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Abstract: This study presents and reviews the technical literature and previous studies for the past three decades on 
structural damage identification using ANNs and measured FRFs as inputs. Much of the previous studies have used 
modal parameters to ascertain the success of damage identification. However, significant information may not be 
properly represented through the application of modal parameters. With this in mind, the direct use of frequency 
domain data in terms of the Frequency Response Functions (FRFs) seems more appropriate. Recent studies indicate 
that ANNs can be trained on measured FRFs of healthy and damaged models of structure to assess the condition of 
the structure. According to this review, it is clear that there have been numerous studies which have gone on to 
apply the ANNs on FRF data of structures in the field of damage identification and it has been shown that ANNs 
using FRFs can provide several advantages over the modal parameters and damage identification has subsequently 
become much improved. 
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INTRODUCTION 
 

The existing civil structures are prone to various 
damages and degrade during their service life. Due to 
this, the SHM as a process of implementing a damage 
detection strategy for engineering structures has 
become a very important subject in relation to the 
aspects of safety assessment and damage identification 
of structures. 

Damage in structures is defined as any reduction in 
structural stiffness and mass that negatively affects the 
functionality of the structures, also their serviceability 
and safety and finally may lead to failure. There are 
four levels of damage identification consisting of the 
determination of the presence of damage in the 
structure, the determination of damage location and the 
determination of the severity of damage (Rytter, 1993). 
Thus, damage assessment is one of the most important 
factors in maintaining the integrity and safety of 
structures and has been seen to be very important in 
monitoring structures for existence, location and 
severity of damage.  

Conventional approaches have been most 
commonly applied in detecting damage on a structure 
and they usually rely on visual inspection (Ismail et al., 
2006). However, these inspection techniques are often 
inadequate for evaluating the health state of a structure, 
especially when the damage is invisible to the human 
eyes. Thus, it is very important to monitor the structural  

behavior, especially when damage is not observable. 
Some artificial intelligence approaches such as the 
Artificial Neural Networks (ANNs), Genetic Algorithm 
(GA) and fuzzy logic have been used extensively for 
damage assessment with varying degrees of success.  

Among the damage identification methods, the 
ANNs as a very effective tool used in solving many real 
life problems and inspired by the human brain, have 
been applied dramatically to damage identification. 
ANNs are a very strong method especially when 
implemented in the field of the structural dynamics. 
Also, the ANNs under the topic of structural dynamic 
based-damage assessment can simulate complex 
relationships and have proven to be robust in the 
presence of noise.  

ANNs are equipped with approximate functions, 
pattern recognition and classification (Zailah et al., 
2013; Heidari et al., 2011) and can be trained to 
recognize the characteristics of both undamaged and 
damaged structures. This trained neural network will 
then have the ability to identify the presence, location 
and the extent of damage in structural systems (Lee and 
Kim, 2007). According to Bakhary (2006) and Bakhary 
et al. (2007), some advantages of ANNs in damage 
identification as opposed to the traditional damage 
assessment approaches are as follows: 

 
 Trained ANNs using given data, have the ability to 

identify damage reliably, even when trained with 
incomplete data.  
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 When ANNs are properly and completely trained, 
the speed of damage identification is relatively 
high and numerical simulations do not need to be 
constructed. 

  ANNs are more robust over the noise and 
uncertainties. 

  Any vibration parameters can be selected as inputs 
of ANNs without increasing the neural network 
training complexity. 
 
In recent decades there has been an increasing 

interest in using ANNs to estimate and predict the 
damage in structures. Based on recent studies, different 
types of vibration signatures of the structure consisting 
of time domain data, frequency response functions as 
frequency domain data and modal parameters as inputs 
to ANNs have been applied.  

A great deal of the preceding works has used 
modal parameters for damage identification (Abdul-
Razak and Choi, 2001). However, significant 
information such as natural frequencies, mode shapes 
and damping ratios may not be exactly expressed 
through the application of the modal parameters. This 
explains why the direct use of frequency domain data in 
terms of FRFs appears to be more useful. However, 
some researchers have directly applied FRFs 
measurements instead of modal parameter data to 
prevent loss of information. This review paper 
summarizes damage identification and structural health 
monitoring studies based on FRFs which have adopted 
the ANNs within the last three decades. 

 
STRUCTURAL DAMAGE IDENTIFICATION 

 
Civil engineering structures are susceptible to 

damage during their service life due to many different 
factors such as deterioration with age, higher 
operational loads, fatigue, environmental influences and 
extreme events such as earthquake. The occurrence of 
damage can adversely affect the performance of a 
structure, cause undesirable displacements and stress on 
the structure and severely reduce the structure’s 
serviceability and safety. When any damage and 
deterioration that happens in a structure, produces 
change in the dynamic properties such as stiffness, 
mass and damping, the consequence is a change in its 
frequency and modal domains.  

The damage if not identified, can result in the 
failure of the structure components and may contribute 
to the collapse of the whole structure (Kullaa, 2003; Xu 
and Humar, 2006). It is therefore, a very important 
phase of civil engineering structures monitoring to 
ensure that the structures are safe and can be used 
properly. Therefore, in SHM it is necessary to detect 
damage at the earliest possible age of occurrence in 
structural engineering. 

