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Abstract: The stock assessment of organic carbon and total nitrogen in the soil in addition to their relationships with 
site characteristics is of major importance whether at local, regional or global scale. The improvement of 
pedotransfer functions for these stocks evaluation in soils is a key for sustainability of agro-systems, especially in 
erodible systems of Mediterranean semi-arid areas. This work aimed to study relationships between total nitrogen 
stocks and other physico-chemical properties of clayey and sandy soils of Tunisian database and to do this, we used 
pedotransfer functions and structural equations modeling. For modeling total nitrogen stocks, two Tunisian soil 
databases composed from 450 horizons of clayey soils and 602 horizons of sandy soils were used. The optimal 
models of nitrogen stocks were given by two significant pedotransfer functions: (i) that of clayey soils with a 
standard error of prediction of 18.51 and associated p-value of 0.000 and (ii) that of sandy soils with a standard error 
of prediction of 5.76 and associated p-value of 0.016. Then, we perform a path analysis using structural equations 
modeling and Bayesian analysis to investigate simultaneously the interactions between the different components of 
the soil properties and their relationships with total nitrogen stocks. Results show that, in both soil types, the stock of 
total nitrogen is always controlled in the same way; it is significantly linked to chemical properties and bulk density 
more than by physical properties. The root mean square errors of the approximations were 0.080 and 0.043 for the 
clayey and sandy models, respectively. 
 
Keywords: Mediterranean region, modeling, nitrogen stock, path analysis 

 
INTRODUCTION 

 
The importance of an understanding of the national 

levels of Organic Matter (OM) is reinforced by the 
statements of the Framework Convention of United 
Nations on Climate Change (UNFCCC) signed at Rio 
de Janeiro in 1992. In fact, the UNFCCC aims to 
stabilize greenhouse gas concentrations in the 
atmosphere at a level that limits adverse impacts on the 
global warming. Their Articles 3.3 and 3.4 describe the 
potential mechanisms which can reduce the emissions 
and the choice of activities that can increase terrestrial 
sinks (Smith, 2004). There are clear linkages between 
the United Nation Convention to Combat 
Desertification (UNCCD) and the UNFCCC. One of the 
most evident linkages concerns the soil Organic Matter 
(OM) status (Brahim et al., 2012). The stabilization of 
increasing N2O and CO2 concentration in the 
atmosphere is the major ecological concern of the world 
(Mishra et al., 2010). In fact, knowing the sequestration 
potential allows preserving the soil conservation and 
especially  helps  strengthen the “wells function” of soil  

and to offset anthropogenic emission of greenhouse 

gases. Organic Matter (OM), as transversal indicator, is 

a major determinant of soil fertility, water holding 

capacity, biological activity and is highly correlated to 

levels of above- and below-ground biodiversity. OM 

also influences structure, friability and aggregation of 

soil, which have major implications for its permeability 

and erodibility. The level of OM can, therefore, be a 

robust indicator of the degradation of a soil system 

(Brahim et al., 2012). Soil OM is a key element of 

some terrestrial ecosystem and any variation in its 

abundance and composition has significant effects on 

several of the processes that occur within the system 

(Batjes, 1996). The organic stock (carbon and nitrogen) 

is influenced by vegetation, soil types, climatic 

conditions and topography (Bedison and Johnson, 

2009). Vegetation is the main source of soil OM. For 

this reason, land uses are known to play a major role in 

organic stocks build up through organic matter input 

(Pandey et al., 2010) in different depths (Batjes, 1996; 

Bernoux et al., 2002; Brahim et al., 2010) and 
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bioclimatic zones into soils through the processes of 

soil aggregation (Brahim et al., 2011a).  

Global stocks of soil nitrogen are estimated at 133-

140 Pg of N (1 Pg = 10
15

 g) for the upper 100 cm 

(Batjes, 1996). In arid zones, soils are already poor to 

very poor in organic matter and are naturally unstable 

and easily eroded. Though “azote”, the French name for 

nitrogen given by Lavoisier, means “lifeless” and inert, 

this element is a major constituent of living organisms 

which catalyze key steps in biogeochemical cycling 

(Pansu et al., 1997). Nitrogen is a remarkable element; 

the vegetative growth of plants (leaves, stems and 

roots). The soil fertility is especially N dependent, the 

nitrogen problem is particularly crucial under arid soil 

conditions. As a result of a too low supply of total 

nitrogen, coupled with the relatively small fraction 

there of which is rendered available by plants, nitrogen 

poverty with its various manifestations is one of the 

prominent problems of soil fertility in Tunisia and 

especially in soils of arid and semi-arid Northern Africa 

areas. Many of these soils are situated in regions of 

high winter rainfall (extreme northwest) and produce an 

abundant spring growth; hence their nitrogen-content, 

owing to the large supply of decaying OM, may 

compare very favorably with that of an average soil of 

the humid region. In the Maghreb arid soils, however, 

which receive only 350 mm of rain per year or less, it is 

quite usual to find concentrations of total nitrogen 

below 0.01% in the air-dried surface soil. To do this, 

starting from the arid climatic conditions and meager 

vegetation that influence this low rate of nitrogen in the 

soil, it remains to study the effect of soil type on the 

stock of this important and vital element. Nitrogen was 

predicted by different biochemical properties (Trasar-

Cepeda et al., 1998). The biochemical properties are 

also closely related to physical and especially chemical 

soil properties because of the dynamic and interactive 

nature of soil processes (Schoenholtz et al., 2000).  

