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Abstract: Fracture mechanics approach has successfully used to characterize the existing cracks in engineering 
materials and structures. Tremendous number of publications on surface cracks can be found for crack behaviour 
which was assumed to behave linear elastic. However, lack of information on elastic-plastic crack behaviour or J-
integral was demanded especially for 3D surface cracks. In this present study, semi-elliptical surface cracks 
embedded in a solid round bar subjected to mode III loadings are considered. Then, J-integral or h-function and 
limit load were determined and analyzed. In order to predict J-integral along the crack front, a mathematical model 
was then developed. It is found that the developed model capable to predict J-integral well. However, the 
predictions breakdown occurred when the elastic dominated region of cracks. 
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INTRODUCTION 

 
Solid cylindrical bars are generally used as a shaft 

in engineering fields to transmit power from one point 
to another. Due to several factors such as material or 
design defects, the shaft can be experienced a 
mechanical failure over certain period of time. Such 
failure can be divided into three stages: 

 

• Micro crack initiation 

• Crack growth  

• Final failure (Anderson, 2005)  
 
Fracture mechanics is frequently used to characterize 
such failure. For linear-elastic materials, it is sufficient 
to use Stress Intensity Factor (SIF) to analyze the crack 
behaviour. If the plastic deformation is large, J-integral 
is used. Since the introduction of powerful computer 
between 1965 until 1979, various numerical methods 
are developed such as finite element method used to 
find the solution for SIFs. After 30 years of research, 
Toribio et al. (2009) summarized that the solution for 
SIFs have already covered all aspects of crack 
geometries which is not only concerned at the deepest 
crack point as well documented by Murakami and 
Tsuru (1987).  

In fracture mechanics, SIF and J-integral is 
important in order to evaluate the reliability of crack 
structures. Recently, mode I SIFs has given more 
priority since its effect is significant compared with 

other types of SIFs for example mode II and III (Raju 
and Newman, 1982). Most researchers have 
concentrated their work on mode I SIFs since the 
introduction of numerical methods and it is well 
understood (Toribio et al., 2009). However, there are 
lacks of solution for the SIFs obtained using mode II 
and III loadings significantly (Ismail et al., 2012a). 
These two types of SIFs are important due to the fact 
that, the mode II and III SIFs also played an important 
role in determining the structural integrity.  

According to literature survey (Fonte and Freitas, 
1997; Shahani and Habibi, 2007; Ismail et al., 2012b), 
mode III SIFs has already been published previously. J-
integral  solution  for  mode I can be found in (Toribio 
et al., 2009) for surface crack in a plate. However, lack 
of solution for J-integral for surface crack in round bars 
subjected to mode III loadings. Therefore, this study 
focused to determine and analyze the J-integral 
subjected to elastic-plastic mode III loadings.  
 
J-integral estimation: J-integral firstly introduced by 
Rice (1968). Assuming a single edge crack embedded 
in a 2D elastic or elastic-plastic plate. J-integral is 
defined as an arbitrary curve around the crack tip and it 
is evaluated counter-clock wise as in Fig. 1 which can 
be expressed as: 
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Fig. 1: Definition of the J-integral evaluation 

 
where, 

��� = A traction vector defined as outward along the Γ 
Ti = σijni or force per unit length  
u = A displacement vector  
ds = An element on curve Γ  
W = A strain energy density expressed by:  
 

{ } { }
0 0

T

ij ijW d d
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where, εij is strain tensor and {ε} represents a strain 
vector. The path independent on J-integral has already 
proved by Rice (1968) as in Eq. (1) by applying Green 
Theorem for any closed curve, Γ* as follows: 
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                                      (3) 

 
The use of SIF concept is limited for elastic 

analysis only and it is successfully used to characterize 
high strength and low toughness materials. For ductile 
materials, SIF approaches cannot be used since the 
effect of plasticity is not included. SIF can be converted 
into J-integral if the material used is elastic as follows 
(Kim et al., 2002):  
 

2
2(1 )x

e

K
J

E
ν= −

                                              

       (4) 

 
where, Je is a elastic J-integral and K is a SIF and x 
represent the mode of loading. For Stress Intensity 
Factor (SIF), K, it can be defined as follows: 
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III IIIK F aτ π=
                                               

     (8) 

 

where, KI,a, KI,b and KII/KIII are the SIFs subjected to 

axial, bending and torsion loadings, respectively. FI,a, 

FI,b and FII/FIII are the respective correction factors for 

each loadings. The J-integral estimation for elastic-

plastic analysis is the summation of elastic J-integral, Je 

and elastic-plastic J-integral, Jp as follows:  

 

e pJ J J= +                                                           (9) 

 

Je is defined as in Eq. (4). While, Jp is expressed as 

(Lei, 2004):  
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where, α and n is a material constant and strain 

hardening exponent, respectively. T is an applied 

torsion and TL is a normalizing torsion or limit load. εo 

is a yield strain and σo is yield stress. The symbol of h 

represents as fully plastic calibration and it is also 

called h-function. Moreover, Lei
 
(2008) stated that the 

h-function solution for a surface crack in round bar is 

limited and lot of works need to be conducted.  