ARTIFICIAL NEURAL NETWORKS 
 

General definition: The human brain consists of about 
1011 cells called neurons that are interconnected and has 
the capability to perform certain computations many 
times faster than the most rapidly working computers 
(Hagan et al., 1996; Haykin, 1999). As depicted in Fig. 
1 a basic biological neuron is composed of a cell body, 
axons, dendrites and synapses. In terms of their 
functions, the dendrites carry signals as input 
information into the cell body, axons as outputs for 
carrying the electrical signals from the neuron to other 
neurons, whereas the synapse is the point contact 
between a dendrite of one cell and axon of another cell. 

In summary, a neuron receives signals from 
synapses either located at the cell body or its dendrite, 
determines its state and finally sends the output down to 
the axon (Hakim et al., 2011; Noorzaei et al. 2007; 
Haykin, 1999). ANNs that are inspired by human 
biological neurons are computational models which 
consist of many simple processing elements (neurons) 
and are highly interconnected with each other. They 
function to process information and establish complex 
and non-linear relationships by using certain rules and 
large sets of data to achieve suitable results (Hakim and 
Abdul  Razak, 2013a, b; Mashrei et al., 2010; Demuth 
et al., 2005). 

An ANN has the abstraction capabilities, self-
adaptiveness and generalization. Therefore, it is very 
useful to accomplish information processing tasks and 
pattern recognition and classification. However, ANNs 
can discover about the relationships between inputs and 
outputs and generalize the problems even when there is 
not enough data or when input data contain errors 
(Kanwar et al., 2007). 

As shown in Fig. 2, the architecture of ANN 
consists of an input layer, an output layer and at least 
one hidden layer (Demuth et al., 2005). The appropriate 
number of neurons in each layer depends on the type of 
problem that arises. 

Each neuron in the input layer represents the value 
of one independent variable. The neurons in the hidden 
layer are only for computation purposes. Each of the 
output neurons computes one dependent variable. 
Signals are received at the input layer, before passing 
through the hidden layer and reaching the output layer. 
Each layer can have a different number of  neurons.  All 

 

 
 

Fig. 1: Biological neuron
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Fig. 2: Architecture of ANN 
 
neurons are interconnected to the neurons in the next 
layer through their weights.  

Learning is the process by which the ANN adjusts 
itself to a stimulus and eventually produces the desired 
response. Two types of learning models including 
supervised and unsupervised learning are used for 
ANNs. In supervised learning the training samples 
require an input vector and an output vector. However, 
in unsupervised learning, the training samples require 
only an input vector. On the other hand, in supervised 
learning a network require correct response as output 
during training, but in unsupervised learning knowing 
the correct response as output is not necessary. 

Among various neural networks, the Multi-Layer 
Perceptron (MLP) is most commonly used in structural 
identification problems (Mata, 2011; Karimi et al., 
2010; Hakim and Abdul Razak, 2011; Obodeh and 
Ajuwa, 2009; Wu et al., 2002). The reason is that MLP 
networks have been used successfully to address many 
different problems and can approximate any continuous 
multivariate function to any degree of accuracy (Li and 
Fang, 2012; Rumelhart et al., 1986). In MLP neurons in 
each layer, they are connected to all the neurons in both 
the previous and the subsequent layer. The outputs of 
the first layer are the inputs for the second layer; the 
outputs of the second layer are then again the inputs for 
the third layer and so on (Hagan et al., 1996). As the 
information in a multi-layer perceptron network moves 
in forward from the input neurons, through the hidden 
neurons to the output neurons, the type of network is 
called a feed forward neural network.  

The back propagation is one of the best algorithms, 
as it can train and update the synaptic weights of 
multilayer perceptron feed forward networks to perform 
function approximation, pattern association and pattern 
classification and is considered to be the most 
applicable due to the mathematical design of the 
training’s complex non-linear relationships (Fonseca 
and Vellasco, 2003).  

The back propagation algorithm has a performance 
index, which is the least Mean Square Error (MSE) 
(Folorunsho et al., 2012; Efstathiades et al., 2007; Lee, 
2003). In the MSE algorithm, the error is calculated as 
the difference between the target output and the 
network output.  
 
Artificial neural network for structural damage 
detection: According to Adeli and Hung (1995) 
computational intelligence approaches such as ANNs, 
Genetic Algorithms (GA) and fuzzy logics are very 
attractive processes in the structural damage 
identification because of their credible performance and 
robustness in dealing with incomplete and insufficient 
data, uncertainty and noise.  

The detection of damage in a structure based on its 
response is an inverse process, which indicates that the 
causes must be recognized from the effects (Zhao et al., 
1998). ANNs as artificial intelligence systems are 
becoming very popular in the area of structural damage 
identification and are suitable for the inverse process. 
ANNs require specific data from structure responses. 
For example a number of damage scenarios are applied 
to the structure model and dynamic responses from 
these scenarios have been able to be saved in the ANN 
database. The ANN monitors the dynamic response and 
attempts to fit any damage-induced shifts to its 
database. General advantages of applying ANNs lie in 
their ability to detect the pattern recognition and 
generalization correctly, even when trained with 
inaccurate and incomplete data and despite their 
capability to continue learning and to modify and 
improve their performance when presented with new 
data (Yuen and Lam, 2006).  

Extensive studies have focused on using the ANNs 
approach for structural damage identification from 
dynamic response data. For example, Sohn and Farar 
(2000), Liu et al. (1999) and Loh and Huang (1999), 
have applied time-domain signals as the inputs of 
ANNs for structural damage detection.  
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The use of natural frequencies and mode shapes as 
modal parameters to detect damage in structures has 
been addressed by Rosales et al. (2009), Pawar et al. 
(2007), Lam and Ng (2008), Sahin and Shenoi (2003) 
and Salawu (1997). Also, frequency domain data in 
terms of FRFs have been applied by several researchers 
to the training of ANNs for the purpose of structural 
damage detection, which will be explained in the 
following sections.  