 

Many efforts have been made in research on the 
status   of   organic   stocks   in  the  soil  and  improved 
procedures for interpreting results. In recent decades, 
simple or multiple regressions models or Pedotransfer 
Functions (PTFs) and the Structural Equations 
Modeling (SEM) based on easily measurable soil 
properties are a suitable tool for the explanation. 
Studies of organic carbon stocks and total nitrogen in 
the Tunisian soils (Ibrahim et al., 2009; Brahim et al., 
2011a) have determined the stocks in each soil type, the 
total stock in the country and finally mapped and 
compiled the maps for the OC and TN. However, 
variables and factors affecting these stocks are well 
known, especially with regard to stock of total nitrogen. 
This study has two objectives:  

 

• To establish a model using PTFs based on different 
soil physical and chemical properties, in sandy and 
clayey soils from Tunisia 

• To build models using SEM, in order to estimate 
the real variables except the soil cover in these 
drylands 

 
MATERIALS AND METHODS 

 
Study area: Tunisia situated in North Africa and in 

south of Mediterranean Sea between the latitudes 32° 

and 38° North and between the longitudes 7° and 12° 

Est. It is located at the junction of the western and 

oriental Mediterranean and covering a surface of 

164000 km
2
, of which more than 67% are under semi-

arid and arid climate and the rest are under sub-humid 

and humid climate (Fig. 1). In spite of this small 

surface, nor the climate neither the vegetation are 

uniform. In fact, the geographical position and the 

general orientation of the topography are influenced at 

the North by the Mediterranean Sea and at the South by 

the Sahara. Concerning the Center, it is under the 

conjugated effect of these two elements. Even the

 
 

Fig. 1: Location of Tunisia in the Mediterranean Sea and localization of the bioclimatic zones: zone (I) zone (II) and zone (III); 

(1) dorsale; (2) gafsa-sfax line 
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dominance of calcareous rocks, geology consists of 

large range of type of rocks. It has for consequence an 

enormous variety of soils which can be regrouped in 

nine big classes (Brahim et al., 2010). At the same time 

Mediterranean and Saharian country, Tunisia shows 

several soil resources that relates the importance of the 

climatic and morphological effects on its physiography. 

From North to South, the country shows remarkable 

variation in organic matter content, going from 20% in 

the humid and sub-humid bioclimatic stages with dense 

vegetation, until 0.3% in the arid and Saharian 

bioclimatic stages with skinny and little abundant 

vegetations, except of the oases where the contents are 

relatively raised due to the artificial organic 

contributions (Brahim et al., 2011a). Pragmatically, the 

sampling is consisted of layer of soil, for the superficial 

slice 0-30 cm depth.  

Three main areas characterized the country: 

 

• The northern zone has three sub-climates; the 

humid, the sub-humid and the semi-arid. 

• The center zone is characterized by the semi-arid 

and arid climates, limited at the north by the 

Dorsale (mountain range system) (1) and spreads 

until the line of Gafsa-Sfax (2). 

• The southern zone has an arid and Saharian 

climate, spreads from the south of the mounts of 

Gafsa until the confines of the Sahara (Fig. 1). 

 

Soil sampling: Soils were sampled during the two 

years 2007-2009 in various climate and land use 

conditions. A total of 1052 soil samples were collected 

from 124 sampling sites, covering all types of land use. 

For modeling TN stocks, the samples were divided in 

two databases clayey and sandy soils including 450 and 

602 soil horizons, respectively. At each site, samples 

were collected at 0-30 cm depths. 

 

Laboratory analysis: The samples were transported to 

the laboratory and a part of soil passing through the 2 

mm sieve was used for analysis. The soil organic 

carbon content was determined by Walkley-Black 

method. The Total Nitrogen (TN) content was 

determined by Kjeldahl digestion method. The soil pH 

was measured in distilled water with dry soil by a pH-

meter. The soil bulk density (Db) was determined as the 

dry weight per unit volume of soil core (cylinder 

method) after a 12 h drying in an oven at 105°C. The 

granulometric fraction were calculated after soil 

dispersion with sodium hexametaphosphate (Robinson 

pipette method): clay (particle 0-2 µm), silt (fine and 

coarse 2-50 µm) and sand (fine and coarse; 50-2000 

µm) are calculated in percent. Calcium carbonate 

(CaCO3) content was determined by Bernard calcimeter 

method. All procedures used for the soil analysis are 

detailed in Pansu and Gautheyrou (2006). 

