical model for the integration of 
lot sizing and scheduling with lot streaming problems 
where machines are unavailable due to the performance 
of preventive maintenance tasks.  
 
INTEGRATED MODEL FOR LOT SIZING AND 

SCHEDULING WITH LOT STREAMING 
 

With the following model, the four goals of the 

problem, determining the size of the each lot, the 

sequence among the sub lots, inventory levels and the 

size of the individual sublots, are solved 

simultaneously. The model assumptions are as follows: 

 

• The machine configuration considered constitutes a 

flow shop. 

• Break downs and preventive maintenance are 

allowed (machines can be unavailable). 

• Completion of preventive maintenance happens in 

predefined time window. 

• Set up times are negligible or include processing 

times. 

• Back logging is not allowed. 

• There is an external demand for finished products 

which processed by last machine. 

• All machines have capacity restrictions. 

• Planning horizon is a single period (i.e., a day). 

• All parameters are deterministic. 

• Intermittent idling is allowed. 

• Consistent sublots type is considered. 

• Before doing lot streaming, the number of sublots 
for all lots is known. 

 
This problem with above-mentioned assumptions 

can be formulated as follows: 
 
Indices and notions: 
 
N : The number of jobs  
M : The number of non-identical machines 
S : The number of sub lots 
l : Index of maintenance tasks 
j, v: Indices for jobs j, v = 1, 2, .., N 
k : k

′
th machine k = 1, 2, .., M 

s, z: Indices for sublotss, z = 1, 2, .., S 
 
Decision variables: 
 
xsjzv :  Binary variable, which takes the value 1 if 

sublot s of product j is sequenced prior to 
sublot z of product v, 0 otherwise 

Ysjk :  A binary variable that is equal 1 if sublot s of 
job j processed before maintenance task L 
when processing on machine k and 0 
otherwise  

csjk  :  Completion time of sublot s of product j on 
machine k 

STsjk :  Starting time of sublot s of product j on 
machine k 

cmlk :  Completion time of l
th

 preventive maintenance 
task on machine k 

pjk :  Quantity of product j produced in machine k 
sjk  :  Stock of product j after operation in machine k 
cmax :  Maximum completion time on machine M 

(makespan) 
usjk  :  Sublot size of sthsublot of product j on 

machine k 
 
Parameters and constants: 

 

biM :  Beginning inventory of product on machine M  

cpjk  :  Production cost of product j in machine k 

hjk  :  Holding cost of product j 

D :  Used to convert the makes pan in to a costs 

(cost per unit time) 

Ack :  Available capacity of machine k (measured in 

time units) 

dj :  External demand for product j at the end of 

period (a day) 
ptjk  :  Processing time for one unit of product j on 

machine k 
Lk  :  Number of different preventive maintenance 

task on machine k (set of maintenance tasks) 
tlk  :  Duration of l

th
 preventive maintenance task on 

machine k 
Emlk :  The early completion time of l

th
 preventive 

maintenance task on machine k 
Lmlk :  The late completion time of l

th
 preventive 

maintenance task on machine k 
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R :  Large number 
 

Z =
max

1 1 1 1

N M N M

jk jk jk jk

j k j k

cp p h s D c
= = = =

+ + ×∑∑ ∑∑
           (1) 

  

1,..,j jM jM Mbd p s j Ni= − + =           (2) 

 

1

1,...,
N

jk jk k

j

pt p Ac k M
=

≤ =∑
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(4) 

 

1

1,.., , 1,...,
S

sjk jk

s
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                       (13)

 
 

, , , 0,jk jk sjk sjk sjkp s c u and u are≥ Integer,
sjzvx  

are binary, 1,.., , 1,..., , 1,...,s S j N k M= = =            
(14) 

 
The objective function (expression (1)) minimizes 

the sum of production costs, holding costs and 
makespan costs. Constraints (2) ensure that demand for 
each product is equal to production quantity plus 
beginning inventory minus ending inventory. 
Constraints (3) make sure that the production time of 
each machine does not overpass its available capacity. 
In (4) the maximum of completion time of sublots on 
the last machine is used to define the makespan (cmax). 
Restrictions (5) make sure that in sum pjkitems are 
produced of product j on machine k. Constraints (6) 
make sure that sublots type is consistent. Constraints 
(7) and (8) ensure that the sublots of the same products 

do not overlap. Since sublots are allowed to 
intermingle, constraints (9) and (10) specify the 
sequence of sublots. Restrictions (11) ensure that any 
sublot s of any job j begins processing on machine 1 
after time zero. Constraints (12) ensure that start the 
processing of sublot s of product j only when it has 
been completed on the precedent machine. Constraints 
(13) are related to the calculation of completion time 
sublots. In reality machines maybe stopped for many 
reasons, such as maintenances. By adding Eq. (15) to 
(18), the proposed model is adapted to these situations: 

