Research Journal of Applied Sciences, Engineering and Technology 7(9): 1705-1709, 2014 DOI:10.19026/rjaset.7.452 ISSN: 2040-7459; e-ISSN: 2040-7467 © 2014 Maxwell Scientific Publication Corp. Submitted: May 30, 2012 Accepted: May 07, 2013 Pu

Published: March 05, 2014

Research Article

A Note on Abel-Grassmann's Groupoids

¹Madad Khan, ²Qaiser Mushtaq and ¹Saima Anis ¹Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan ²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

Abstract: In this study we have constructed various AG-groupoids from vector spaces over finite fields and also from finite fields by defining new operations on these structures.

Keywords: AG-groupoid, Cayley diagram, Galois field

INTRODUCTION

An Abel-Grassmann's groupoid (Protić and Stevanović, 2004), abbreviated as an AG-groupoid, is a groupoid *S* whose elements satisfy the invertive law:

$$(ab)c = (cb)a$$
, for all $a, b, c \in S$. (1)

It is also called a left almost semigroup (Kazim and Naseeruddin, 1972; Mushtaq and Iqbal, 1990). In Holgate (1992) it is called a left invertive groupoid. In this study we shall call it an AG-groupoid. It has been shown in Mushtaq and Yusuf (1978) that if an AGgroupoid contains a left identity then the left identity is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element. It is a useful nonassociative algebraic structure, midway between a groupoid and a commutative semigroup.

An AG-groupoid S is medial (Kazim and Naseeruddin, 1972) that is:

$$(ab)(cd) = (ac)(bd)$$
, for all $a, b, c, d \in S$. (2)

An AG-groupoid is called an AG-band if all its elements are idempotents.

A commutative inverse semigroup (S, *) becomes an AG-groupoid (S, .) under the relation $a \cdot b = b * a^{-1}$ (Mushtaq and Yusuf, 1988).

In Stevanović and Protić (2004) a binary operation " \circ " on an AG-groupoid S has been defined as follows: for all $x, y \in S$ there exist a such that $x \circ y = (xa)y$. Clearly $x \circ y = y \circ x$ for all $x, y \in S$.

Now if an AG-groupoid S contains a left identity e then the operation \circ becomes associative, because using (1) and (2), we get:

$$(x \circ y) \circ z = (((xa)y)a)z = (za)((xa)y) = (e(za))((xa)y) = (xa)((za)y) = (xa)((ya)z) = x \circ (y \circ z).$$

Hence (S, \circ) is a commutative semi group. Connection discussed above make this non-associative structure interesting and useful.

PRELIMINARIES

Here we construct AG-groupoids by defining new operations on vector spaces over finite fields. AGgroupoids constructed from finite fields are very interesting. It is well known that a multiplicative group of a finite field is a cyclic group generated by a single element. By using these generators we have drawn the Cayley diagrams for such AG-groupoids which have been constructed from finite fields. The diagrams are either bi-partite (that is, their vertices can be colored by using two minimum colors) or tri-partite (that is, they can be colored using three minimum colors).

Here we begin with the examples of AG-groupoids having n o left identity.

Example 1: Let $S = \{1, 2, 3, 4, 5, 6, 7\}$, the binary operation . be defined on *S* as follows:

	1	2	3	4	5	6	7
1	1	5	2	6	3	7	4
2	6	3	7	4	1	5	2
3	4	1	5	2	6	3	7
4	2	6	3	7	4	1	5
5	7	4	1	5	2	6	3
6	5	2	6	3	7	4	1
7	3	7	4	1	5	2	6

Then (S, \cdot) is an AG-groupoid without left identity.

Corresponding Author: Madad Khan, Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

Following is an example of an AG-groupoid with the left identity.

Example 2: Let $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$, the binary operation be defined on *S* as follows:

Then (S, \cdot) is an AG-groupoid with left identity 7.

A graph G is a finite non-empty set of objects called vertices (the singular is vertex) together with a (possibly empty) set of unordered pairs of distinct vertices of G called edges. The vertex set is denoted by V(G), while the edge set is denoted by E(G).

A graph G is connected if every two of its vertices are connected. A graph G that is not connected is disconnected. A graph is planar if it can be embedded in the plane.

A directed graph or digraph D is a finite non-empty set of objects called vertices together with a (possibly empty) set of ordered pairs of distinct vertices of Dcalled arcs or directed edges.

A graph G is n -partite, $n \ge 1$, if it is possible to partition V(G) into n subsets $V_1, V_2, ..., V_n$ (called partite sets) such that every element of E(G) joins a vertex of V_i to a vertex of V_j , $i \ne j$. For n = 2, such graphs are called bi-partite graphs.

Theorem 1: Let *W* be a sub-space of a vector space *V* over a field *F* of cardinal 2r such that r>1. Define the binary operation \circ on *W* as follows:

 $u \circ v = \alpha^r u + \alpha v$, where α is a generator of $F \setminus \{0\}$ and $u, v \in W$. Then (W, \circ) is an AG-groupoid.

