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Equation with a Weakly Singular Kernel 
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Abstract: The aim of study is to solve parabolic integro-differential equation with a weakly singular kernel. 
Problems involving partial integro-differential equations arise in fluid dynamics, viscoelasticity, engineering, 
mathematical biology, financial mathematics and other areas. Many mathematical formulations of physical 
phenomena contain integro-differential equations. Integro-differential equations are usually difficult to solve 
analytically so, it is required to obtain an efficient approximate solution. A numerical method is developed to solve 
the partial integro-differential equation using the cubic B-spline collocation method. The method is based on 
discretizing the time derivative using finite central difference formula and the cubic B-spline collocation method for 
the spatial derivative. Three examples are considered to illustrate the efficiency of the method developed. It is to be 
observed that the numerical results obtained by the proposed method efficiently approximate the exact solutions. 
 
Keywords: Central differences, collocation method, cubic B-spline, integro-differential equation, weakly singular 

kernel 

 
INTRODUCTION 

 
Consider the following partial integro-differential 

equation with a weakly singular kernel: 
 

0

( ) ( , ) ( , ) ( , ), [ , ], 0

t

t xxt s u x s ds u x t f x t x a b tβ − − = ∈ >∫    (1) 

 
Subject to the initial condition: 
 

10),()0,( 0 ≤≤= xxgxu                             (2) 

 
and appropriate boundary conditions: 
 

0 1( , ) ( ), ( , ) ( ), 0u a t f t u b t f t t= = ≥ Dirichlet 

conditions 
or 

0 1( , ) ( ), ( , ) ( ), 0x xu a t r t u b t r t t= = ≥ Neumann 

conditions                              (3) 
 
where, the kernel: 
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is a singular kernel at t = 0 and Γdenotes the gamma 
function, g0 (x), f0 (t), f1 (t), r0 (t), r1 (t) are known 
functions, f (x, t)

 
is a given smooth function and the 

function u (x, t)
 
is unknown. 

The integro-differential Eq. (1) along with the 

constraints (2) and (3) occurs in applications such as 

heat conduction in material with memory (Gurtin and 

Pipkin, 1968; Miller, 1978), compression of 

poroviscoelastic media, population dynamics, nuclear 

reactor dynamics etc. 

It can be seen that in Eq. (1), the kernel function 

has a weak singularity at the origin (Tang, 1993). This 

is particular interesting in viscoelasticity, because it 

might smooth the solution when the boundary data is 

discontinuous (Renardy, 1989). 

Solution of integro-partial differential equations 

has recently attracted much attention of research. Chen 

et al. (1992) used finite element method for the 

numerical solution of a parabolic integro-differential 

equation with a weakly singular kernel. In Fairweather 

(1994), spline collocation methods have been applied to 

obtain the numerical solution for a class of hyperbolic 

partial integro-differential equations. Huang (1994) 

used time discretization scheme for solving integro-

differential equations of parabolic type. Xu (1993a, b 

and c) used finite element method to solve parabolic 

partial integro-differential equation. Wulan and Xu 

(2010) used finite central difference/finite element 

approximations for the numerical solution of partial 

integro-differential equations. Soliman et al. (2012) 

used fourth order finite difference and collocation 

method for the numerical solution of partial integro-

differential equation. 
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In this study, the approximate solution of parabolic 
integro-differential equation with weakly singular 
kernel   is   proposed  using  cubic  B-spline  collocation 
method. The collocation method with B-spline basis 
functions represents an economical alternative, since it 
only requires the evaluation of the unknown parameters 
at the grid points. Haixiang et al. (2013) used quintic B-
spline collocation method for solving fourth order 
partial integro-differential equation with a weakly 
singular kernel. 

 
TEMPORAL DISCRETIZATION 

 
Consider a uniform mesh Δwith the grid points λij

 to discretize the region ],0[],[ Tba ×=Ω . Each λij is the 

vertices of the grid point (xi, tj) where xi = a + ih

Ni ...,,2,1,0=  
and , 0,1, 2,..., ,jt jk j M Mk T= = = . 

The quantities h and k are the mesh sizes in the space 
and time directions, respectively.  