In order to determine h-function, a relationship 

between J-integral obtained using finite element 

method, Jp-FE and normalizing plastic J-integral, Jp-normal 

is plotted. Then, the relations are represented by a linear 

function and the slope of each line is called h-function. 

It is dependent of crack aspect ratio, a/b, relative crack 

depth, a/D, normalized coordinate, x/h and strain 

hardening exponent, n. In order to minimize the 

numerical error, higher load level is only considered 

and low load level is omitted. This is due to the fact 

that, h-function is a fully plastic parameter. Therefore, 

Eq. (11) can be expressed as follows: 
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Crack modelling: The geometry of the crack shown in 

Figure 2 can be described by the dimensionless 

parameters a/D and a/b, the so-called relative crack 

depth and crack aspect ratio, respectively, where D, a 

and b are the diameter of the bar, the crack depth and 

the major diameter of the ellipse.  

In this study, a/b is ranging between 0.0 to 1.2, 

while, a/D is in the range of 0.1 to 0.6 which are based 

on the experimental observations. Any arbitrary point, 

P on the crack front can also be normalised through the 

ratio of x/h, where h is the crack width and x is the 

arbitrary distance of P. The outer diameter of the 

cylinder is 50 mm and the total length is 200 mm. A 

finite element model is developed using ANSYS and a 

special attention is paid to the crack tip by employing 

20-node   iso-parametric  quadratic  brick elements. The  
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Fig. 2: Arbitrary crack shapes 

 

 
 
Fig. 3: A quarter finite element model for surface crack 

 

 
 

Fig. 4: A remotely applied moments to the bar 

 

square-root singularity of stresses and strains is 

modelled by shifting the mid-point nodes to the quarter-

point locations around the crack-tip region. A quarter 

finite element models is shown in Fig. 3.  

In order to remotely apply loadings on the 

structural component, a rigid element or Multi-Point 

Constraint (MPC) is used to connect the nodes at a 

circumferential line at the end of the component to an 

independent node. Figure 4 shows a technique of 

constructing the independent node connected to the 

model using a rigid beam element. The bending 

moment, My and the torsion moment, Tx, are directly 

applied    to   this   node,  whereas  the  axial  force, F is  

 
 

         (a) 

 

 
 

        (b) 

 
Fig. 5: Finite element model validation, (a) bending, (b) 

tension loadings 

 

directly applied to the direction-x on the cross-sectional 

area of the round bar. At the other end, the component 

is constrained appropriately. In order to obtain a 

suitable finite element model, it is needed to compare 

the proposed model with others available in the 

literature (Shin and Chai, 2004; Carpinteri and 

Vantadori, 2009).  

Figure 5 shows a comparison of the dimensionless 

SIFs under bending and tension loadings. Two crack 

aspect ratio, a/b used for the validation purposes, 

namely 0.0 and 1.0. It has been found that the findings 

of this study are in agreement with those determined by 

the previous models where the curves have coincident 

to each others. The solution of Mode III SIFs is difficult 

to obtain (Ismail et al., 2011a) and consequently 

compare with the present results. Therefore, it can be 

assumed that the present model is also suitable to 

analyse Mode III condition in a satisfactory way. In 

order to model elastic-plastic for material, multi-linear 

isotropic hardening rule is used when it is combined 

with von Mises criterion associated with isotropic 

hardening and flow rule. Strain-stress relationship is 

characterized using Ramberg-Osgood equation. There 

are   two  type  of  strain  hardening  exponent  are  used 
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Fig. 6: Relations  between  Jp-FE  and  Jp-normal for a/b = 0.6, 

a/D = 0.3 

 

n = 5 and 10. These values represent higher and lower 

strain hardening of such material. 