 
FREQUENCY RESPONSE FUNCTIONS (FRFS) 

 
General definition: The measured excitation and 
response of structure are transformed into the frequency 
domain using the Fast Fourier Transform (FFT) (Ewins, 
2007). The FRF is the ratio of the response to the 
measured excitation in terms of the frequency domain 
at each frequency. However, if we were to transform 
the measured time domain data to the frequency domain 
data using the FFT, then FRF can be calculated (Cooley 
and Tukey, 1965). In theory, the measured FRF of the 
damaged structure, when compared with the response 
of the undamaged structure, contains information 
regarding  the  location and  severity  of  damage (Wu 
et al., 1992). Thus, this vibration signature can be used 
to identify damage. 

Lee and Shin (2002) have stated that there are 
human extraction errors during the experimental modal 
analysis that do not exist in the FRF data and therefore, 
they have proposed that FRF data can provide an 
abundance of information as the modal domain data are 
extracted from a limited range around the resonance. 
Also, when applying direct measure of the FRF data, 
the experimental modal analysis is not required and 
modal extraction errors during experiment are avoided.  

In summary, FRFs data have the following 
advantages, which have recently been established for 
damage identification in structural engineering: 

 
 One measurement of FRF can provide abundance 

of data  
 The experimental modal analysis needs much 

effort and time. However when using FRFs, the 
modal analysis is not necessary and human-
induced errors, as the modal analysis is performed, 
can be avoided 

 The measured FRFs can be used in structures with 
modal density and high damping ratios 

 The modal domains extracted from the 
simultaneous domain signals can vary according to 
different extraction methods used (Bolton et al., 
2001) 
 
However, according to the above reasons, the FRF 

is a measurement that isolates the inherent dynamic 
characteristics of a structure such as natural frequencies 
and mode shapes. Therefore, changes in the FRFs of 
structures due to damage can bring about changes of 
stiffness, mass and damping properties  during  damage. 

 
 

Fig. 3: Basic dynamic equilibrium of a single D.O.F system 
(Clough and Penzien, 1993)  

 
Finally, the direct use of FRFs in the area of damage 
identification in the fields of structural engineering 
seems more appropriate.  

Although much of the previous study have 
examined the modal parameters as the main 
consideration for damage identification (Kim and Lee, 
2000), recently, the FRF that is free from the 
experimental modal extraction is developed and several 
researchers have applied the direct use of the FRFs to 
detect damage apparent in structural engineering. For 
example, Ambrogio and Zobel (1994) have decided to 
use the FRFs to detect the existence of damage in a 
truss structure. Also, Fang et al. (2005), Ko et al. 
(2002), Lyon (1995), Imregun et al. (1995) and Schultz 
et al. (1996), directly applied the FRFs for structural 
identification.  

 
FRF formulation: A single Degree of Freedom 
(D.O.F) of a structure is shown in Fig. 3. 

Basic dynamic equilibrium equation of the general 
mathematical representation of a single Degree of 
Freedom (D.O.F) is given in Eq. (1) (Clough and 
Penzien, 1993): 

 
)(tfkxxcxm                                       (1) 

 
where, m, c and k are the mass, damping coefficient 
and stiffness constant, respectively. In this equation, f 
(t) is a function that represents the time-dependent 
excitation force applied to the system and ݔ, ሶݔ ሷݔ	݀݊ܽ	   
are the corresponding responses of displacement, 
velocity and acceleration, respectively. 

Equation (1) is the time-domain representation of 
the structure system. An equivalent equation of motion 
is determined for the frequency domain. The frequency 
domain has the advantage of converting a differential 
equation to an algebraic equation. This is carried out by 
taking  the  Fourier  transform  of Eq. (1). Therefore, 
Eq. (1) becomes: 

 
 kjcm   2 )()(  FX                          (2) 

 
where,  
X (ω) = The system response 
F (ω) = System forcing function in the Fourier domain  
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In Eq. (2) when: 
 

kjcmB   2)(                      (3) 
 
Then Eq. (2) becomes:  
 

 )()()(  FXB                                   (4) 
 

If F (ω) and its response X (ω) are known, B (ω) 
can be calculated by Eq. (5): 
 

)(

)(
)(




X

F
B                         (5) 

 
Equation (5) can be rearranged as follows:  
 

)(

)(
)(




B

F
x                                                     (6) 

 
After substituting: 
  

H (ω) = 1/ B (ω)                                                   (7) 
 
Eq. (6) becomes:  
 

)()()(  FHX                  (8) 
 

H (ω) is defined as the Frequency Response 
Function (FRF) of the system. A FRF relates the 
Fourier transform of the system input to the Fourier 
transform of the system response. Therefore, the 
frequency response function is defined as:  
   

)(

)(
)(




F

X
H                                                  (9) 

 
STRUCTURAL DAMAGE IDENTIFICATION 

USING MEASURED FRFS AND ANNS 
 

As mentioned earlier, a change in FRFs from the 
undamaged state indicates a possible damage in the 
structure. Thus, it is necessary to establish a 
relationship between damage occurring in a structure 
and its dynamic parameters to determine the health 
status of the structure. During the last three decades, a 
lot of studies using various methods in the area of 
damage assessment have been conducted and reviewed, 
but to date, there is no review regarding the application 
of ANNs for structural damage detection using the 
frequency domain data such as FRFs. The measured 
FRFs of the damage structure, when compared with the 
response of undamaged structure contain a large 
amount of information regarding the existence, location 
and severity of damage (Wu et al., 1992). Thus, this 
vibration signature can be applied as the appropriate 
input to an ANN that is being used to identify damage. 

