## Research Article

# A Note on Abel-Grassmann's Groupoids 

${ }^{1}$ Madad Khan, ${ }^{2}$ Qaiser Mushtaq and ${ }^{1}$ Saima Anis<br>${ }^{1}$ Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan<br>${ }^{2}$ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan


#### Abstract

In this study we have constructed various AG-groupoids from vector spaces over finite fields and also from finite fields by defining new operations on these structures.


Keywords: AG-groupoid, Cayley diagram, Galois field

## INTRODUCTION

An Abel-Grassmann's groupoid (Protić and Stevanović, 2004), abbreviated as an AG-groupoid, is a groupoid $S$ whose elements satisfy the invertive law:

$$
\begin{equation*}
(a b) c=(c b) a, \text { for all } a, b, c \in S . \tag{1}
\end{equation*}
$$

It is also called a left almost semigroup (Kazim and Naseeruddin, 1972; Mushtaq and Iqbal, 1990). In Holgate (1992) it is called a left invertive groupoid. In this study we shall call it an AG-groupoid. It has been shown in Mushtaq and Yusuf (1978) that if an AGgroupoid contains a left identity then the left identity is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. It is a useful nonassociative algebraic structure, midway between a groupoid and a commutative semigroup.

An AG-groupoid $S$ is medial (Kazim and Naseeruddin, 1972) that is:

$$
\begin{equation*}
(a b)(c d)=(a c)(b d), \text { for all } a, b, c, d \in S \tag{2}
\end{equation*}
$$

An AG-groupoid is called an AG-band if all its elements are idempotents.

A commutative inverse semigroup ( $S,{ }^{*}$ ) becomes an AG-groupoid ( $S$,.) under the relation $a \cdot b=b * a^{-1}$ (Mushtaq and Yusuf, 1988).

In Stevanović and Protić (2004) a binary operation "○" on an AG-groupoid $S$ has been defined as follows: for all $x, y \in S$ there exist $a$ such that $x \circ y=(x a) y$. Clearly $x \circ y=y \circ x$ for all $x, y \in S$.

Now if an AG-groupoid $S$ contains a left identity e then the operation $\circ$ becomes associative, because using (1) and (2), we get:

$$
\begin{aligned}
(x \circ y) \circ z & =(((x a) y) a) z=(z a)((x a) y)=(e(z a))((x a) y) \\
& =(x a)((z a) y)=(x a)((y a) z)=x \circ(y \circ z) .
\end{aligned}
$$

Hence ( $\mathrm{S}, \circ$ ) is a commutative semi group. Connection discussed above make this non-associative structure interesting and useful.

## PRELIMINARIES

Here we construct AG-groupoids by defining new operations on vector spaces over finite fields. AGgroupoids constructed from finite fields are very interesting. It is well known that a multiplicative group of a finite field is a cyclic group generated by a single element. By using these generators we have drawn the Cayley diagrams for such AG-groupoids which have been constructed from finite fields. The diagrams are either bi-partite (that is, their vertices can be colored by using two minimum colors) or tri-partite (that is, they can be colored using three minimum colors).

Here we begin with the examples of AG-groupoids having n o left identity.

Example 1: Let $S=\{1,2,3,4,5,6,7\}$, the binary operation . be defined on $S$ as follows:

| . | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 5 | 2 | 6 | 3 | 7 | 4 |
| 2 | 6 | 3 | 7 | 4 | 1 | 5 | 2 |
| 3 | 4 | 1 | 5 | 2 | 6 | 3 | 7 |
| 4 | 2 | 6 | 3 | 7 | 4 | 1 | 5 |
| 5 | 7 | 4 | 1 | 5 | 2 | 6 | 3 |
| 6 | 5 | 2 | 6 | 3 | 7 | 4 | 1 |
| 7 | 3 | 7 | 4 | 1 | 5 | 2 | 6 |

Then ( $S, \cdot$ ) is an AG-groupoid without left identity.

[^0]Following is an example of an AG-groupoid with the left identity.

Example 2: Let $S=\{1,2,3,4,5,6,7,8\}$, the binary operation be defined on $S$ as follows:

| $\cdot$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 |
| 3 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 |
| 4 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 |
| 5 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 |
| 6 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 8 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Then ( $S, \cdot$ ) is an AG-groupoid with left identity 7.
A graph $G$ is a finite non-empty set of objects called vertices (the singular is vertex) together with a (possibly empty) set of unordered pairs of distinct vertices of $G$ called edges. The vertex set is denoted by $V(G)$, while the edge set is denoted by $E(G)$.