 

Data analysis:  

Pedotransfer Functions (PTFs) or Multiple Linear 
Regressions (MLR): Predictive equations using simple 
or multiple regressions (also named Pedotransfer 
functions-PTFs) were generally developed within one 
specific soil unit and/or for specific ecosystem (Wang 
et al., 2012). 

MLR constitutes an accurate tool to evaluate soil 

quality, since it generates a minimum data set of 

indicators. MLR have been successfully used by 

different authors to evaluate soil quality, being used in 

natural forest soils balanced with the overall 

environment (Trasar-Cepeda et al., 1998) or in 

agriculture soils under different management (Lentzsh 

et al., 2005; Bernoux et al., 1998; Brahim et al., 2012). 

The objective of the present work is: firstly, to establish 

a models using MLR based on different soil physical 

and chemical properties, in different zones from 

Tunisia, so that we can searched equations (N = β0 + β1 

X1 + β2 X2 + ... + βn Xn + ε. where, N is the 

dependent variable and X1, X2,…. Xn the independent 

variables as well as the soil physical and chemical 

properties) for both groups of soils. Then, all the 

variables would be included simultaneously into single 

model in order to test the interactions between the 

independents variables as well as their contributions on 

the dependent variable. 

The procedure used was a stepwise linear 

regression, which allowed independent variable to be 

individually added or deleted from the model at each 

step of the regression. The MLR method was used 

because it is a practical tool that furnishes direct 

quantitative results and also because the data set was 

not adapted to spatial analysis such as geostatitics due 

to lacking or imprecise geographic coordinates. 

In the linear regressions, only parameters with 

statistical significance at the 0.01 significance level 

were considered for computing predictive equations and 

reporting results. Standard Error of the Prediction (SEP) 

and percentage of variance explained, through R
2
 

values, were used as means to evaluate the reliability of 

the models. All the statistical analyses were conducted 

using the SPSS 16.0 software. The optimal models of 

nitrogen stocks are obtained by PTFs combined with 

Principal Component Analysis (PCA) to eliminate 

multicollinearity among variables (Wang et al., 2012). 

 
Structural Equation Modeling (SEM): Structural 

Equation Modeling (SEM) is a statistical methodology 

that takes a confirmatory approach to the analysis of a 

structural theory bearing on some phenomenon. 

Typically, this theory represents “causal” processes that 

generate observations on multiple variables (Bentler, 

1989, 1990, 1992). The structural equation modeling 
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Table 1: Summary of indicative thresholds adjustment tests of SEM 

Abréviation Fit index  
Stringent 
thresholds levels 

Acceptable threshold 
levels for complex models References 

χ2/df Chi-square/degrees of 
freedom 

<2 or 3 <5  Wheaton et al. (1977) and
Tabachnick and Fidell (2007) 

GFI Goodness of fit index >0.9 >0.95  Tabachnick and Fidell (2007) 
AGFI Adjusted goodness of fit index >0.8 >0.95 Tabachnick and Fidell (2007) 
PGFI Parsimony goodness of fit index <0.5 >0.90  Mulaik et al. (1989) and

Crowley and Fan (1997) 
NFI Normed fit index >0.8 >0.95  Hu and Bentler (1999) 
TLI Bentler-Bonett non-normed fit  

index or NNFI 
>0.9 >0.95  Sharma et al. (2005) 

RFI Relative fit index >0.9 >0.80  Hu and Bentler (1999) 
IFI Incremental fit index >0.9 >0.80 Miles and Shevlin (2007) 
CFI Comparative fit index >0.9 >0.95  Hu and Bentler (1999) 
RMR Root mean square residual <0.05 <0.08  Hu and Bentler (1999) 
RMSEA Root mean square error of 

approximation 
<0.06 or 0.07 <0.09 or 0.1  MacCallum et al. (1996) and

Steiger (2007) 

 

 
 

Fig. 2: Maps of Tunisian soil organic stocks in 0-30 cm 

depth, (a)  map  of soil organic carbon stock (Brahim 

et al., 2011a), (b) map of soil total nitrogen stock 

(Ibrahim et al., 2009) 

 

conveys that the causal processes under study are 

represented by a series of structural equations. And that 

these relations can be modeled. The model can then be 

tested statistically in a simultaneous analysis of the 

entire system of variables to determine to which it is 

consistent with the data. 

Several aspects of SEM set it apart from the older 

generation of multivariate procedure (Fan et al., 1999). 

First, as noted earlier, it takes a confirmatory, rather 

than an explanatory, approach to the data analysis 

(although aspects of the latter can be addressed). 

Furthermore, by demanding that the pattern of inter 

variable relations be specified a priori, SEM lends itself 

well to the analysis of data for inferential purpose. By 

contrast, most other multivariate procedures are 

essentially descriptive by nature, so that hypothesis 

testing is difficult, if not impossible. Second, although 

traditional multivariate procedures are incapable of 

either assessing or correcting for measurement error, 

SEM provides explicit estimates of these error variance 

parameters (Byrne, 2009). All the statistical analyses 

were conducted using the Amos 4.0 software. 