 

RESULTS AND DISCUSSION 

 

Mode III J-integral: Figure 6 shows the relation 

between plastic J-integral, Jp-FE obtained using Finite 

Element Method   (FEM)   and   normalizing   plastic J- 

integral, Jp-normal subjected to torsion moment for seven 

points along the crack front. Due to similar pattern of 

lines are observed, the results of a/b = 0.6, a/D = 0.3 

and n = 10 are considered. The slopes of these lines are 

then calculated and it is represented as h-function. In 

this study, higher J-integral values are taken into 

account while lower J-integral or elastic J-integral is 

omitted. This is due to the fact that h-function is a fully 

plastic parameter. 

Characteristics of these linear relations of h-

function under mode III loading are different when 

compared with the results obtained using mode I 

loading (Ismail et al., 2013). It is shown that the slopes 

increased with increasing x/h. This is due to the 

different in stress distribution subjected to mode III 

loading where the maximum stress occurred at the outer 

surface and the minimum stress at a middle point. 

Stress gradient around the cylindrical solid bars have 

affected the determination of h-function when 

compared with mode I loading. For further discussion, a 

crack geometry with a/b = 0.6 is considered due to 

typical pattern of linear relations for other crack. Figure 

7 shows the mode III h-function plotted against x/h for 

cracks with a/b = 0.6, 0.8 and 1.0. Other types 

 

 
(a)                                                                                            (b) 

  

 
 

          (c) 

 

Fig. 7: Effect of h-function against x/h for (a) a/b = 0.6, (b) a/b = 0.8 and (c) a/b = 1.0 
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(a)                                                                                             (b) 

 

 
 

         (c) 

 

Fig. 8: The behavior of ξt against τ/τo of a/b = 0.6 and n = 5 for different a/D (a) 0.1, (b) 0.2 and (c) 0.3 

   

of crack are not considered due to typical curves of h-

function and the only difference is the values where it is 

increased when a/D is increased. Figure 7 (a) depicts 

the behavior of h-function for a/b = 0.6. For crack depth 

a/D≤0.2, it is found that the results are almost identical 

even different values of n are used indicating that n is 

not affected the h-function significantly.  

However, when a/D≥0.3 is used, the different 

among the results are obviously significant. It is 

indicated that the shallow cracks (a/D≤0.2) capable to 

constraint any distortion due to the bar deformation 

even different n is used. When a/D reached certain 

depth (a/D≥0.3), n played an important role in 

determining crack deformation and consequently 

affected the J-integral calculations. It is shown that with 

increasing a/D>0.3, the use of n = 10 sustained to 

deform material easily and then producing higher J-

integral along the crack front. 

Similar curves can also be observed for others a/b 

as shown in Fig. 7b and c. However, increasing a/b 

caused h-function to decrease. This is due to the crack 

geometries used. If a/b>1.0 is considered, crack width 

is relatively shorter than the crack depth. This condition 

increased the cross-sectional area of the bar compared 

with a/b<1.0. Increasing such area produced higher bar 

resistance to the loading applied and then reducing J-

integral along the crack front. According to literature 

survey (Lei, 2008), there are no solution for h-function 

subjected to mode III loading currently. Therefore, no 

validation of the present results can be conducted and it 

is solely dependent on the validation using elastic 

results such as stress intensity factors as in Fig. 5. 

 

Limit load for torsion moment: Figure 8 and 9 show 

the normalized limit load under torsion moment, ξt for 

strain hardening exponent, n = 5 and 10, respectively 

which are plotted against normalized stress, τ/τo. It is 

found that when different a/b is considered, the pattern 

of limit load are almost identical where it is decreased 

asymptotically as τ/τo increased. Therefore, the crack 

with a/b = 0.6 is emphasized. Figure 8 reveals that it 

can be divided into two main regions which is lower 

load region (τ/τo<1.0) and higher load region (τ/τo>1.0). 

In the area of τ/τo<1.0, it is found that the higher 

distribution of limit load can be observed when 

compared with the area of τ/τo>1.0 indicated that elastic 

J-integral influenced the determination of limit 
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(a)   (b) 

 

 
 

        (c) 

 

Fig. 9: The behavior of ξt against τ/τo of a/b = 0.6 and n = 10 for different a/D (a) 0.1, (b) 0.2 and (c) 0.3 

 

load, ξt. These type of curves showed that the overall 

deformation of the entire bar subjected to torsion 

moment is dominated by the elastic J-integral, Je. 

Additionally, Je is not relevant in determining h-

function which is a fully plastic parameter.  

Increasing τ/τo indicated the large distribution of 

limit load gradually decreased where all curves have 

closed to each others. The plastic deformation increased 

and the present limit load is then affected significantly 

where the limit load of each specified crack condition 

become a merged lines. For cracks with n = 10 as in 

Fig. 9 found that there is no significant different 

between two distinct regions. This is indicated that 

those materials are easily deformed and consequently 

plastic J-integral dominated along the crack front. 

