Research Article

A Note on Abel-Grassmann's Groupoids

1Madad Khan, 2Qaiser Mushtaq and 1Saima Anis

1Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
2Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

Abstract: In this study we have constructed various AG-groupoids from vector spaces over finite fields and also from finite fields by defining new operations on these structures.

Keywords: AG-groupoid, Cayley diagram, Galois field

INTRODUCTION

An Abel-Grassmann's groupoid (Protić and Stevanović, 2004), abbreviated as an AG-groupoid, is a groupoid \(S \) whose elements satisfy the invertive law:

\[(ab)c = (cb)a, \text{ for all } a, b, c \in S. \tag{1} \]

It is also called a left almost semigroup (Kazim and Naseeruddin, 1972; Mushtaq and Iqbal, 1990). In Holgate (1992) it is called a left invertive groupoid. In this study we shall call it an AG-groupoid. It has been shown in Mushtaq and Yusuf (1978) that if an AG-groupoid contains a left identity then the left identity is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. It is a useful non-associative algebraic structure, midway between a groupoid and a commutative semigroup.

An AG-groupoid \(S \) is medial (Kazim and Naseeruddin, 1972) that is:

\[(ab)(cd) = (ac)(bd), \text{ for all } a, b, c, d \in S. \tag{2} \]

An AG-groupoid is called an AG-band if all its elements are idempotents.

A commutative inverse semigroup \((S, \ast)\) becomes an AG-groupoid \((S, \circ)\) under the relation \(a \ast b = b \ast a^{-1}\) (Mushtaq and Yusuf, 1988).

In Stevanović and Protić (2004) a binary operation “\(\circ\)” on an AG-groupoid \(S \) has been defined as follows: for all \(x, y \in S \) there exists \(a \) such that \(x \circ y = (ax)y \). Clearly \(x \circ y = y \circ x \) for all \(x, y \in S \).

Now if an AG-groupoid \(S \) contains a left identity \(e \) then the operation \(\circ \) becomes associative, because using (1) and (2), we get:

\[(x \circ y) \circ z = (((xy)y)a)(za)((za)y) = (e(za))(za)y = (xa)((za)y) = x \circ (y \circ z). \]

Hence \((S, \circ)\) is a commutative semi group. Connection discussed above make this non-associative structure interesting and useful.

PRELIMINARIES

Here we construct AG-groupoids by defining new operations on vector spaces over finite fields. AG-groupoids constructed from finite fields are very interesting. It is well known that a multiplicative group of a finite field is a cyclic group generated by a single element. By using these generators we have drawn the Cayley diagrams for such AG-groupoids which have been constructed from finite fields. The diagrams are either bi-partite (that is, their vertices can be colored by using two minimum colors) or tri-partite (that is, they can be colored using three minimum colors).

Here we begin with the examples of AG-groupoids having no left identity.

Example 1: Let \(S = \{1, 2, 3, 4, 5, 6, 7\} \), the binary operation \(\ast \) be defined on \(S \) as follows:

<table>
<thead>
<tr>
<th>(a)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>(2)</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(3)</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(5)</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>(6)</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(7)</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Then \((S, \ast)\) is an AG-groupoid without left identity.
Following is an example of an AG-groupoid with the left identity.

Example 2: Let \(S = \{1,2,3,4,5,6,7,8\} \), the binary operation be defined on \(S \) as follows:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 5 & 6 & 7 & 8 & 1 \\
4 & 5 & 6 & 7 & 8 & 1 & 2 \\
5 & 6 & 7 & 8 & 1 & 2 & 3 \\
6 & 7 & 8 & 1 & 2 & 3 & 4 \\
7 & 8 & 1 & 2 & 3 & 4 & 5 \\
8 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Then \((S,\cdot)\) is an AG-groupoid with left identity 7.

A graph \(G \) is a finite non-empty set of objects called vertices (the singular is vertex) together with a (possibly empty) set of unordered pairs of distinct vertices of \(G \) called edges. The vertex set is denoted by \(V(G) \), while the edge set is denoted by \(E(G) \).

A graph \(G \) is connected if every two of its vertices are connected. A graph \(G \) that is not connected is disconnected. A graph is planar if it can be embedded in the plane.