Table 1 show the variety of different fit indices 
used in structural equations modeling. To clarify things, 
stringent thresholds levels are inventoried in a column 
and Acceptable threshold levels for complex models in 
a second column. In the field of structural equation 
modeling, it is difficult to have stringent thresholds 
(Kenny and McCoach, 2003; Marsh et al., 2004) this is 
why many authors (Table 1) gave the solution by 
acceptable threshold levels. 

 
Tunisian soil organic stocks and their maps: For 
Tunisia, organic stocks were already calculated in 
previous studies. In fact, the TN stock (Ibrahim et al., 
2009) and the OC stock (Brahim et al., 2011a) were 
calculated from 0-30 cm depth and maps of density  
were developed in this topic (Fig. 2). The methodology 
used by these authors is summarized as follows: 
 
Soil map: The soil map constructed by Belkhodja et al. 
(1973) at the scale (1:500.000) is digitized. Nine main 
orders of soils were inventoried: Lithosols, Regosols, 
Cambisols, Vertisols, Kastanozems, Podzoluvisools, 
Luvisols, Solonchaks and Gleysols. The total number of 
soil map units was 34049. 
 
Procedure for determining the individual SOC 
stocks and TN stocks: To estimate SOC or TN stocks, 
requires knowledge of the vertical distribution of OC in 
profiles. The way of calculating stocks for a given 
depth consists of summing SOC Stocks by layer 
determined as a product of Db, OC concentration and 
layer thickness. For an individual profile with n layers, 
we estimated the organic carbon stock by the following 
equation: 
 

Stock = � [	
�
�
�
� × (OC �� TN)� × 	�]  

 

where, Stock is expressed in kg OC or TN/m
2
, Dbi is the 

bulk density (Mg/m
3
) of layer i, OCi or TNi is the 

proportion of organic carbon (g OC/g) and total 

nitrogen (g TN/g) in layer i, respectively. Di is the 

thickness of this layer (cm). Next step of calculation, 

SOC density or TN density of each great order was 

multiplied   by   its   respective   area  to  estimate  SOC 
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storage for each soil map units. Summation of 

individually of carbon of the nine great soil orders gave 

total carbon and nitrogen stock in Tunisia. 

 

RESULTS AND DISCUSSION 

 

The database of Tunisian soils: This study used data 

from the Tunisian soils. For building of two models of 

TN stocks under clayey soils and sandy soils, two 

databases were used. The first was constructed from 

clayey soils, it was made of 170 soil profiles, 

corresponding to 450 soil horizons, the second was 

constructed from sandy soils it was made of 602 soil 

horizons, corresponding to 285 soil profiles. 

Descriptive statistics for all databases are reported in 

Table 2. 

 

Pedotransfer Functions (PTFs) for estimating TN 

stocks:  

PTFs for clayey soils: Multiple Linear Regression 

(MLR) analyses were carried out on all the data and 

subgroups according to soil types.  

In the linear regressions, only parameters with 

statistical significance at the 0.01 significance level 

were considered for computing predictive equations and 

reporting results. Standard  Error  of  the  estimate  (SE) 

and percentage of variance explained, through R values, 

were used as means to evaluate the reliability of the 

models. The input variables were chosen either because 

they are known to influence TN stocks. 

In order to group the different soil properties to the 

smallest possible subsets representing most of the 

original data set variation, PCA was performed and 

then these variables were summarized into four 

principal components with eigenvalue >1, interpreting 

68.47% of the total variance (Table 3). 

The first and the most important component (PC1), 

explaining 22.65% of the variation, showed high factor 

loadings (>0.50) for OC, OM, Db and soil pH. The 

second component (PC2) loaded heavily on coarse silt 

and fine sand and explained 18.86% of the total 

variance. The third component (PC3) had high loadings 

for soil clay, fine silt contents, OC/TN and CaCO3. The 

highly weighted variables in the fourth component 

(PC4) were coarse sand.  

Table 4 shows the matrix of correlations between 

TN stock and soil properties. There are 13 variables in 

the matrix. The correlation coefficients show that a TN 

stock is significantly related to 5 variables (F-Silt, C-

Silt, F-Sand, TN and OC/TN) at the 0.05 probability 

level. 