A finite difference approximation is used to 
discretize the time derivative involved in Eq. (1) at time 
point t = tj+1

 
as: 
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where, ....,,2,1,0,)1( jrrrbr =−+= αα  

The discrete differential operator Lt
α

 
can be defined as: 
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The Eq. (4) can be rewritten as: 
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Substituting ),( 1+jt txuLα as an approximation of: 
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leads to the following difference scheme to Eq. (1): 
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It can further be written as: 
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The above equation can be rewritten as: 
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(6) 

where, 

  

....,,2,1,0,)1(),,()( 1

1 jrrrbtxuxu rj

j =−+== +
+ αα

 
 

Note that b0 = 1
 
and let ,)1(2 1

0

αα −+Γ= ka then 

the right hand side of Eq. (6) can be reformulated as: 

 

u
j+1 

(x) - a0

������

�	�
 = -b1u

j 
(x) + 
  (
��� −

���
��� 
���) 

u
j-r 

(x) - bju
1 
(x) + (bj-1 + 2bj) u

0 
(x) + a0 f 

j+1 
(x), j≥1 

(7) 

with the boundary conditions: 

  
1 1

0 1 1 1( ) ( ), ( ) ( ) (8)j j

j ju a f t u b f t+ +
+ += =

     (8) 

 

In each time level, there is an ordinary differential 

equation in the form of Eq. (7) with the boundary 

conditions Eq. (8), which is solved by cubic B-spline 

collocation method. The proposed scheme Eq. (7) is a 

three level scheme. In order to apply the proposed 

scheme, it is necessary to have the values of u at the 

nodal points at the zeroth (u
0
) and first (u

1
) level times. 

To compute u
1 

substitute j = 0 (the special case), in 

Eq. (5), it can be written as: 

 
2 1

1 0 1

0 02

1 1
( ) ( ) ( ) (9)

2 2

u
u x a u x a f x

x

∂
− = +

∂    (9) 

  

where, 0

0( , 0) ( )u u x g x= =  is the value of u at the 

zero
th

 level time (the initial condition). 

 

CUBIC B-SPLINE COLLOCATION METHOD 

 

Let 
0 1 2{ ... }Na x x x x b∗∆ = = < < < < =  be the 

partition of [a, b]. Let Bi 
be B-spline basis functions 

with knots at the points xi, i = 0, 1,…, N. Thus, an 

approximation  U
j+1

 (x)  to  the  exact   solution  U
j+1

 (x) 
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Table 1: Coefficient of cubic B-spline and its derivatives at knots xi 

 xi-2

 
xi-1

 
xi

 
xi+1

 
xi+2

 
else 

Bi (x)
 

0 1 4 1 0 0 

Bi
(1) (x)

 
0 3/h

 
0 -3/h

 
0 0 

Bi
(2) (x)

 
0 6/h2

 
-12/h2

 
6/h2

 
0 0 

 

At j+1 time level, can be expressed in terms of the 

cubic B-spline basis functions Bi (x) as: 
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where, ci 
are unknown time dependent quantities to be 

determined from the boundary conditions and 

collocation form of the integro-differential equation. 

The cubic B-spline Bi (x), 1, 0,..., 1i N= − +  can 

be defined as under: 
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The values of successive derivatives 
( ) ( ), 1,..., 1; 0,1,2r

iB x i N r= − + =  at nodes, are listed in 

Table 1. 

Let, U
j+1

 (x)  satisfies the boundary conditions: 
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and the collocation equations: 
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The above equation can be rewritten, by omitting 

the dependence of U
j+1

 (x)  on x as: 
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Substituting Eq. (10) into Eq. (11), it can be written as: 
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Simplifying the above relation leads to the 

following system of (N+1) linear equations in (N+3) 

unknowns 1 1 1 1 1

1 0 1 1, , ,..., , .j j j j j

N Nc c c c c+ + + + +
− +  

 
1 1 1

0 1 0 0 12 2 2

6 12 6
1 4 1 , 1, 0,1,2,..., (13)j j j

i i i ia c a c a c F j i N
h h h

+ + +
− +

     − + + + − = ≥ =     
        

(13) 

where,  
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To obtain the unique solution of the system (13), 

two additional constraints are required. These 

constraints are obtained from the boundary conditions. 