 

 
      (15)

 
 

 
  (16)

 
 

1,..., , 1,...,lk lk lk kEm cm lm l l k M≤ ≤ = =
  

(17) 

 

0lk sjkcm and Y arebinary≥              (18) 

 

No intermingling between the sub lots: A fast way for 

non-intermingling setting is to use the model Eq. (1) to 

(18) and equate the binary variables for the sublots of 

the products which are not allowed to intermingle 

(Feldmann and Biskup, 2008). If all products are not 

allowed to intermingle, for a three-product example, 

this would be: 

 

xsj11 = xsj21 = xsj31 s = 1, …, S, j = 2, 3 for first product 

(19) 

 

xsj12 = xsj22 = xsj32 s = 1,…, S, j = 1, 3 for second  

product                                                                       (20) 

 

xsj13 = xsj23 = xsj33 s = 1, …, S, j = 1, 2
 
for third product 

(21) 

 

NUMERICAL EXAMPLE 

 

In order to evaluate this model’s performance, we 

use the model to test the following randomly generated 

problem: we have three types of products being 

processed on four machines. The number of sublots per 

product is three. Demands are 20, 20 and 15 for 

products 1, 2 and 3, respectively. Production costs are 

10, 15 and 12 for products 1, 2 and 3, respectively. 

Holding  costs  are  3,  4,  and 3 for  products 1, 2 and 3, 
 
Table 1: Processing times of jobs on machines 

Product 

Machine number 
--------------------------------------------------------------- 

1 2 3 4 

1 2 1 2 2 
2  2 4 1 1 
3 4 2 2 3 
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Table 2: Input data on different machines  

 Machine 1 Machine 2 Machine 3 Machine 4 

Duration of maintenance tasks 20 30 40 40 

Early completion time of maintenance tasks 50 110 100 120 
Late completion time of maintenance tasks 80 120 120 140 

 

Table 3: Sublot completion times on different machines in consistent sublot with intermingling setting 

Machine number C11 C21 C31 C12 C22 C32 C13 C23 C33 

1 10 68 110 26 82 140 50 98 130 

2 15 82 126 58 110 160 70 118 140 

3 25 100 138 66 117 165 82 126 150 
4 35 119 150 74 126 170 100 138 165 

 

Table 4: Sublot completion times on different machines in consistent sublot with intermingling setting and maintenance tasks 

Machine number C11 C21 C31 C12 C22 C32 C13 C23 C33 

1 14 40 100 26 56 161 88 124 148 
2 26 57 131 50 89 185 125 143 160 

3 50 71 143 56 125 191 131 155 172 

4 64 85 155 70 133 197 143 173 191 

 
Table 5: Results of lot streaming problems with and without maintenance tasks 

Classification Optimal sequence Makespan Total cost 

Comparison of 

total cost (%) 

Comparison of 

makespan (%) 

Consistent sub lots with intermingling and 
without maintenance tasks 

11-12-13-21-22-23-31-33-32 170 3570 - - 

Consistent sub lots without intermingling 

and maintenance tasks 

2-3-1 189 3665 2/66 11 

Consistent sub lots with intermingling and 

maintenance tasks 

11-12-21-22-13-31-23-33-32 197 3705 3/8 16 

Consistent sub lots without intermingling 
and with maintenance tasks 

2-3-1 217 3805 6/5 27 

 

respectively. The maximum available capacity of 

machines is 400 time units for machines 1 to 4. The 

beginning inventory is zero. Cost per unit time (D) is 

equal to 5. Table 1 summarizes the processing times of 

products on machines. Other input data is summarized 

in Table 2. We consider two situations:  

 

• None of machines needs maintenance.  

• All machines need preventive maintenance.  

 

The example has been solved using LINGO 12.0, on a 

laptop computer with Intel core i5-2410 m processor 

2.3 GHz with 4 GB of RAM. 

 

RESULTS OF THE PROBLEM 

 

The resulting formulation has a total of 169 

variables and 691 constraints for consistent sublots with 

intermingling case where all machines are available. 