Relationships of TN stock with soil properties were 

obtained by multiple regression analysis with the

 
Table 2: Summary of indicative thresholds adjustment tests of SEM 

  Clay F-silt C-silt F-sand C-sand OC pH OM Db CaCO3 TN OC/TN 

TN stock t/ha 

0-30 cm depth 

Database of clayey soils 

Valid case 450 450 450 450 450 450 450 450 450 450 450 450 450 

Minimum 18.00 0.00 0.00 0.00 0.00 0.10 5.40 0.11 0.87 0.00 0.01 1.40 0.139 

Maximum 81.40 51.00 30.10 30.60 38.00 6.40 9.62 11.00 1.80 85.80 2.79 75.00 179.28 

Mean 45.77 22.84 12.18 12.25 7.32 1.19 7.90 2.05 1.50 15.09 0.24 11.81 8.80 

Std. deviation 12.33 9.87 7.17 7.16 6.91 0.92 0.66 1.63 0.14 17.10 0.45 6.03 19.11 

Variance 151.91 97.39 51.41 51.29 47.78 0.86 0.44 2.65 0.02 292.55 0.20 36.37 365.07 

Database of sandy soils 

Valid case 602 602 602 602 602 602 602 602 602 602 602 602 602 

Minimum 0.00 0.00 0.00 0.00 0.10 0.06 4.90 0.01 0.63 0.00 0.00 0.00 0.10 

Maximum 41.00 49.00 47.00 84.00 93.00 5.78 9.30 11.00 1.90 98.21 1.72 58.52 84.00 

Mean 16.56 16.27 10.54 29.87 29.83 1.03 7.46 1.90 1.57 11.11 0.13 3.93 10.97 

Std. deviation 8.62 11.39 6.82 14.98 20.71 0.95 1.01 1.75 0.15 13.46 0.19 5.79 6.86 

Variance 74.22 129.78 46.51 224.41 428.75 0.90 1.02 3.06 0.02 181.15 0.03 33.55 47.10 

 

Table 3: PCA results based on different clayey and sandy soil properties 

Database 

Clayey soils   

-------------------------------------------------------------------------- 
Sandy soils  

-------------------------------------------------------------------------------------------- 
Principal component  PC1 PC2  PC3  PC4 PC1 PC2  PC3  PC4  PC5 

Eigenvalue  3.08 2.26  1.70 1.18 2.843 2.10  1.44  1.29  1.05 

% total variance  25.65 18.86  14.15 9.80 23.69 17.54  11.96  10.74  8.77 

Cumulative %  25.65 44.52  58.67 68.47 23.69 41.23  53.20  63.94  72.71

Factor loading           

Clay  0.45 -0.33 -0.54 0.40 0.04 0.61 -0.60  0.12  0.03 

F-silt -0.29 -0.26  0.67 0.29 0.02 0.46  0.13  0.34 -0.04 

C-silt -0.42 0.87  0.00 -0.02 0.02 0.66 -0.04 -0.27 -0.02 

F-sand -0.43 0.87  0.00 -0.03 -0.09 0.27  0.88  0.00 -0.04 

C-sand  0.25 -0.18 -0.05 -0.90 -0.03 -0.92 -0.30 -0.02  0.00 

OC  0.85 0.31  0.29 0.09 -0.19 -0.13  0.13  0.75  0.03 

pH -0.52 -0.33  0.09 0.20 0.93 0.06 -0.01 -0.09 -0.03 

OM  0.85 0.32  0.30 0.09 0.93 0.09 -0.01 -0.10 -0.01 

Db -0.78 -0.11 -0.04 -0.07 -0.66 0.16  0.49  0.19  0.06 

TN  0.20 0.45 -0.28 0.16 0.35 0.10 -0.06 -0.11 -0.75 

OC/TN -0.06 0.03  0.59 0.08 0.19 0.04 -0.08 -0.08  0.86 

CaCO3  0.08  -0.11  0.59 -0.17 -0.09 0.06 -0.16  0.80 -0.01 
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Table 4: Bivariate correlation of TN stock with some clayey soil properties 

  TN stock Clay  F-silt  C-silt F-sand  C-sand  CaCO3 Db pH OM OC TN OC/TN

TN stock 1.000             

Clay -0.027 1.000            

F-silt -0.140** -0.426**   1.000           

C-silt 0.233** -0.415**  -0.154**   1.000          

F-sand 0.221** -0.416**  -0.156**   0.974** 1.000         

C-sand -0.034 -0.144**  -0.277**     -0.243** -0.243**  1.000        

CaCO3 -0.065 -0.125**  0.204**     -0.075 -0.076  0.099*  1.000       

Db 0.011 -0.287**  0.196**   0.195**    0.218** -0.133** -0.050 1.000      

pH -0.037 -0.059  0.232** -0.029 -0.029 -0.122**  0.098* 0.321** 1.000     

OM 0.030 0.135**  -0.094* -0.083* -0.085*  0.077  0.150** -0.599** -0.424** 1.000    

OC 0.026 0.143**  -0.098* -0.097* -0.098*  0.084*  0.134** -0.596** -0.420** 0.993** 1.000   

TN 0.835** 0.049**  -0.166**   0.213** 0.193** -0.041 -0.092* -0.202** -0.088* 0.194** 0.193** 1.000  

OC/TN -0.195** -0.167**  0.178**   0.058 0.061 -0.065  0.157** -0.041 0.086* 0.064 0.074 -0.195** 1.000 

**: Correlation is significant at the 0.01 level; *: Correlation is significant at the 0.05 level 

 