The use of FRFs to detect damage in structures has 
been addressed by some researchers. For example, Wu 

et al. (1992) were the first researchers who had applied 
ANNs to the structural behavior before and after the 
damage, where the FRFs are concerned. Damage was 
simulated by the stiffness reduction of each column 
member. A two dimension three-storey building was 
simulated and excited by earthquake-base acceleration. 
The dynamic responses were obtained on the second 
and third floors. Two hundred spectral values of FRFs 
between 0 and 20 Hz, at the interval of 0.1 Hz were 
used as inputs of the ANNs. The architecture of the 
ANN and the damage state of structural elements are 
provided in Fig. 4. 

In this study, 0 and 1 as binary numbers are applied 
as output to represent the damaged and undamaged 
level of each column member in the building 
mentioned. According to this research, the ANN trained 
using FRFs data could predict damage with the 
accuracy of 25%. A major weakness is that the trained 
ANN could not identify the column between the first 
and second floor. 

The application of FRFs as inputs of ANNs to 
damage identification in a 20-bay planar truss consisted 
of 60 struts is described by Povich and Lim (1994). The 
damage is modeled by removing struts from the truss 
structure. In this research, using two accelerometers, 
394 FRFs between 0 and 50 Hz are discretized and 
applied as inputs. Binary numbers 0 and 1 have been 
used as the output parameters to represent the damaged 
and undamaged struts. Based on this study, results have 
demonstrated that, the ANN can detect the damaged 
member using patterns in FRFs of the truss structure. 
According to authors the ANN could correctly identify 
21 of 60 members as damaged and 38 of 60 constricted 
to two possible damaged members. A major problem 
addressed in the method is that the size of the FRF data 
that is determined by the number of spatial response 
locations and the number of spectral lines are too large 
as inputs for ANN applications. The direct use of such 
large data will consequently lead to neural networks 
with a very large number of input neurons, which 
results in a large number of connections. This 
contributes to an impractical ANN in terms of its 
training and convergence stability (Zang and Imregun, 
2001a, b). Therefore, a Principal Component Analysis 
(PCA) technique is developed, whereby a linear data 
compression method achieves dimensionality reduction 
to the frequency response functions data for feasible 
application in the ANNs. 

The PCA technique is applied by several 
researchers. For example, Dackermann et al. (2010) 
have presented a damage detection approach to 
determine the extent of damage in a two-storey framed 
structure using FRF data as inputs of the ANNs. In this 
study, the FRF data are compressed to a few 
components using the PCA approach. The PCA as a 
powerful tool for filtering noise is a statistical technique 
and is regarded as suitable for dimensional reduction of 
data. In this study, the two-storey steel framed structure 
consisting of two columns, two crossbeams and four 
joint elements is fabricated and experimentally tested.
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Fig. 4: Architecture of the ANN and the damage state of structural elements (Wu et al., 1992) 
 

  
 

  (a) Experimental structure         (b) Numerical structure 
 
Fig. 5: Experimental and numerical structure of two-storey 

steel framed (Dackermann et al., 2010) 
 

This model is then numerically simulated and analyzed 
using the ANSYS software. The experimental and 
numerical structure of the two-storey steel framed is 
depicted in Fig. 5. Three levels of damage severities in 
two locations of the columns have been considered in 
this study. 

According to authors a neural network ensemble 
has been created in this research. Utilizing the 
individual characteristics of data recorded from various 
sensor locations is the main advantage of neural 
network ensemble in this study. In this network each 
network is first trained individually then the outputs of 
each of the networks are combined to produce the 
ensemble final output. Based on this study authors have 
concluded that this approach is adequately robust and 
accurate in predicting the severity of damage.  

Also, combined FRFs and ANNs are applied by 
Dackermann et al. (2011) for damage severity 
assessment of timber bridge structures. In this study, an 
experimental four-girder timber bridge that has been 

fabricated and 12 different damage scenarios containing 
three damage severities at four different locations are 
studied. FRFs data extracted from the experimental 
modal analysis and residual FRFs are derived and 
applied as the damage indicator. Residual FRFs data are 
compressed to a few principal components using the 
PCA method and then applied to ANNs to predict the 
damage severity. The results from this study have 
shown the effectiveness and applicability of this 
algorithm in severity identifications for all damage 
scenarios. 