A directed graph or digraph \(D \) is a finite non-empty set of objects called vertices together with a (possibly empty) set of ordered pairs of distinct vertices of \(D \) called arcs or directed edges.

A graph \(G \) is \(n \)-partite, \(n \geq 1 \), if it is possible to partition \(V(G) \) into \(n \) subsets \(V_1, V_2, \ldots, V_n \) (called partite sets) such that every element of \(E(G) \) joins a vertex of \(V_i \) to a vertex of \(V_j \), \(i \neq j \). For \(n = 2 \), such graphs are called bi-partite graphs.

Theorem 1: Let \(W \) be a sub-space of a vector space \(V \) over a field \(F \) of cardinal \(2r \) such that \(r > 1 \). Define the binary operation \(\circ \) on \(W \) as follows:

\[
u \circ v = \alpha \cdot u + \alpha v, \text{ where } \alpha, \text{ a generator of } F \setminus \{0\} \text{ and } u, v \in W.
\]

Then \((W,\circ)\) is an AG-groupoid.

Proof: Clearly \(W \) is closed. Next we will show that \(W \) satisfies left invertive law:

\[
(x \circ y) \circ z = \alpha^{-1}(\alpha'x + \alpha y) + \alpha z = \alpha^{-1}x + \alpha'^{-1}y + \alpha z
\]

(3)

Now:

\[
(z \circ y) \circ x = \alpha^{-1}(\alpha'z + \alpha y) + \alpha x = \alpha^{-1}z + \alpha'^{-1}y + \alpha x
\]

(4)

From (3) and (4), we get:

\[
(x \circ y) \circ z = (z \circ y) \circ x, \text{ for all } x, y, z \in W.
\]

Hence \((W,\circ)\) is an AG-groupoid.

It is not a semigroup because:

\[
x \circ (y \circ z) = \alpha'x + \alpha(\alpha' y + \alpha z) = \alpha'x + \alpha^{-1}y + \alpha^2z.
\]

(5)

(3) and (5) imply that:

\[
(x \circ y) \circ z \neq x \circ (y \circ z), \text{ for some } x, y, z \in W.
\]

Also \((W,\circ)\) is not commutative because:

\[
u \circ v = \alpha' u + \alpha v, \text{ and } v \circ u = \alpha' v + \alpha u,
\]

so

\[
u \circ v \neq v \circ u, \text{ for some } u, v \in W.
\]

Hence \((W,\circ)\) is an AG-groupoid.

Remark 1: An AG-groupoid \((W,\circ)\) is referred to as an AG-groupoid defined by the vector space \((V,+,\cdot)\).

Remark 2: If we take \(u, v \in F \), taking \(a \) as a generator of \(F \) and cardinal of \(F \) is 2, then \((F,\cdot)\) is said to be an AG-groupoid defined by Galois field.

An element \(a \) of an AG-groupoid \(S \) is called an idempotent if and only if \(a = a^2 \).

An AG-groupoid is called AG-band if all its elements are idempotents.

CAYLEY DIAGRAMS

A Cayley graph (also known as a Cayley colour graph and named after A. Cayley), is a graph that encodes the structure of a group.

Specifically, let \(G = \langle X \mid R \rangle \) be a presentation of the finitely generated group \(G \) with generators \(X \) and relations \(R \). We define the Cayley graph \(\Gamma = \Gamma(G,X) \) of \(G \) with generators \(X \) as:

\[
\Gamma = \langle G, E \rangle
\]

where,

\[
E = \{ u, a \cdot u \mid u \in G, a \in X \} \quad (E \text{ is the set of edges}).
\]

That is, the vertices of the Cayley graph are precisely the elements of \(G \) and two elements of \(G \) are connected by an edge if and only if some generator in \(X \) transfers the one to the other. He has proposed the use of colors to distinguish the edges associated with different generators.

Remark 3: If we put the value of \(r = 2 \), in remark 2, we get Galois field of order 4.