Table 5: Bivariate correlation of TN stock with some sandy soil properties 

  TN stock clay F-silt  C-silt  F-sand  C-sand CaCO3 Db pH OM OC TN OC/TN 

TN stock 1.000                   

Clay 0.061  1.000            
F-silt 0.019  0.123**  1.000           
C-silt 0.099*  0.150**  0.065  1.000          

F-sand -0.032  -0.266**  0.138**  0.012  1.000         
C-sand -0.039  -0.430** -0.382** -0.520 -0.552**  1.000        
CaCO3 -0.005  0.129**  0.113** -0.082** -0.063 -0.034 1.000       
Db -0.071  -0.145**  0.067  0.057*  0.450** -0.237** 0.126** 1.000      

pH -0.024  -0.047  0.070 -0.106**  0.031  0.083* 0.369** 0.348** 1.000     
OM 0.109**  0.111** -0.035  0.138** -0.107** -0.102* -0.168** -0.530** -0.239** 1.000    
OC 0.094*  0.094* -0.062  0.120** -0.104* -0.076 -0.162** -0.552** -0.228** 0.863** 1.000   

TN 0.764**  0.057   0.011  0.123** -0.013 -0.068 -0.088* -0.290** -0.148** 0.312** 0.284**  1.000  
OC/TN -0.318**  0.063 -0.037  0.040 -0.093*  0.001 -0.046 -0.128** -0.061 0.122** 0.083* -0.315** 1.000 

**: Correlation is significant at the 0.01 level; *: Correlation is significant at the 0.05 level 

 
stepwise method using the PCA-derived subset of al 
variables using all the available parameters, the best 
MLR resulted in the following equation is: 

 
TN stock = 6.494 (±2.854) + 0.577 C-Silt (±0.123) 
-0.207 F-Silt (±0.09)  
(R = 0.256; SE = 18.51; p = 0.000<0.05) 
 
The  regression  equation  were highly significant 

(p = 0.000) and relationships is given essentially by the 
two variables coarse silt and fine silt. Therefore we find 
that the stock of total nitrogen is explained by the 
physical properties (coarse and fine silt) and not by 
chemical properties. 
 
PTFs for sandy soils: We proceed in the same way as 
clay soils. PCA was performed and then these variables 
were summarized into five principal components with 
eigenvalue >1, interpreting 72.71% of the total variance 
(Table 3). 

The first component (PC1), explaining 23.69% of 
the variation, showed high factor loadings (>0.50) for 
soil pH, OM and Db. The second component (PC2) 
loaded heavily on coarse sand, coarse silt and clay and   
explained 17.54% of the total variance. The third 
component (PC3) had high loadings for fine sand and 
clay contents. The fourth component (PC4) had high 
factor loadings for CaCO3 (0.80) and OC (0.75). The 
highly weighted variables in the fifth component (PC5) 
were TN and OC/TN. 

Table 5 shows the matrix of correlations between 
TN stock and soil properties. There are 13 variables in 
the matrix. The correlation coefficients show that a TN 
stock at sandy soils is significantly related to 5 
variables, where OM, TN and OC/TN at the 0.01 level 
of significance; and Coarse silt and OC at the 0.05 
probability level. 

Using all the available parameters, the best MLR 
resulted in the following equation: 

 
TN stock = 3.044 (±0.433) + 0.84 C-Silt (±0.035)  
(R = 0.099; SE = 5.76; p = 0.016<0.05) 

 
Pedotransfer function is significant at p = 0.016 

(<0.05*) and relationships is given by the only coarse 
silt variable. Same with sandy soils, we come across the 
same result; the TN stock is explained first by the 
physical properties (coarse silt). 

R is relatively low for both PTF equations. 
However, they are reliable by significant p and 
statistically are acceptable. We searched for PTF with 
physical properties (Clay, silt and sand) for two 
reasons: 
 

• When the nitrogen content was then the stock is 
estimated directly  

• We have tried to determine the variable that 
controls the storage in such type’s soils under arid 
and semi-arid zones 

 

Modeling TN stocks by SEM: 
SEM for clayey soils: Statistical modeling is an 
accepted scientific practice. In this study, we use the 
Structural Equation Modeling (SEM), this methodology 
is characterized by:  
 

• Translation of the soil rather complicated 
phenomena and to express it in terms of 
environmental conceptual factors.  

• Consolidation, after exploratory factor analysis 
(EFA, exploratory factor analysis: EFA), factors 
measured in question with the observed variables 
assuming explicitly that alone cannot explain the 
latent variable. 
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We followed the following methodology:  

 

• Firstly, through an exploratory factor analysis (or 

PCA), we created a conceptual model explaining 

the organic carbon content in this stage, we use the 

statistical software SPSS 16.0. 

• Then, after determining the latent structure, we 

conducted a Confirmatory Factor Analysis (CFA), 

at this level, we test statistically the relationships 

between variables using the software Amos 4.0. 

Using this method, our model provided more 

accurate estimates due to estimation error term. 