A FRF-based damage identification method using 
ANNs is presented by Zang and Imregun (2001a). In 
this study, authors apply the PCA to reduce the size of 
FRFs before using them as the input parameters. This 
method is applied to numerically modeled railway 
wheels with damage detected, even after a 5% random 
noise is imposed to the structures. According to this 
study 4096 FRF data points in three directions have 
been generated. These data are reduced to 7, 9 and 13 
for x, y and z direction and applied as input parameters 
to three different neural networks, one in each of the x, 
y and z directions.  This procedure is summarized in 
Fig. 6. Three different ANN models corresponding to 
their directions are trained and tested using 80 and 20 
samples, respectively. The output of the network lies in 
the condition of the structure, i.e., damaged or 
undamaged. The results have demonstrated that the 
ANN is able to classify all damaged and undamaged 
cases studied. This damage strategy is also applied to a 
space antenna with different modifications to the neural 
network for slight damage detection by Zang and 
Imregun (2001b).  It has been found that using too 
many principal components does not necessarily 
achieve better results, since there is an increased 
capability to gain signal noise. Authors using this 
algorithm have evidently been unable to estimate the 
severity of damage.  
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Fig. 6: Preparation of FRF data for ANN (Zang and Imregun, 2001a, b) 
 

 
 

Fig. 7: Damage identification algorithm using ANN (Ni et al., 2006) 
 

Next, Ni et al. (2006) describe an experimental 
study of damage identification of a 38-storey reinforced 
concrete building on a shaking table. In this study, 
ANNs are trained using measured FRFs. The PCA 
approach has been applied for the compression of the 
FRF data. Implementing the ANN in this study for 
structural damage identification is summarized and 
shown in Fig. 7.  

FRF data that are applied in the neural network are 
obtained analytically or experimentally in undamaged 
cases and in different damage scenarios and are also 
used for training the neural network. This network is 
tested with a new set of FRF data and is able to predict 
the damage states. A three-layer feed-forward neural 
network with the back propagation algorithm is used for 
damage detection in this research. The network is 
configured to have 30 principal component projections 

and 15 neurons in the hidden layer and only one output 
neuron, indicating overall damage severity. The authors 
have also successfully shown that the compressed FRF 
data using the PCA method as inputs for the neural 
network can predict damage existence and localization 
much better than the directly measured FRF data. 

Experimentally measured FRF data have been 
applied as inputs of the ANNs for the identification of 
seismic  damage  in  a 38-storey building model by Ko 
et al. (2002). A 1:20 scale of this tall building model 
has been tested on a shaking table and diverse damage 
scenarios which are lightly, moderately, severely and 
completely damaged are inflicted on this model and 
FRFs are measured after each damage scenario. For 
more convenient damage location, this building has 
been divided into nine regions along the vertical 
direction  as  depicted  in Fig. 8. Each region consists of  
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Fig. 8: 38-storey tall building model (Ko et al., 2002) 
 
4-5 storeys. The PCA technique is applied to compress 
the size of FRF data in this research. Using this 
technique, the most important principal components are 
applied instead of the raw FRF as input variables of the 
ANN for damage assessment. Thirteen principal 
components are applied as inputs of the ANN. The final 
architecture of the neural network consists of four 
layers with 13 neurons in input layer corresponding to 
the 13 principal components, 15 and 18 neurons in the 
first and second hidden layers, respectively. The output 
of the ANN is a value between 0 and 1, regarding the 
damage level and indicates extent of damage of the 
specified region of model. The authors demonstrate that 
the effectiveness of the ANNs trained with FRF data in 
predicting the severity of damage has been accepted. 

The measured FRFs are applied as the input to the 
ANNs for the purpose of damage detection in the steel 
box girder bridge by Sun (2009). In this study the PCA 
as a data reduction technique is used for reducing the 
size of the FRF data. The steel bridge model with multi 
damage states is presented to show the efficiency of this 
approach. The self-organizing neural network using 
FRF data is trained in this work. This type of network is 
able to analyze high-dimensional data with 
unsupervised learning algorithm. According to author, 
network could distinguish the damage states in the steel 
bridge model with very good accuracy.  

Also FRFs reduced as networks input data for the 
back propagation neural network are applied for 
structural damage identification by Fang and Jiao 
(2007). In this study a neural network with 8192 
neurons in the input layer and 8 and 4 neurons in 
hidden and output layers, respectively, could 
successfully detect damage in different states of the 
structure with errors under 10%.  
 A damage identification method using the sub-
structuring approach is studied by Qu et al. (2004). In 
this study, the FRF data of two span truss structure with 
55 truss elements, from 0 to 200 Hz with an interval of 
0.2 Hz per data point are extracted and considered as 

inputs of the ANN. The Independent Component 
Analysis (ICA) is applied for compressing the length of 
input data of the neural network. According to this 
research, damage scenarios are modeled by means of 
reducing the stiffness in two truss members and the 
structure divided into three substructures. However, 
only the middle substructure has been given due 
consideration. The results have demonstrated that the 
sub-structuring method in large structures can improve 
the ability and computational performance in damage 
identification 

Composite materials have high strength and 
stiffness. Therefore they have been applied in many 
applications of structural engineering. Delamination is 
one of the common damage-types in composite 
structures. Delamination decreases the frequencies and 
stiffness in structures and increases modal damping. 
Some attempts have been made to detect the size and 
location of delamination using ANNs based on the FRF 
data. For example, A SHM methodology based on 
measured FRFs and ANNs for a composite plate is 
presented by Luo and Hanagud (1997). Based on this 
study, numerical models are applied to predict the 
structural dynamic response of the damaged structure. 
According to this research, two types of damages 
comprising of stiffness loss caused by transverse and 
impact cracks and delamination have been considered. 
Two different neural networks are trained for these 
types of damages. 