A graph $G$ is connected if every two of its vertices are connected. A graph $G$ that is not connected is disconnected. A graph is planar if it can be embedded in the plane.

A directed graph or digraph $D$ is a finite non-empty set of objects called vertices together with a (possibly empty) set of ordered pairs of distinct vertices of $D$ called arcs or directed edges.

A graph $G$ is $n$-partite, $n \geq 1$, if it is possible to partition $V(G)$ into n subsets $V_{1}, V_{2}, \ldots, V_{n}$ (called partite sets) such that every element of $E(G)$ joins a vertex of $V_{i}$ to a vertex of $V_{j}, i \neq j$. For $n=2$, such graphs are called bi-partite graphs.

Theorem 1: Let $W$ be a sub-space of a vector space $V$ over a field $F$ of cardinal $2 r$ such that $\mathrm{r}>1$. Define the binary operation $\circ$ on $W$ as follows:
$u \circ v=\alpha^{r} u+\alpha v$, where $\alpha$ is a generator of $F \backslash\{0\}$ and $u, v \in W$. Then ( $W, \circ$ ) is an AG-groupoid.

Proof: Clearly $W$ is closed. Next we will show that $W$ satisfies left invertive law:

$$
\begin{align*}
(x \circ y) \circ z & =\alpha^{r}\left(\alpha^{r} x+\alpha y\right)+\alpha z=\alpha^{2 r} x+\alpha^{r+1} y+\alpha z  \tag{3}\\
& =\alpha x+\alpha^{r+1} y+\alpha z .
\end{align*}
$$

Now:

$$
\begin{aligned}
(z \circ y) \circ x & =\alpha^{r}\left(\alpha^{r} z+\alpha y\right)+\alpha x=\alpha^{2 r} z+\alpha^{r+1} y+\alpha x \\
& =\alpha z+\alpha^{r+1} y+\alpha x=\alpha x+\alpha^{r+1} y+\alpha z .
\end{aligned}
$$

From (3) and (4), we get:

$$
(x \circ y) \circ z=(z \circ y) \circ x, \text { for all } x, y, z \in W
$$

Hence $(W, \mathrm{o})$ is an AG-groupoid.

It is not a semigroup because:

$$
\begin{equation*}
x \circ(y \circ z)=\alpha^{r} x+\alpha\left(\alpha^{r} y+\alpha z\right)=\alpha^{r} x+\alpha^{r+1} y+\alpha^{2} z \tag{5}
\end{equation*}
$$

(3) and (5) imply that:

$$
(x \circ y) \circ z \neq x \circ(y \circ z) \text {, for some } x, y, z \in W
$$

Also ( $W, \circ$ ) is not commutative because:

$$
\begin{aligned}
& u \circ v=\alpha^{r} u+\alpha v, \text { and } \\
& v \circ u=\alpha^{r} v+\alpha u, \text { so } \\
& u \circ v \neq v \circ u, \text { for some } u, v \in W
\end{aligned}
$$

Hence ( $W, \circ$ ) is an AG-groupoid.
Remark 1: An AG-groupoid ( $W, \circ$ ) is referred to as an AG-groupoid defined by the vector space $(V, r,+)$.

Remark 2: If we take $u, v \in F$, taking $\alpha$ as a generator of $F$ and cardinal of $F$ is $2 r$, then $(F, \circ)$ is said to be an AG-groupoid defined by Galois field.

An element $a$ of an AG-groupoid S is called an idempotent if and only if $a=a^{2}$.

An AG-groupoid is called AG-band if all its elements are idempotents.

## CAYLEY DIAGRAMS

A Cayley graph (also known as a Cayley colour graph and named after A. Cayley), is a graph that encodes the structure of a group.

Specifically, let $G=\langle X \mid R\rangle$ be a presentation of the finitely generated group G with generators $X$ and relations $R$. We define the Cayley graph $\Gamma=\Gamma(G, X)$ of $G$ with generators $X$ as:

$$
\Gamma=(G, E)
$$

where,

$$
E=\{\{u, a \cdot u\} \mid u \in G, a \in X\}(E \text { is the set of edges }) .
$$

That is, the vertices of the Cayley graph are precisely the elements of $G$ and two elements of $G$ are connected by an edge if and only if some generator in $X$ transfers the one to the other. He has proposed the use of colors to distinguish the edges associated with different generators.

Remark 3: If we put the value of $r=2$, in remark 2, we get Galois field of order 4.