The steps in the structural equation modeling are 

well detailed by Brahim et al. (2011b). After 

carrying out the different steps, we built the model 

of nitrogen stocks in the clayey soils of Tunisia. 

The model is focused on Fig. 3. We found that the 

TN stock is determined by two variables. The first 

latent variable "Physical properties" with three 

indicator variables, Clay, C-Silt and F-Sand. The 

second latent variable ''Chemical properties and 

Db'' is measured by three observed variables, OM, 

pH and Db. The principle of the selection of these 

indicators is based on the results of Principal 

Component Analysis (PCA). Figure 3 shows the 

covariance between measurement errors for the 

observable indicators of latent exogenous variables 

(δ1 and δ6), bulk density (Db) is generally 

associated with clay (Jones, 1983; Bernoux et al., 

1998; Benites et al., 2007). The model has a value 

of χ
2
 = 2 46 742 (Degree of Freedom DF = 12) and 

the value χ
2
/DF = 3.89 (<5) is satisfactory 

according to James et al. (1982). 

 

From the RMR value of 3.217, we can conclude 

that this model is acceptable. According to the and 

AGFI whose values 0.972 and 0.936 respectively, we 

can conclude that our model is also satisfactory. In the 

case of this model value is 0.417 PGFI this index takes 

into account the complexity of the model (Mulaik et al., 

1989). Generally, the index of parsimony is accepted 

for a lower threshold than that of adjustment index. In 

our case the PGFI is also acceptable because of this low 

value. With regard to the index CFI it provides a 

comprehensive measure of covariance in the data and 

the value 0.980 for a model was considered 

representative (Bentler, 1989) suggesting that the model 

represents an appropriate form of data. Finally, the 

RMSEA takes into account the error of approximation. 

It is independent of the sample size of the database and 

the complexity of the model (Browne and Cudeck, 

1989, 1993). Values less than 0.080 indicate a good 

model fit. 

 

SEM for sandy soils: We performed the same way for 

modeling TN stock in sandy soils than TN stock 

modeling in clay soils. The resulting model is focused 

on Fig. 4. Latent variables in sandy soils are "chemical 

properties and Db" and "physical properties". These two 

latent variables are related to the observed variables.

 

 
 

Fig. 3: The estimated parameters of the model predicting TN stock in Tunisian clayey soils 

χ2 (chi-square) = 46.742; DF (Degrees of Freedom) = 12; GFI (Goodness of Fit Index) = 0.972; AGFI (Adjusted 

Goodness of Fit Index) = 0.936; RMR (Root Mean Square Residual) = 3.217; NFI (Normed Fit Index) = 0.974; PGFI 

(Parsimony Goodness of Fit Index) = 0.417; RFI (Relative Fit Index) = 0.954; IFI (Incremental Fit Index) = 0.980; TLI 

(Bentler-Bonett non-normed fit index or NNFI) = 0.966; CFI (Comparative Fit Index) = 0.980; RMSEA (Root Mean 

Square Error of Approximation) = 0.080 
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Fig. 4: The estimated parameters of the model predicting TN stock in Tunisian sandy soils 

χ2 = 14.727; DF = 7; GFI = 0.992; AGFI = 0.976; RMR = 1.207; NFI = 0.970; PGFI = 0.331; RFI = 0.935; IFI = 0.984; 

TLI = 0.965; CFI = 0.984; RMSEA = 0.043 

 

We have assumed that the first latent variable "physical 

properties" as an indicator variables measured, the F-

Silt and F-Sand. The second latent variable is measured 

by two variables observable pH, OM and Db. 

The principle of selection of these indicators is 

based on the findings of the analysis by PCA. Because 

naturally the bulk density (Db) is associated with the 

mineral fraction of the soil (Jones, 1983; Bernoux et al., 

1998; Benites et al., 2007), we show the covariance 

between measures errors for the observed indicators of 

exogenous latent variables (δ2 and δ5). 

The model has a value of χ
2
 = 14.724 (degree of 

freedom df = 7) and the value χ
2
/df = 2.10 (<5) is 

satisfactory according to James et al. (1982). From 
RMR of 1.207; we can conclude that this model is 
acceptable.  From  the  values  of GFI = 0.992 and 
AGFI = 0.976, we can conclude that the model is also 
satisfactory. PGFI value of 0.331 is significant 
according to Mulaik et al. (1989). Relative Fit Index 
and Incremental Fit Index (0.935 and 0.984) are 
representative values and the model is acceptable. The 
CFI and TLI values which are 0.984 and 0.965, 
respectively suggest that the model represent an 
appropriate form of data. 

The RMSEA takes into account the error of 

approximation. It is independent of the sample size and 

the complexity of the model. According to Browne and 

Cudeck (1989, 1993) values below 0.08 indicate a good 

fit of the model, in this model RMSEA = 0.043. 