Further we need to construct a field of 4 elements, for this take an irreducible polynomial \(x^2 + x + 1 \) in \(Z_2 = \{0,1\} \). Then simple calculations yield that \(GF(2^2) = \{0,1,t, t^2\} \). The table of this field is given by:
Example 3: Using $G^2 \setminus \{0\} = F \setminus \{0\} = \{t : t^3 = 1\} = \{0, t, t^2\}$ and $u \circ v = \alpha^2 u + \alpha v$, for all $u, v \in F$ and $\alpha = t \in F$, we get the following table of an AG-groupoid:

<table>
<thead>
<tr>
<th>\ast</th>
<th>0</th>
<th>1</th>
<th>t^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t^2</td>
<td>1</td>
<td>0</td>
<td>t^2</td>
</tr>
<tr>
<td>t^2</td>
<td>0</td>
<td>1</td>
<td>t^2</td>
</tr>
</tbody>
</table>

We can draw the Cayley diagram for it as under, which is a tri-partite, planar disconnected graph (Fig. 1).

Theorem 2: Let W be a sub-space of a vector space V over a field F of cardinal p^s for some prime $p \neq 2$. Define the binary operation \oplus on W as follows:

$$u \oplus v = \alpha^2 u + \alpha v,$$

where α is a generator of $F \setminus \{0\}$ and $u, v \in W$. Then (W, \oplus) is an AG-groupoid with left identity 0.

Proof: Clearly W is closed. Next we will show that W satisfies left invertive law:

$$(x \oplus y) \oplus z = \alpha^{-1} \left(\alpha^{s-1} x + y \right) + z = \alpha^{s-1} x + \alpha^{-1} y + z + x.$$

From (6) and (7), we get:

$$(x \oplus y) \oplus z = (z \oplus y) \oplus x, \text{ for all } x, y, z \in W.$$

Hence (W, \oplus) is an AG-groupoid.

It is not a semigroup because:

$$x \oplus (y \oplus z) = \alpha^{-1} x + (\alpha^{s-1} y + z) = \alpha^{s-1} x + \alpha^{-1} y + z.$$

(6) and (8) simply that:

$$(x \oplus y) \oplus z \neq x \oplus (y \oplus z), \text{ for some } x, y, z \in W.$$

Also (W, \oplus) is not commutative because:

$$u \oplus v = \alpha^2 u + \alpha v, \text{ and } v \oplus u = \alpha^{-1} v + u,$$

so $u \oplus v \neq v \oplus u$, for some $u, v \in W$.

Now:

$$0 \oplus x = \alpha^2 0 + x = x, \text{ for all } x \in W.$$

Hence (W, \oplus) is an AG-groupoid with left identity 0.

Example 4: Put $p = 3$ and $n = 1$, in theorem 2, then the cardinal of F is 3 and $u \circ v = \alpha u + v$, for all u, v and fixed element α of F.

Obviously $F = \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}$ mod 3, $F \setminus \{0\} = \{1, 2\} = \{2 : 2^2 = 1\}$, here $\alpha = 2$, we get the following table of an AG-groupoid $\{0, 1, 2\}:

<table>
<thead>
<tr>
<th>\oplus</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Now we can draw the Cayley diagram for the formed example of an AG-groupoid (F, \circ), which is a bi-partite, planar disconnected graph (Fig. 2).
Example 5: Put $p = 5$ and $n = 1$, in theorem 2, then we get $|F| = 5$ and $u \otimes v = \alpha^2 u + v$.

Now clearly $GF(S) = F = Z_5 = \{0,1,2,3,4\}$ mod 5, $F \setminus \{0\} = \{2 : 2^3 = 1\}$, taking α as a generator which is 2, in this case, then:

$$u \otimes v = 2^2 \cdot u + v = 4 \cdot u + v.$$

Hence we get the following AG-groupoid:

<table>
<thead>
<tr>
<th>\otimes</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The Cayley diagram for the above example is given by, which is a bi-partite, planar disconnected graph (Fig. 3).

Theorem 3: Let W be a sub-space of a vector space V over a field F of cardinal r such that $r > 1$. Define the binary operation $*$ on W as follows:

$$u * v = au + \alpha^2 v,$$

where α is a generator of $F \setminus \{0\}$ and $u, v \in W$. Then $(W, *)$ is an AG-groupoid.