Imposition of the boundary conditions enables us to 

eliminate the parameters c-1 and cN+1 from the system 

(13). 

First the Dirichlet boundary conditions are used in 

order to eliminate c-1 and cN+1, as: 
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After eliminating c-1 
and cN+1, the system (13) is 

reduced to a tri-diagonal system of (N+1) linear 

equations in (N+1) unknowns. This system can be 

rewritten in matrix form as: 

 
j+1A C =F, 1, 2,3,... (14)j =              (14) 

 

where, 
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The coefficient matrix A is given as under: 
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The Neumann boundary conditions can also be 

applied in order to eliminate c-1 and cN+1, as: 

 

1 1 0
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After eliminating c-1 and cN+1, the system (13) is 

reduced to a tri-diagonal system of (N+1) linear 

equations in (N+1) unknowns. This system can be 

rewritten in matrix form as: 

 
j+1A C =F, 1, 2,3,... (15)j =              (15) 

 

where, 
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Using the system (13), for j = 1, following is the 

system of (N+1) linear equations in (N+3) unknowns 
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In order to find the value of 2 2 2 2

0 1C [ , ,..., ]TNc c c= , it 

is first needed to find the value of 1 1 1 1

0 1C [ , ,..., ]TNc c c= . 

The value of C
1
 is obtained, solving Eq. (9) using cubic 

B-spline collocation method, as: 
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The above Eq. (17) is a system of (N+1) linear 

equations in (N+3) unknowns 1 1 1 1 1

1 0 1 1, , , ..., ,N Nc c c c c− +
. To 

obtain the unique solution of this system, eliminate c-1 

and cN+1, using Dirichlet and Neumann boundary 

conditions. 

The time evolution of the approximate solution 

U
j+1 

is determined by the time evolution of the vector 

C
j+1

. This is found by repeatedly solving the recurrence 

relationship, once the initial vector 0 0 0 0

0 1C [ , ,..., ]
T

Nc c c= , 

has been computed from the initial condition. The 

recurrence relationship is tri-diagonal and so can be 

solved using Thomas algorithm. 

 

The initial state vector: The initial state vector C
0 

can 

be determined from the initial condition 
0

0( ,0) ( ) ( )u x u x g x= =  which gives (N+1) equations in 

(N+3) unknowns. For determining these unknowns the 

following relations at the knots are used: 
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which gives a tri-diagonal system of equations in the 

following matrix: 
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NUMERICAL RESULTS 

 

The proposed method is tested on the following 

three problems. Let: 
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Table 2: The errors ||eM||∞
 
and ||eM||2 when N = 60 and k = 0.0001 for 

example 1 

M ||eM||∞ ||eM||2 

10 4.1248 E-05 3.7654 E-06
20 2.3848 E-05 2.1770 E-06

30 1.2071 E-05 1.1019 E-06

40 3.1259 E-06 2.8536 E-07
50 4.0669 E-06 3.7126 E-07

 

Table 3: The errors ||eM||∞
 

and ||eM||2 when N = 60 and k = 0.001 for 
example 1 

M ||eM||∞ ||eM||2 

10 8.7764 E-04 8.0117 E-05

20 8.5436 E-04 7.7992 E-05
30 8.4063 E-04 7.6738 E-05

40 8.3093 E-04 7.5853 E-05

50 8.2337 E-04 7.5163 E-05

 
Table 4: The errors ||eM||∞ and ||eM||2

 
when M = 10 and k = 0.0001 for 

example 1 

N ||eM||∞ ||eM||2 

10 2.0176 E-03 4.5115 E-04

20 4.2892 E-04 6.7818 E-05

30 1.3503 E-04 1.7433 E-05
40 3.2197 E-05 3.5998 E-06

50 1.5396 E-05 1.5396 E-06

 

Table 5: The errors ||eM||∞ and ||eM||2 when N = 60 and k = 0.0001 for 
example 2 