 

Comparison of the two types of models (PTFs and 

SEM): After modeling the stock of total nitrogen in 

clayey and sandy soils of Tunisia by two methods, with 

Pedotransfer Functions (PTFs) and with the structural 

equations, we conclude that the PTFs do not take into 

account all the variables of the soil and in both soil 

types we obtained models with "physical properties" 

that are coarse and fine silt for clayey soils and coarse 

silt for sandy soils. Although the models are significant 

(p<0.05) they have low R values. However, they show 

that silt is a fraction in the intercalation of essential 

stock of total nitrogen in different Tunisian soils. 
For Structural Equations Modeling (SEM), we 

tested the interaction of different physicochemical 
variables at the same time, we understand that, in 
addition to the silt fraction, which is essential in the 
storage already determined by PTFs, other variables can 
control the stock. Using SEM, we have built and tested 
two models, which provides an adequate explanation 
for the change in the stock of total nitrogen in two types 
of soil: clayey and sandy. 

The results show that in clayey soils, the chemical 

and bulk density properties play the most important role 

in the control of the stock of total nitrogen. In fact, pH, 

OM and Db are the main variables responsible for the 

storage of total nitrogen with γ (coefficients of 

exogenous latent variables) = 2.03 against γ = -1.00 for 

physical properties (clay, coarse silt and fine sand). The 

same result is obtained with sandy soils, where the 

results show that the chemical and bulk density 

properties (pH, OM and Db) with γ = 0.66 are the best 

indicators of the stock of total nitrogen as factors 

physical with γ = 0.33. 

The soils of arid and semi-arid Mediterranean area 

are threatened by erosion and desertification and the 

recovery of these degraded lands requires sequestration 

of organic matter and total nitrogen among other 

inhibits both phenomena and improves fertility soil. 

Both models illustrate the main factors affecting the 

organic stock in the clayey and sandy soils. 
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With both types of models (PTF’s and SEM) are 

founded at the level of the Tunisian aridisols, TN is 

related to the fine particles of the soil, primarily to the 

silt. These results are in corroboration with its several 

soil studies in temperate and tropical zones. The 

stabilization of OC and TN by association with silt and 

clay particles has been investigated in many studies. 

Several studies reported a relationship between clay or 

silt plus clay content and the preservation of OC and 

TN (Feller and Beare, 1997; Hassink, 1997). It has also 

been reported that not only the clay content but also the 

clay type influences the preservation of OC and TN 

(Ladd et al., 1992; Torn et al., 1997; Sorensen, 1971). 

Feller et al. (1996) linked critical values of soil organic 

matter for both soil fertility and erodibility in tropical 

soils. A critical threshold of soil organic matter, based 

on a linear equation utilizing soil silt and clay content, 

was useful in predicting the sustained fertility and 

productivity of a collection of tropical soils (Feller and 

Beare, 1997). Six et al. (2002) regressed the amount of 

OC associated with silt and clay content (%) for 

tropical and temperate soils and both regression lines 

were significant, indicating a positive influence of clay 

and silt particles on OC stabilization. However, the 

coefficient of determination was lower in temperate 

than in tropical soils. Results also indicate a lower 

stabilization of OC per unit of silt and clay particles 

and, hence, a lower OC protective capacity of the silt 

and clay particles in tropical versus temperate soils. 

 

CONCLUSION 

 

The current study shows that changes in the stock 

of total nitrogen with soil texture are positively 

correlated with the chemical and physical properties of 

the soil. 

After performing a Principal Components Analysis 

(PCA) and pedotransfer equations (PTFs) it was found 

that the physical properties of soils can explain better 

storage than chemical properties. And this result is 

validated in two soil types (clayey and sandy). 

With the Structural Equation Modeling (SEM), two 

models were constructed. These models have provided 

a satisfactory explanation of the variance of the stock of 

total nitrogen in two different soil types (clayey and 

sandy). 

The results show that the physical and chemical 

properties have independent effects on the stock. 

Indeed, the results show that in clay soils, chemical 

properties and bulk density are the most important role 

in controlling the stock of nitrogen. Organic matter, pH 

and Db are the main variables responsible for the 

storage of OC linked to? Physical properties which are 

clay, coarse silt and fine sand. Similarly, in sandy soils 

results show that chemical factors (i.e., OM, pH and 

Db) are the best indicators of the TN stock that the 

physical properties (fine silt and fine sand). 

We can build relationships with simple PTFs to 

explain the stock of nitrogen in two soils when we have 

a small number of variables, although the SEM is the 

best in the explanation because of complexity with all 

variables. Results also suggest that SEM models 

explain better the total nitrogen stock than PTFs 

models. 

Soils at semi-arid Mediterranean climate are 

specially threaten by erosion and desertification 

phenomena and the restoration of these soils needs a 

carbon and nitrogen sequestration which inhibit these 

two phenomena and enhance soils fertility. 

Both models illustrate the key factors influencing 

the nitrogen storage in clay and sandy soils. Finally, the 

two models could be generalized in all arid and semi-

arid Mediterranean area. 
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