The solution was achieved after running the solver for 

146 sec. The results of the consistent sublots with 

intermingling case are as follows. Total cost is 3570 

and makespan is equal to 170. Sublot sizes are as 

follows:  

 

u111 = u112 = u113 = u114 = 5, u211 = u212 = u213 = u214 = 

9, u311 = u312 = u313 = u314 = 6, u121 = u122 = u123 = u124 

= 8, u221 = u222 = u223 = u224 = 7, u321 = u322 = u323 = 

u324 = 5, u131 = u132 = u133 = u134 = 6, u231 = u232 = u233 

= u234 = 4 and u331 = u332 = u333 = u334 = 5  

Product quantities are:  
 

p11 = p12 = p13 = p14 = p21 = p22 = p23 = p24 = 20 and 

p31 = p32 = p33 = p34 = 15, with all inventory level or 

Sjk = 0 

 
Table 3 summarizes the completion times of each 
sublot. Figure 1 demonstrated the Gantt chart of this 
problem. The makespan is equal to total processing 
time on the last machine plus total idle time on the last 
machine (Trietsch and Baker, 1993). For this example, 
in consistent sublots with intermingling setting, as 
demonstrated in Fig. 1, makespan is equal to total idle 
time on machine number four which is 65 min plus total 
processing time on machine number four or 105 min, 
which will be equal to 170 min. 

The resulting formulation includes a total of 245 
variables and 834 constraints for consistent sublots with 
intermingling case where all machines are unavailable. 
The solution was achieved after running the solver for 
85 min. Table 4 summarizes the completion times of 
each sublot where all machines are unavailable due to 
performing maintenance tasks. Sublot sizes are as 
follows:  

 

u111 = u112 = u113 = u114 = 7,u211 = u212 = u213 = u214 = 7, 

u311 = u312 = u313 = u314 = 6, u121 = u122 = u123 = u124 = 6, 

u221 = u222 = u223 = u224 = 8, u321 = u322 = u323 = u324  = 6, 

u131 = u132 = u133 = u134 = 3, u231 = u232 = u233 = u234 = 6 

and u331 = u332 = u333 = u334 = 6  

 
Product quantities are:  



 

 

Res. J. App. Sci. Eng. Technol., 7(12): 2563-2568, 2014 

 

2567 

 
 

Fig. 1: Optimal solutions of example with intermingling integer consistent sublots 

 

 
 

Fig. 2: Optimal solutions of example with intermingling integer consistent sublots where all machines need preventive 

maintenance 

 

 
 

Fig. 3: Optimal solutions of example without intermingling integer consistent sublots 

 

p11 = p12 = p13 = p14 = p21 = p22 = p23 = p24 = 20 and 
p31 = p32 = p33 = p34 = 15, with all inventory level 
or Sjk = 0 
 

Completion times of maintenance tasks on machines 

1 to 4 are 76, 119, 117 and 125 min, respectively. 

Figure 2 demonstrated the Gantt chart of this 

problem. 

Table 5 summarized the results of lot streaming 

problems with and without maintenance tasks. Columns 5 

and 6 of Table 5 are achieved with the following 

formulations. Zbest and best makespan are 3570 and 170, 

which belong to consistent sublots with intermingling 

case when machines do not need preventive maintenance. 

Comparison of total cost Z = (z - zbest) /zbest×100 and 

comparison of cmax = cmax - ��������/��������×100 For 
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instance, the makespan of consistent sublots with 

intermingling case is 11% better than the makespan 

of consistent sublots without intermingling case when 

all machines are available. 
Figure 1 to 3 are Gantt charts of these problems. 

Optimal sequence for schedule without lot streaming 

is 1-2-3 and the makespan is 245 (achieved through 

SPT rule (Johnson, 1954)). The percentage of 

makespan decrease due to lot streaming in 

permutation flowshop is 30% as compared to the best 
makespan. 

 

CONCLUSION 

 
In this research, the first mathematical model for 

the integration of lot sizing and flow shop scheduling 
with lot streaming was developed. A mixed-integer 

linear model for multiple products lot sizing and lot 

streaming problem was proposed. Mixed-integer 

programming formulation was proposed which 

enabled user to find optimal production quantities, 

inventory levels, sublot sizes and sequences 
simultaneously. Two situations were considered: 

 

• All machines were available.  

• All machines needed preventive maintenance 

tasks. 
  

For both situations a mixed-integer formulation was 

developed. Anumerical example was used to 

demonstrate the practicality of the proposed model. It 

was shown that, the best makespan can be achieved 

through the case of consistent sublots with 
intermingling. Since increase in the number of binary 

and integer variables generally make lot streaming 

problems difficult to solve, the use of meta-heuristic 

methods to handle large-scale problems deserves 

further research. The proposed model is adapted to 

consistent sublot type. Extension of this model for 
variable sublot types could be a topic for further 

study.  
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