M ||eM||∞ ||eM||2 

10 9.1411 E-05 6.8482 E-06

20 9.1003 E-05 5.3983 E-06
30 9.0654 E-05 5.5083 E-06

40 8.9746 E-05 5.5048 E-06

50 8.8599 E-05 5.4441 E-06

 

Table 6: The errors ||eM||∞ and ||eM||2 when N = 60 and k = 0.001 for 

example 2 

M ||eM||∞ ||eM||2 

10 9.9041 E-04 8.5887 E-05

20 9.8809 E-04 8.5793 E-05

30 9.8464 E-04 8.5511 E-05
40 9.8077 E-04 8.5187 E-05

50 9.7666 E-04 8.4844 E-05

 

Table 7: The errors ||eM||∞ and ||eM||2 when M = 10 and k = 0.0001 for 
example 2 

N ||eM||∞ ||eM||2 

10 8.5855 E-04 1.8436 E-04
20 1.6181 E-04 2.0645 E-05

30 4.0921 E-05 2.9628 E-06

40 1.3212 E-06 1.1620 E-06

 
1

, 0,1, 2, ..., , ,jt jk j M h
N

= = =
 

 

where M denotes the final time level tM and N+1 is the 

number of nodes. In order to check the accuracy of the 

proposed method, the maximum norm errors and L2 

norm errors between numerical and exact solution are 

given with the following definitions: 

 

0

1

22

2 2
0

Maximum norm error: max ( , )

1
norm error: ( , )

M

M i M i
i N

N
M

M i M i

i

e u x t U

L e u x t U
N

∞ ≤ ≤

=

= −

 
= − 

 
∑

 

Example 1: Following is the second order parabolic 

integro-differential equation: 

 
1

0

( )
( , ) ( , ) ( , ), [0,1], 0, 0.5 (18)

( )

t

t xx

t s
u x s ds u x t f x t x t

α

α
α

−−
− = ∈ > =

Γ∫
  

(18) 

with the initial condition: 

 

( ,0) sin , [0,1]u x x xπ= ∈  
 

and boundary conditions: 

 

(0, ) 0 (1, ), 0u t u t t= = ≥  
 

The exact solution of the problem is: 

 

( , ) ( 1) sinu x t t xπ= +  

 

The numerical solutions at N = 60, k = 0.0001 and 

k = 0.001, with different time levels M, are presented in 

Table 2 and 3 respectively. The numerical solutions at 

M = 10 and k = 0.0001 for different values of N are 

tabulated in Table 4. In Table 2 to 4, the time increment 

k, the space increment h = 
�

�
 and time level M are varied 

to test the accuracy of the proposed method, which 

indicates that the proposed method is substantially 

efficient. 

In order to indicate the effect of the proposed 

method for larger M, the exact solution and the 

numerical solution are plotted using N = 100, M = 500 

and k = 0.0001  as  shown  in  Fig. 1.  When  N = 100, 

k = 0.0001 and M = 10 the exact solution and the 

numerical solution at the M time level are shown in Fig. 

2. It can be observed from the Table 2 to 4 and Fig. 1 

and 2, that the proposed method approximates the exact 

solution very efficiently. 

 

Example 2: Following is the parabolic integro-

differential equation: 

 
1

0

( )
( , ) ( , ) ( , ), [0,1], 0, 0.5 (19)

( )

t

t xx

t s
u x s ds u x t f x t x t

α

α
α

−−
− = ∈ > =

Γ∫
    

(19) 

with the initial condition: 

 

( , 0) cos , [0,1]u x x xπ= ∈  
 

and Dirichlet boundary conditions: 

 

(0, ) ( 1),

(1, ) ( 1)cos( ), 0

u t t

u t t tπ
= +

= + ≥  
 

The exact solution of the problem is: 
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Fig. 1: The results at M = 500 for example 1 

 

 
 
Fig. 2: The exact and numerical solutions at M = 10 

 

( , ) ( 1) cosu x t t xπ= +  
 

The numerical solutions at N = 60, k = 0.0001 and 

k = 0.001, with different time levels M, are presented in 

Table 5 and 6 respectively. The numerical solutions at 

M = 10 and k = 0.0001 for different values of N are 

tabulated in Table 7. In Table 5 to 7, the time increment 

k, the space increment h = 
�

�
 and time level M are varied 

to test the accuracy of the proposed method, which 

indicates that the proposed method is substantially 

efficient. 