Further we need to construct a field of 4 elements, for this take an irreducible polynomial $x^{2}+x+1$ in $\mathrm{Z}_{2}=\{0,1\}$. Then simple calculations yield that $G F\left(2^{2}\right)=\left\{0,1, t, t^{2}\right\}$. The table of this field is given by:


Fig. 1: Tri-pertite and planar graph

$$
\begin{aligned}
& \begin{array}{c|cccc}
. & 0 & 1 & t & t^{2} \\
\hline 0 & 0 & 0 & 0 & 0
\end{array} \\
& 1011 t t^{2} \\
& t \begin{array}{llll}
0 & t & t^{2} & 1
\end{array} \\
& t^{2}\left[\begin{array}{llll} 
& t^{2} & 1 & t
\end{array}\right. \\
&
\end{aligned}
$$

Example 3: Using $G F\left(2^{2}\right) \backslash\{0\}=F \backslash\{0\}=\left\langle t: t^{3}=1\right\rangle=\left\{1, t, t^{2}\right\}$ and $u \circ v=\alpha^{2} u+\alpha v$, for all $u, v \in F$ and $\alpha=t \in F$, we get the following table of an AG-groupoid:

| $*$ | 0 | 1 | $t$ | $t^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $t$ | $t^{2}$ | 1 |
| 1 | $t^{2}$ | 1 | 0 | $t$ |
| $t$ | 1 | $t^{2}$ | $t$ | 0 |
| $t^{2}$ | $t$ | 0 | 1 | $t^{2}$ |

We can draw the Cayley diagram for it as under, which is a tri-partite, planar disconnected graph (Fig. 1).

Theorem 2: Let $W$ be a sub-space of a vector space $V$ over a field $F$ of cardinal $p^{n}$ for some prime $p \neq 2$. Define the binary operation $\otimes$ on $W$ as follows:
$u \otimes v=\alpha^{\frac{p^{n}-1}{2}} u+v$, where $\alpha$ is a generator of $F \backslash\{0\}$ and $u, v \in W$. Then $(W, \otimes)$ is an $A G$-groupoid with left identity 0 .

Proof: Clearly $W$ is closed. Next we will show that $W$ satisfies left invertive law:

$$
\begin{align*}
& (x \otimes y) \otimes z=\alpha^{\frac{p^{n}-1}{2}}\left(\alpha^{\frac{p^{n}-1}{2}} x+y\right)+z=  \tag{6}\\
& \alpha^{p^{n}-1} x+\alpha^{\frac{p^{n}-1}{2}} y+z=x+\alpha^{\frac{p^{n}-1}{2}} y+z
\end{align*}
$$

Now:

$$
\begin{aligned}
(z \otimes y) \otimes x= & \alpha^{\frac{p^{n}-1}{2}}\left(\alpha^{\frac{p^{n}-1}{2}} z+y\right) \\
& +x=\alpha^{p^{n}-1} z+\alpha^{\frac{p^{n}-1}{2}} y+x \\
= & z+\alpha^{\frac{p^{n}-1}{2}} y+x \\
= & x+\alpha^{\frac{p^{n}-1}{2}} y+z .
\end{aligned}
$$

From (6) and (7), we get:

$$
(x \otimes y) \otimes z=(z \otimes y) \otimes x, \text { for all } x, y, z \in W
$$

Hence $(W, \otimes)$ is an AG-groupoid.
It is not a semigroup because:

$$
\begin{align*}
& x \otimes(y \otimes z)=\alpha^{\frac{p^{n}-1}{2}} x+\left(\alpha^{\frac{p^{n}-1}{2}} y+z\right)  \tag{8}\\
& =\alpha^{\frac{p^{n}-1}{2}} x+\alpha^{\frac{p^{n}-1}{2}} y+z .
\end{align*}
$$

(6) and (8) simply that:

$$
(x \otimes y) \otimes z \neq x \otimes(y \otimes z), \text { for some } x, y, z \in W
$$

Also $(W, \otimes)$ is not commutative because:

$$
\begin{aligned}
u \otimes v & =\alpha^{\frac{p^{n-1}}{2}} u+v, \text { and } v \otimes u=\alpha^{\frac{p^{n}-1}{2}} v+u, \\
\text { so } u \otimes v & \neq v \otimes u, \text { for some } u, v \in W
\end{aligned}
$$

Now:

$$
0 \otimes x=\alpha^{\frac{p^{n}-1}{2}} 0+x=x, \text { for all } x \in W
$$

Hence $(W, \otimes)$ is an AG-groupoid with left identity 0
Example 4: Put $p=3$ and $n=1$, in theorem 2, then the cardinal of F is 3 and $u \otimes v=\alpha u+v$, for all $u, v$ and fixed element $\alpha$ of $F$.