The first network concentrates on stiffness loss. In 
this network FRF data are considered as inputs of 
network and ratios of the stiffness of damaged 
structure, to that of healthy structure assume their role 
as outputs. The architecture of the neural network 
consists of three layers with 128 neurons in the input 
layer and 30 and 5 neurons in hidden and output layers, 
respectively. Sixteen damage scenarios are also 
considered for the network training. Authors conclude 
that this network is capable to identify stiffness loss. 
The second network is trained for FRFs as inputs and 
delamination information as outputs. This network 
consists of 128 neurons in the input layer, 30 and 18 
neurons in hidden and output layers, respectively. Ten 
delamination scenarios in lengthy range of 0 to 18 have 
also been considered. This network could successfully 
identify delamination damage in the composite plate. 
Also, the researchers have derived another conclusion 
that more improvement of the training performance is 
possible through an automatic optimization of the 
training control variables. 

Also, the delamination of the composite beam 
structure consists of an induced debonding between a 
beam and a bonded composite patch is considered as a 
type of damage by Chaudhry and Ganino (1994). In this 
study measured FRF data as inputs to the ANN are used 
to identify the existence and severity of damage in 
composite debonded beams. According to this work, 
FRF data obtained from a piezoelectric sensor pair will 
bond and they will attempt to arrange that delamination 
site to lie down between the sensor and actuator. 
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Fig. 9: The cantilevered beam modeled divided into five 
segments (Marwala and Hunt, 1999) 

 
Seven different beam specimens which consist of 

two beams with fully bonded composite patches, two 
beams with a 2" debonded section and another three 
beams each with a half, one and three inch debonded 
sections have been used in this study. FRFs are 
obtained for each of these beams over a frequency 
range of 10 to 5000 Hz. Finally, the results have 
demonstrated that the ANN using the BPNN algorithm 
can identify the presence and severity of delamination 
with good accuracy. Also, authors found that the 
performance of ANN is much better when the amount 
of training samples is high. 

A committee of ANNs which applies the 
information from the FRFs and modal data to predict 
the damages in structures is presented by Marwala and 
Hunt (1999). Based on this study, two individual ANNs 
are trained for structural diagnostics prediction using 
the modal and FRF data. In the first network, frequency 
energies calculated from the FRFs are applied as the 
input parameter and mode shape vectors are used as 
inputs in the second network. A 1 meter cantilever 
beam is applied to illustrate the method and it is divided 
into five segments as shown in Fig. 9. Combined 
network has been trained to identify the existence of 
damage in each segment. 

In this study, the ANN architecture with 55 inputs 
neuron, 25 hidden neurons and 5 outputs neuron is 
employed. Also, the training of ANN is done using 243 
data. The results have demonstrated that the combined 
network is trained with an error of 7.7% for the 
committee neural network compared to 9.5 and 9.75%, 
respectively for individual neural networks. This means 
that the committee of neural networks commits less 
error than the existing methods. Also, results have 
demonstrated that the committee network is able to 
detect multiple damages with high accuracy when 
compared to individual methods. In this study, the 
committee network has shown less variance than the 
FRF and modal methods individually and this is one of 
the main advantages shown by the committee network. 
Less variance to decreases the level of uncertainties and 
can subsequently improve the results. The average 
variance for individual methods is 33.28 compared to 
an average variance of 15.1 for the committee network. 
The committee network requires two trained networks, 
which means that it would take a long computational 
time and this can be one of the main shortcomings.  

Marwala (2000) has extended the above research 
study by employing the wavelet transform data together 
with FRFs and modal parameters that consists of 
natural frequencies and mode shapes. In this study, an 
experimental investigation is done on steel cylindrical 
shells. Data generated from experiments are used for 
the training of ANNs. However, three individual 
networks are trained and finally combined in a 
committee network. The author has concluded that the 
combined network can identify the damage better than 
the individual network. According to this study, the 
performance of the committee method is enhanced 
when measured data from the experimental study are 
applied. The authors then made the conclusion that a 
committee of neural networks which applies both FRFs 
and modal data gives results that are more accurate and 
reliable than neural networks which have been using the 
FRF data or modal data individually. 

FRFs as neural network inputs are used to present a 
damage identification method by Yeung and Smith 
(2005). Two different types of unsupervised learning 
neural networks consisting of Probabilistic Resource 
Allocating Network (PRAN) (Roberts and Tarassenko, 
1994) and DIGNET network (Thomopoulos et al., 
1995) to damage identification are applied. In PRAN, 
the distribution of the input is modeled by a set of 
Gaussian probability density functions. The DIGNET is 
a self-organizing neural network for automatic pattern 
recognition, classification and data fusion and is 
designed for clustering noisy input patterns. The self-
organizing capability of DIGNET is based on 
competitive learning where clusters are generated or 
eliminated during the learning phase. In this study, a 
finite element model of a suspension bridge is 
considered to verify the approach and environmental 
effects in the form of thermal stressing are modeled. 
For both types, the damage detection outcomes are 
reasonably good, with the PRAN network generally 
outperforming the DIGNET network. Based on this 
work, the ANN could detect damage with 70% 
accuracy. 

ANN-based damage identification using measured 
FRF data has been used by Zang et al. (2003). In this 
study, two different correlation indices as damage 
indicators for measured FRF data, comprising of 
Amplitude Correlation Criteria (ACC) and Global 
Shape Criteria (GSC) are proposed.  