Therefore, h-function curves are overlapped indicating 

that only a single limit can be used to represent various 

types of cracks. 

 

J-integral estimation formulation: Limit load 

behavior under mode III in Fig. 8 and 9 can be 

described by observing the curve characteristics of J-

integral ratio, J/Je along the crack front. 

Mathematically, the prediction of J-integral can be 

conducted by substituting Eq. (4) and (7) into (6) as 

follows: 
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(12) 

 

where, J = Je + Jp. It is found the parameter x/h can be 

varied and other parameters are assumed constant. 

Therefore, J/Je is determined using parameter hIII/F
2

II-III 

for various types of cracks. The behavior of hIII/F
2

II-III 

which  are  plotted against x/h for n = 5 and 10 as in 

Fig. 10 and 11, respectively. The curves of hIII/F
2

II-III 

obtained using mode III are obviously different 

compared with the results of hIII/F
2

I,b under bending 

moment and hIII/F
2

I,a under tension force (Ismail et al., 

2011b, 2012b). Figure 10 shows the overall effect of 

hIII/F
2

II-III against x/h when a/D is increased. For certain 

case, Fig. 10a reveals the curve behavior of a/D = 0.1. 

There is no flattened curve occurred along the crack 

front.   It    is   indicated   that  hIII/F
2

II-III increased  with  



 

 

Res. J. Appl. Sci. Eng. Technol., 7(10): 1985-1993, 2014 

 

1991 

 
                                                            (a)                                                                                (b) 

 

 
 

          (c) 

 

Fig. 10: The behavior of hIII/F
2

II-III against x/h of n = 5 and different a/b for a/D, (a) 0.1, (b) 0.2 and (c) 0.3 

 

  
                                                           (a)                                                                                 (b) 

 

 
           (c) 

 

Fig. 11: The behavior of hIII/F
2

II-III against x/h of n = 10 and different a/b for a/D, (a) 0.1, (b) 0.2 and (c) 0.3 
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increasing x/h. Therefore, it is difficult to estimate the 
J-integral along the crack front using a single limit load. 

It is also shown that different limit load must be 
used to predict the J-integral for different position along 
the  crack  front.  This  is  due  to  the fact that when 
a/D = 0.1, it can be categorized as a shallow crack and 
it has higher bar resistance. This condition successfully 
prevented the plastic deformation around the crack tip 
and consequently reduced the formation of plastic J-
integral. On the other hand, it is increased the elastic J-
integral which is less relevant in determining the limit 
load which is a fully plastic parameter. However, when 
a/D is increased to 0.2, the curves of hIII/F

2
II-III are 

obviously changed as x/h increased. When it is reached 
at a certain position along the crack front (x/h>0.6), the 
curves flattened can be observed. This condition 
described where J-integral can be estimated using a 
single limit load. At the same time, in the region of 
x/h<0.6 where the curve is not well flattened, different 
limit load is used to determine the J-integral at different 
position along the crack front as in Fig. 10b and c. 

The existent of two distinct regions are affected 
significantly whether it is an elastic or plastic 
dominated J-integral. For the region of x/h<0.6, it is 
found that the parameter hIII/F

2
II-III increased when x/h 

is increased. It is showed that the region is significantly 
affected by the elastic J-integral. On the other hand, the 
region of x/h>0.6, plastic J-integral is more dominant. 
Therefore, the curves for this region is flattened 
compared with the region of x/h<0.6. Similar behavior 
of hIII/F

2
II-III can be observed for the curves using n = 10 

as shown in Fig. 11. Similar type of loading as used in 
obtaining the results as in Fig. 10. However, the crack 
induced significant amount of plastic J-integral along 
the crack front. Such plastic deformation along the 
crack  front  is  due  to  the  fact  that  the material with 
n = 10 has low resistant to mechanical deformation and 
consequently produced higher J-integral. Therefore, the 
curves obtained using n = 10 is higher than the curves 
of n = 5.  
 

CONCLUSION 
 

This study presents two approached which are 
finite element and analytical methods. Due to lack of J-
integral solution available especially in obtaining h-
function for surface crack in round bars. Therefore, 
ANSYS finite element method is utilized. On the other 
hand, a mathematical model to predict J-integral for 
surface crack is developed which is based on the 
reference stress approach. According to the present 
results, it is found that J-integral along the crack front 
can be estimated for various types of cracks. However, 
the J-integral prediction is successfully conducted 
except for the elastic-dominated region. 
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