Obviously $\mathrm{F}=\mathrm{Z}_{3}=\{0,1,2\} \bmod 3$, $F \backslash\{0\}=\{1,2\}=\left\langle 2: 2^{2}=1\right\rangle$, here $\alpha=2$, we get the following table of an AG-groupoid $\{0,1,2\}$ :

| $\otimes$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 |
| 1 | 2 | 0 | 1 |
| 2 | 1 | 2 | 0 |

Now we can draw the Cayley diagram for the formed example of an AG-groupoid $(F, \otimes)$, which is a bi-partite, planar disconnected graph (Fig. 2).


Fig. 2: Bi-partite, disconnected graph


Fig. 3: Bi-partite, planar graph
Example 5: Put $p=5$ and $n=1$, in theorem 2, then we get $|F|=5$ and $u \otimes v=\alpha^{2} u+v$.

Now clearly $G F(5)=F=\mathrm{Z}_{5}=\{0,1,2,3,4\} \bmod 5$, $F \backslash\{0\}=\left\langle 2: 2^{4}=1\right\rangle$, taking $\alpha$ as a generator which is 2 , in this case, then:

$$
u \otimes v=2^{2} \cdot u+v=4 \cdot u+v
$$

Hence we get the following AG-groupoid:

| $\otimes$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 4 | 0 | 1 | 2 | 3 |
| 2 | 3 | 4 | 0 | 1 | 2 |
| 3 | 2 | 3 | 4 | 0 | 1 |
| 4 | 1 | 2 | 3 | 4 | 0 |

The Cayley diagram for the above example is given by, which is a bi-partite, planar disconnected graph (Fig. 3).

Theorem 3: Let $W$ be a sub-space of a vector space $V$ over a field $F$ of cardinal $r$ such that $r>1$. Define the binary operation $*$ on $W$ as follows:

$$
u * v=\alpha u+\alpha^{2} v, \text { where } \alpha \text { is a generator of }
$$ $F \backslash\{0\}$ and $u, v \in W$. Then $(W, *)$ is an AG-groupoid.

Proof: Clearly $W$ is closed. Next we will show that $W$ satisfies the left invertive law:

$$
\begin{equation*}
(x * y) * z=\alpha\left(\alpha x+\alpha^{2} y\right)+\alpha^{2} z=\alpha^{2} x+\alpha^{3} y+\alpha^{2} z \tag{9}
\end{equation*}
$$

Now:

$$
\begin{align*}
& (z * y) * x=\alpha\left(\alpha z+\alpha^{2} y\right)+\alpha^{2} x  \tag{10}\\
& =\alpha^{2} z+\alpha^{3} y+\alpha^{2} x=\alpha^{2} x+\alpha^{3} y+\alpha^{2} z
\end{align*}
$$

From (9) and (10), we get:

$$
\mathrm{S}(x * y) * z=(z * y) * x, \text { for all } x, y, z \in W
$$



Fig. 4: Tri-partite directed graph
Hence $(W, *)$ is an AG-groupoid. It is not a semigroup because:

$$
\begin{align*}
& x *(y * z)=\alpha x+\alpha^{2}\left(\alpha y+\alpha^{2} z\right)  \tag{11}\\
& =\alpha x+\alpha^{3} y+\alpha^{4} z
\end{align*}
$$

(9) and (11) imply that:

$$
(x * y) * z \neq x *(y * z), \text { for some } x, y, z \in W
$$

Also it is not commutative because:

$$
\begin{aligned}
& u * v=\alpha u+\alpha^{2} v, \text { and } v * u=\alpha v+\alpha^{2} u, \text { so } \\
& u * v \neq v * u, \text { for some } u, v \in W
\end{aligned}
$$

Hence ( $W,{ }^{*}$ ) is an AG-groupoid.
Example 6: Let $|F|=4$.
Obviously the field of order 4, is $G F\left(2^{2}\right) \backslash\{0\}=\left\langle t: t^{3}=1\right\rangle=\left\{1, t, t^{2}\right\}$, further put $\alpha=t$ in $u * v=\alpha u+\alpha^{2} v$, for all $u, v \in F$, thus obtain the following table for an AG-band $\left\{0,1, t, t^{2}\right\}$ :

| $*$ | 0 | 1 | $t$ | $t^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $t^{2}$ | 1 | $t$ |
| 1 | $t$ | 1 | $t^{2}$ | 0 |
| $t$ | $t^{2}$ | 0 | $t$ | 1 |
| $t^{2}$ | 1 | $t$ | 0 | $t^{2}$ |