A network with two inputs consisting of the 
Averaged Integration of Amplitude Correlation Criteria 
(AIACC) and Average Integration of Global Shape 
Criteria (AIGSC) is trained. Damage existence, 
locations and severities are taken considered as outputs 
of the neural network. These methods are used 
experimentally on a three-storey bookshelf structure. 
Authors have concluded that these methods are capable 
to identify damage for most damage related cases. 
However, there is little false identification made. 
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Fig. 10: The division of the cantilevered beam (Fang et al., 2005) 
 

 
 

Fig. 11: Artificial neural network configuration (Zang et al., 
2003) 

 
ANNs have been employed to perform structural 

damage detection using the FRF data in a benchmark 
cantilevered beam structure by Fang et al. (2005) 
.Therefore, in the present study, an input-output relation 
between the FRFs and the damage location and severity 
using the neural network is established. The 
cantilevered beam is equally divided into 20 elements 
as depicted in Fig. 10. Single and multiple damages that 
cause stiffness loss in one or multiple elements on a 
cantilevered beam are considered in this work. In this 
research different training algorithms such as the 
Dynamic Steepest Descent (DSD) and Fuzzy Steepest 
Descent (FSD) and Tunable Steepest Descent (TSD) 
have been considered, while promising specifications 
such as improved learning speed shown. 

Networks trained based damage detection in this 
study could assess single and multiple cracks in a 
cantilevered beam by using FRF data with very good 
accuracy. This new approach demonstrated very high 
accuracy in predicting damage location and severity. 
Also, according to this work, the performance of the 
DSD and FSD algorithms is better than that of the FSD 
algorithm.  

Zapico and Molisani (2009) applied FRFs as input 
variables in ANNs to detect damage in steel structures. 
In this work, a feed forward neural network with the 
back propagation algorithm is used for damage 
detection in the steel beams. According to this research 
42 spectral line values and only one output that indicate 
the damage in steel beams were considered. Therefore, 
as shown in Fig. 11, the architecture of the ANN 
consists of three layers with 42 input neurons, 7 

neurons in the hidden layer and 1 neuron in the output 
layer. Based on this study, authors have concluded that 
ANN trained using FRF data was able to identify 
damaged beams with very good accuracy. 

A research study on structural damage detection 
using FRFs and ANNs is done by Lee and Kim (2007) 
and Kim (2003). In these works the Signal Anomaly 
Index (SAI) which expresses the changes in the 
shape of FRFs or Strain Frequency Response Function 
(SFRF) is suggested. As stated in Eq. (10), the SAI is 
the difference between two FRFs of intact and damaged 
states in a Euclidean norm: 
 

   

  B

CB

B

i
C

i
B

FRF

FRFFRF

fH

fHfH
SAI

fn

ffi

fn

ffi

















 









2

1

2

2

1

1     (10) 

 
Superscripts B and C represent the intact and 

damaged states and functions of H and FRF represent 
the frequency response function in continuous and 
discrete forms. Also f1 and fn in this equation are the 
lowest and highest frequency ranges. According to this 
study, several numerical models and experimental tests 
have been performed in a model bridge as depicted in 
Fig. 12. 

According to authors, an ANN using numerical 
results is trained and tested using experimental 
simulated signals. In this network, one hidden layer that 
consists of 10 neurons and an output layer with 9 
neurons is trained using results from modeled damages 
on nine locations in the FEM. Results demonstrated that 
ANN trained using the Signal Anomaly Index (SAI) is 
able to identify damage as a promising tool for SHM. 
Also, Chang et al. (2002) developed a Signal Anomaly 
Index (SAI) vector in terms of the FRF data before and 
after damage as input to an ANN for bridge damage 
identification. 

ANNs are applied for the FE model, where they 
update both structural parameters and damping ratios 
using the FRF data by Lu and Tu (2004). In this study 
the two-level neural network approach is considered. In 
the first level, structural parameters such as stiffness 
using natural and ant resonance frequencies as the 
response data are updated, but in the second level only 
variable damping ratios using integrals of FRFs as 
response data are updated.  
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Fig. 12: Damage detection algorithm (Lee and Kim, 2007) 
 

 
 

Fig. 13: Multi-storey building frame (Chang et al., 2002) 
 
Integrals of FRFs are used for the updating of the 

damping ratios because of their inherent features with 
the damping factors. A numerical example of a multi-
storey building frame is applied to demonstrate the 
implementation of the proposed method as depicted in 
Fig. 13. According to this paper, the neural network 
trained is able to identify the variable damping ratios 
and structural parameters within an error of 4%. Results 
of the numerical example showed that this procedure is 
efficient and effective. 

A Multi Layer Perceptron (MLP) on a 10-bar truss 
structure and a 25-bar transmission tower has applied 
by Manning (1994). Author used the FRF data and an 
estimated measurement of member stifness as the 
training samples. Damage is simulated by reducing the 
cross-sectional area of a member. The MLP consists of 
40 inputs, two hidden layers with seven and five 
neurons and four outputs. According to this research, a 
trained neural network is able to predict the change in 
the member in the cross-sectional area with 10% error. 

Probabilistic ANNs are developed and applied to 
damage identification in an aerospace housing 
component structure by Klenke and Paez (1996). The 
FRF data are used in the training of neural network and 
the network output determines whether the structure is 
damaged or not, based on experimental measurements. 
According to authors, five different types of damage 
cuts are created in the structure. The results are quite 

successful and the network is able to identify all 
damage types with good accuracy. The damage in this 
structure is detected, even in the most lightly damaged 
cases. The severity of damage has not been considered 
in this study. 