In order to indicate the effect of the proposed 

method   for   larger   M,   the   exact   solution  and  the 

numerical solution are plotted using N = 100, M = 500 

and  k = 0.0001  as  shown  in  Fig. 3.  When N = 100, 

k = 0.0001 and M = 10 the exact solution and the 

numerical  solution at the M time level are shown in 

Fig. 4.  It can be observed from the Table 5 to 7 and 

Fig. 3 and 4, that the proposed method approximates 

the exact solution very efficiently. 

 

Example 3: Following is the parabolic integro-

differential equation: 

 
1

0

( )
( , ) ( , ) ( , ), [ 1,1], 0, 0.5 (20)

( )

t

t xx

t s
u x s ds u x t f x t x t

α

α
α

−−
− = ∈ − > =

Γ∫
 

(20) 

The M-th exact solution

The M-th numerical 

solution
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Fig. 3: The results at M = 500 for example 2 

 

 
 
Fig. 4: The exact and numerical solutions at M = 10 

 

with the initial condition: 

 

( ,0) sin , [ 1,1]u x x xπ= ∈ −
 

 

and Neumann boundary conditions: 

 
2

2

( 1, ) ( 1) cos ,

(1, ) ( 1) cos( ), 0

x

x

u t t

u t t t

π π

π π

− = +

= + ≥
 

 

The exact solution of the problem is: 

 
2( , ) ( 1) sinu x t t xπ= +

 
 

The numerical solutions at N = 40, k = 0.001  and 

k = 0.00125, with different time levels M, are presented 

in Table 8 and 9 respectively. In Table 8 and 9, the time
 

Table 8: Maximum norm errors ||eM||∞ for N = 40 for example 3 

N M k = 0.001||eM||∞ k = 0.00125||eM||∞ 

40 10 5.9948 E-04 1.0018 E-03 

 20 4.3331 E-04 7.2357 E-04 

 30 7.0620 E-04 1.1162 E-04 

 40 1.3169 E-03 1.9388 E-03 

 50 2.0042 E-03 2.8735 E-03 

 

Table 9: L2 norm errors ||eM||2 for N = 40 for example 3 

N M k = 0.001||eM||2 k = 0.00125 ||eM||2 

40 10 6.2565 E-05 1.0570 E-04 

 20 4.6637 E-05 7.7196 E-05 

 30 3.3271 E-05 5.7804 E-05 

 40 8.9371 E-05 1.2795 E-04 

 50 1.6722 E-04 2.3443 E-04 

 

increment k and time level M are varied to test the 

accuracy of the proposed method, which indicates that 

the proposed method is substantially efficient. 

In order to indicate the effect of the proposed 

method for larger M, the exact solution and the

The M-th exact solution

The M-th numerical solution

0.2 0.4 0.6 0.8 1.0
x

�1.0

�0.5

0.5

1.0

u
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Fig. 5: The results at M = 500 for example 3 

 

 
 
Fig. 6: The exact and numerical solutions at M = 10 

 
numerical solution are plotted using N = 100, M = 500 

and  k = 0.0001  as  shown  in  Fig. 5.  When N = 100, 

k = 0.0001 and M = 10 the exact solution and the 

numerical  solution at the M time level are shown in 

Fig. 6. It can be observed from the Table 8 and 9 and 

Fig. 5 and 6, that the proposed method approximates 

the exact solution very efficiently. 

 

CONCLUSION 

 

The numerical solution of parabolic integro-

differential equation with a weakly singular kernel is 

studied using cubic B-spline collocation method. The 

parabolic integro-differential equation is discretized by 

the finite central difference formula in the time 

direction and the cubic B-spline collocation method for 

spatial derivative. The parameters h, k and M are varied 

in order to test the accuracy of the proposed method. It 

is observed from the numerical experiments, that the 

proposed method possesses high degree of efficiency 

and accuracy. Moreover, the numerical results are in 

good agreement with the exact solutions. The numerical 

solutions of non-linear parabolic integro-differential 

equations are in progress. 
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