This table now evolves the following diagram (Fig. 4).
Example 7: Let $S=\{1,2,3,4\}$, the binary operation . be defined on S as follows:

| . | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 4 | 2 | 3 |
| 2 | 3 | 2 | 4 | 1 |
| 3 | 4 | 1 | 3 | 2 |
| 4 | 2 | 3 | 1 | 4 |

Then ( $S, \cdot$ ) is an AG-band, (also given in (Protic and Stevanović, 2004)). This example is a particular form of the theorem 3 .


Fig. 5: Bi-partite, disconnected planar graph
Example 8: Let us put the value of $r=9$ in theorem 3, then $|F|=9$.

Now we need to construct a field of 9 elements, for this take an irreducible polynomial $t^{2}+t+2+0$ in $Z_{3}=\{0,1,2\}$. Then simple calculations yields:

$$
\begin{aligned}
G F\left(3^{2}\right) \backslash\{0\} & =F \backslash\{0\}=\left\langle 1+\sqrt{2}=\alpha: \alpha^{8}=1\right\rangle \\
& =\{1,2, \sqrt{2}, 2 \sqrt{2}, 2+\sqrt{2}, 2+2 \sqrt{2}, 1+2 \sqrt{2}, 1+\sqrt{2}\} .
\end{aligned}
$$

Now put the value of $\alpha=1+\sqrt{2}$ in $u * v=\alpha u+\alpha^{2} v$, we get:

$$
\begin{align*}
& u * v=(1+\sqrt{2}) u+(1+\sqrt{2})^{2}  \tag{12}\\
& v=(1+\sqrt{2}) u+2 \sqrt{2} v, \text { for all } u, v \in F
\end{align*}
$$

Putting all the values of $u, v$ from $F$ in Eq. (12) we get an AG-band:

We get the following bi-partite, disconnected, planar directed graph (Fig. 5).

Remark 4: If we take finite fields instead of subspaces $W$ of vector spaces V , in theorems 1,2 and 3 , then we can make the Cayley diagrams for these AG-groupoids by using the definition of a Cayley graph.

Example 9: Let $S=\{1,2,3,4,5,6,7,8\}$, the binary operation . be defined on S as follows:

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
| 2 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 6 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 7 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 8 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

It is non-commutative and non-associative because $8=1 \cdot 8 \neq 8 \cdot 1=2,2=(2 \cdot 1) \cdot 1 \neq 2 \cdot(1 \cdot 1)=8$.

Also it is easy to verify that left invertive law holds in S. Hence ( $S$, ) is an AG-groupoid.

Example 10: Let $S=\{1,2,3,4\}$, the binary operation . be defined on $S$ as follows:

$$
\begin{array}{l|llll}
. & 1 & 2 & 3 & 4 \\
\hline 1 & 1 & 2 & 3 & 4 \\
2 & 4 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
4 & 2 & 3 & 3 & 3
\end{array}
$$

It is non-commutative and non-associative because, $4=1 \cdot 4 \neq 4 \cdot 1=2$ and $2=(2 \cdot 1) \cdot 1 \neq 2 \cdot(1 \cdot 1)=4$. Thus $(S, \cdot)$ is an AG-groupoid with left identity 1 .

## REFERENCES

Holgate, P., 1992. Groupoids satisfying a simple invertive law. Math. Stud., 61(1-4): 101-106.
Kazim, M.A. and M. Naseeruddin, 1972. On almost semigroups. Alig. Bull. Math., 2: 1-7.
Mushtaq, Q. and S.M. Yusuf, 1978. On LA-semigroups. Alig. Bull. Math., 8: 65-70.
Mushtaq, Q. and S.M. Yusuf, 1988. On LA-semigroup defined by a commutative inverse semigroup. Math. Bech., 40: 59-62.
Mushtaq, Q. and Q. Iqbal, 1990. Decomposition of a locally associative LA-semigroup. Semigroup Forum, 41: 154-164.
Protić, P.V. and N. Stevanović, 2004. Abel-Grassmann's bands. Quasigroups Relat. Syst., 11: 95-101.
Stevanović, N. and P.V. Protić, 2004. Composition of Abel-Grassmann's 3-bands. Novi Sad. J. Math., 34(2): 175-182.


[^0]:    Corresponding Author: Madad Khan, Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