System identification and ANNs as two different 
methods have been applied for structural health 
monitoring in large scale laboratory reinforced concrete 
bridge models by Owen and Haritos (2003). Simulation 
data for undamaged and damaged models indicate that 
comparing the FRF data has provided a more sensitive 
indicator of system change than simply using the 
natural frequencies. According to authors, the system 
identification method provides more information on the 
location and extent of damage, but it needs more 
measurement points and requires more prior 
knowledge. ANNs trained using FRFs provide less 
information about the location and extent of damage, 
but they need less input data. Also, ANN is less 
sensitive to noise. Comparison drawn between the 
weaknesses and strengths of two aforementioned 
methods has demonstrated that they should be applied 
together. However, both system identification and 
ANNs are successfully applied to reinforced concrete 
bridges according to their damaged state using the 
FRFs. 

The applicability of ANNs to damage identification 
using transfer functions instead of the FRF data in 
composite structures has once been examined by Rhim 
and Lee (1995). The transfer function is applied 
because it represents compact and complete information 
about a dynamic system from given input-output data. 
Two phases which include training and testing are 
considered to detect the presence and to identify the 
damage characteristics. Various damage scenarios are 
designated and the patterns organized into different 
pattern classes according to the severity and location of 
the damage. In this research, system identifications are 
implemented to extract the FRFs as the features of the 
structural systems. These features are applied as the 
inputs for the training of MLP. The ANN as a strong 
tool can well predict the existence and severity of 
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damage. Numerical verification results show the 
feasibility of the suggested approach in this study. This 
approach can be applied with limited number of 
sensors. 

 
CONCLUSION 

 
Several attempts in using dynamic parameters such 

as FRFs and modal parameters are reported. Each 
dynamic parameter carries its own advantages and 
shortcomings in damage detection. A large part of 
earlier studies have applied the changes of modal 
properties involving the mode shapes, natural 
frequencies and damping ratios as input variables of 
ANNs for structural damage detection. 

As mentioned previously, modal parameters 
necessitate much effort and time to extract. Also the 
extraction of modal parameters needs expertise and 
sometimes user interaction may add to the human 
extraction errors and uncertainties suffering in the 
modal parameter results. 

It is noteworthy that significant information may 
not be exactly expressed using modal properties only. 
However, although much of previous studies have 
applied the modal domain data as the inputs of ANNs 
for damage identification, the feasibility and efficiency 
of training ANNs on FRFs data for structural damage 
identification are demonstrated instead of modal 
parameters because of several advantages by some 
other researchers.  

FRFs can provide a lot of data which contribute to 
the provision of more useful information, also the fact 
that where FRFs are concerned, the experimental modal 
analysis is not required and human errors during 
experimental can be avoided. On the other hand, FRFs 
are very sensitive to any reduction in structural stiffness 
and mass and they can be applied as a good damage 
indicator. Therefore, ANNs have been applied by 
several researchers to the aspect of damage 
identification using FRF data as inputs on the network. 

One of the most important shortcomings with 
regards on the use of FRFs with ANNs is the large size 
of the FRF data. The size of the FRF data that is 
determined by the number of spatial response locations 
and number of spectral lines is very large for ANN 
training. The direct use of such massive FRF data leads 
to ANNs having a large size of input neurons, which 
ignites several problems in terms of computational 
efficiency, convergence stability and training efforts. 
Also, researchers who have applied completed FRFs 
with few thousands of data points have discovered that 
there is too much information for the neural network 
training purpose and also it results in time-consuming-
training. 

To overcome these problems and to improve the 
performance of ANNs, some novel approaches have 
been employed for data reduction. The approaches have 
exploited the compressed FRFs as inputs of the ANNs 

instead of the direct FRFs for damage identification. 
PCA is one of the more common techniques to 
condense the FRF data as input variables of ANNs for 
the determination of damage existence and severity. 
The implementation of ANNs and PCA technique 
enable researchers to do accurate and robust damage 
detection. Robust damage detection indicates its ability 
to identify whether or not the damage happens at a very 
early stage, other than demonstrating its ability to locate 
the damage and provide some estimates of the severity 
of the damage. 

According to this review study, it is clear that over 
the past three decades there have been numerous studies 
which initiate the adoption of the ANNs on the FRF 
data of structures in the field of damage identification. 
Also, it has been demonstrated that ANNs using FRFs 
can provide several advantages over the modal 
parameters and further improving the damage 
identification. Recent studies indicate that ANNs can be 
trained on measured FRFs of healthy and damaged 
models of structures to fulfill the purpose of assessing 
the condition of the structure. 

 
RECOMMENDATIONS FOR FUTURE WORKS 

 
This review study is a starting point for relevant 

people or parties who would like to do research in the 
damage identification area using ANNs. Based on 
researchers who have already contributed in this review 
paper, the training of ANNs with a large size of FRFs 
can aggravate various training problems, with special 
regards on the convergence and computational time. 

Therefore, one of the most important challenges in 
using FRFs-based damage detection is the development 
of novel techniques and algorithms for data reduction 
and the selection of more useful FRFs as inputs of the 
ANNs. Therefore, the development of such algorithms 
should be promoted.  

Application of ANNs using FRFs in the damage 
identification of real structures with multiple damages 
is found to be limited. Thus, more studies in this area 
need to be carried out. Identification of damage using 
various types of ANNs with respect to FRFs as the 
input variable is also restricted. Therefore, the 
performance of different types of ANNs for damage 
detection can be further investigated. 

ANNs applied in this review usually adopt a 
supervised learning approach which requires FRF data 
as inputs and damage detection as the corresponding 
output data. However, the output data is not always 
available. Thus, further studies on the ANN 
implementation under the unsupervised learning 
method for training and testing patterns are encouraged. 
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