Proof: Clearly W is closed. Next we will show that W satisfies the left invertive law:

$$(x*y)z = a(ax + \alpha^2 y) + \alpha^2 z = \alpha x + \alpha^3 y + \alpha^2 z.$$

(9)

Now:

$$(z * y)x = \alpha(ax + \alpha^2 y) + \alpha^2 x = \alpha^2 z + \alpha^3 y + \alpha^2 x = \alpha^2 x + \alpha^3 y + \alpha^2 z.$$

(10)

From (9) and (10), we get:

$$S(x * y)z = (z * y)x, \text{ for all } x, y, z \in W.$$

Also it is not commutative because:

$$u * v = au + \alpha^2 v, \text{ and } v * u = av + \alpha^2 u,$$

so $u * v \neq v * u$, for some $u, v \in W$.

Hence $(W, *)$ is an AG-groupoid.

Example 6: Let $|F| = 4$.

Obviously the field of order 4, is $GF(2^2) \setminus \{0\} = \{t : t^3 = 1\} = \{1, t, t^2\}$, further put $\alpha = t$ in $u * v = au + \alpha^2 v$, for all $u, v \in F$, thus obtain the following table for an AG-band $\{0,1, t, t^2\}$:

<table>
<thead>
<tr>
<th>$*$</th>
<th>0</th>
<th>1</th>
<th>t</th>
<th>t^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t^2</td>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>t</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t^2</td>
<td>1</td>
<td>t</td>
<td>0</td>
<td>t^2</td>
</tr>
</tbody>
</table>

This table now evolves the following diagram (Fig. 4).

Example 7: Let $S = \{1, 2, 3, 4\}$, the binary operation $.$ be defined on S as follows:

<table>
<thead>
<tr>
<th>.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Then $(S, .)$ is an AG-band, (also given in (Protić and Stevanović, 2004)). This example is a particular form of the theorem 3.
Example 8: Let us put the value of \(r = 9 \) in theorem 3, then \(|F| = 9 \).

Now we need to construct a field of 9 elements, for this take an irreducible polynomial \(t^2 + t + 2 + 0 \) in \(\mathbb{Z}_3 = \{0, 1, 2\} \). Then simple calculations yields:

\[
GF(3^2) \setminus \{0\} = F \setminus \{0\} = \{1 + \sqrt{2}, \alpha : \alpha^8 = 1\} = \{1, 2, \sqrt{2}, 2\sqrt{2}, 2 + \sqrt{2}, 2 + 2\sqrt{2}, 1 + 2\sqrt{2}, 1 + \sqrt{2}\}.
\]

Now put the value of \(\alpha = 1 + \sqrt{2} \) in \(u * v = \alpha u + \alpha^2 v \), we get:

\[
\begin{align*}
 u * v &= (1 + \sqrt{2})u + (1 + \sqrt{2})v = (1 + \sqrt{2})u + 2\sqrt{2}v, \text{ for all } u, v \in F. \\
 v &= (1 + \sqrt{2})u + 2\sqrt{2}v.
\end{align*}
\]

Putting all the values of \(u, v \) from \(F \) in Eq. (12) we get an AG-band:

We get the following bi-partite, disconnected, planar directed graph (Fig. 5).

Remark 4: If we take finite fields instead of subspaces \(W \) of vector spaces \(V \), in theorems 1, 2 and 3, then we can make the Cayley diagrams for these AG-groupoids by using the definition of a Cayley graph.

Example 9: Let \(S = \{1, 2, 3, 4, 5, 6, 7, 8\} \), the binary operation \(\cdot \) be defined on \(S \) as follows:

\[
\begin{array}{cccccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & 2 & 4 & 4 & 4 & 4 & 4 & 8 \\
2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
6 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
7 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
8 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4
\end{array}
\]

It is non-commutative and non-associative because \(8 \neq 1 \cdot 8 = 8 \cdot 1 = 2, 2 = (2 \cdot 1) \cdot 1 \neq 2 \cdot (1 \cdot 1) = 8 \).

Example 10: Let \(S = \{1, 2, 3, 4\} \), the binary operation \(\cdot \) be defined on \(S \) as follows:

\[
\begin{array}{cccc}
 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 \\
2 & 3 & 3 & 3 & 3 \\
3 & 2 & 3 & 3 & 3 \\
4 & 2 & 3 & 3 & 3
\end{array}
\]

It is non-commutative and non-associative because, \(4 = 1 \cdot 4 \neq 4 \cdot 1 = 2 \) and \(2 = (2 \cdot 1) \cdot 1 \neq 2 \cdot (1 \cdot 1) = 4 \). Thus \((S, \cdot) \) is an AG-groupoid.

References