Proof: Clearly W is closed. Next we will show that W satisfies left invertive law:

$$(x \circ y) \circ z = \alpha^{r} (\alpha^{r} x + \alpha y) + \alpha z = \alpha^{2r} x + \alpha^{r+1} y + \alpha z \qquad (3)$$
$$= \alpha x + \alpha^{r+1} y + \alpha z.$$

Now:

$$(z \circ y) \circ x = \alpha^{r} (\alpha^{r} z + \alpha y) + \alpha x = \alpha^{2r} z + \alpha^{r+1} y + \alpha x$$
(4)
= $\alpha z + \alpha^{r+1} y + \alpha x = \alpha x + \alpha^{r+1} y + \alpha z.$

From (3) and (4), we get:

$$(x \circ y) \circ z = (z \circ y) \circ x$$
, for all $x, y, z \in W$.

Hence (W, \circ) is an AG-groupoid.

It is not a semigroup because:

$$x \circ (y \circ z) = \alpha^{r} x + \alpha (\alpha^{r} y + \alpha z) = \alpha^{r} x + \alpha^{r+1} y + \alpha^{2} z.$$
(5)

(3) and (5) imply that:

 $(x \circ y) \circ z \neq x \circ (y \circ z)$, for some $x, y, z \in W$.

Also (W, \circ) is not commutative because:

 $u \circ v = \alpha^{r}u + \alpha v$, and $v \circ u = \alpha^{r}v + \alpha u$, so $u \circ v \neq v \circ u$, for some $u, v \in W$.

Hence (W, \circ) is an AG-groupoid.

Remark 1: An AG-groupoid (W, \circ) is referred to as an AG-groupoid defined by the vector space (V, +).

Remark 2: If we take $u, v \in F$, taking α as a generator of *F* and cardinal of *F* is 2*r*, then (F, \circ) is said to be an AG-groupoid defined by Galois field.

An element *a* of an AG-groupoid S is called an idempotent if and only if $a = a^2$.

An AG-groupoid is called AG-band if all its elements are idempotents.

CAYLEY DIAGRAMS

A Cayley graph (also known as a Cayley colour graph and named after A. Cayley), is a graph that encodes the structure of a group.

Specifically, let $G = \langle X | R \rangle$ be a presentation of the finitely generated group G with generators X and relations R. We define the Cayley graph $\Gamma = \Gamma(G, X)$ of G with generators X as:

$$\Gamma = (G, E)$$

where,

$$E = \{\{u, a \cdot u\} \mid u \in G, a \in X\}$$
 (*E* is the set of edges).

That is, the vertices of the Cayley graph are precisely the elements of G and two elements of G are connected by an edge if and only if some generator in X transfers the one to the other. He has proposed the use of colors to distinguish the edges associated with different generators.

Remark 3: If we put the value of r = 2, in remark 2, we get Galois field of order 4.

Further we need to construct a field of 4 elements, for this take an irreducible polynomial $x^2 + x + 1$ in $Z_2 = \{0,1\}$. Then simple calculations yield that $GF(2^2) = \{0,1,t,t^2\}$. The table of this field is given by:

Fig. 1: Tri-pertite and planar graph

	0	1	t	t^2					t	
0	0	0	0	0	C)	0	1	t	ť
1	0	1	t	t^2	1	1	1	0	t^2	t
t	0	t	t^2	1	t	ţ	t	t^2	0	1
t^2	0	t^2	1	t	ť	2	t^2	t	1	0

Example 3: Using $GF(2^2) \setminus \{0\} = F \setminus \{0\} = \langle t : t^3 = 1 \rangle = \{1, t, t^2\}$ and $u \circ v = \alpha^2 u + \alpha v$, for all $u, v \in F$ and $\alpha = t \in F$, we get the following table of an AG-groupoid:

*	0	1	t	t^2
0	0	t	t^2	1
1	t^2	1	0	t
t	1	t^2	t	0
t^2	t	0	1	t^2

We can draw the Cayley diagram for it as under, which is a tri-partite, planar disconnected graph (Fig. 1).

Theorem 2: Let *W* be a sub-space of a vector space *V* over a field *F* of cardinal p^n for some prime $p \neq 2$. Define the binary operation \otimes on *W* as follows:

 $u \otimes v = \alpha^{\frac{p^{n-1}}{2}}u + v$, where α is a generator of $F \setminus \{0\}$ and $u, v \in W$. Then (W, \otimes) is an *AG*-groupoid with left identity 0.

Proof: Clearly W is closed. Next we will show that W satisfies left invertive law:

$$(x \otimes y) \otimes z = \alpha^{\frac{p^{n}-1}{2}} \left(\alpha^{\frac{p^{n}-1}{2}} x + y \right) + z =$$

$$\alpha^{p^{n}-1} x + \alpha^{\frac{p^{n}-1}{2}} y + z = x + \alpha^{\frac{p^{n}-1}{2}} y + z.$$
(6)

Now:

$$(z \otimes y) \otimes x = \alpha^{\frac{p^{n}-1}{2}} \left(\alpha^{\frac{p^{n}-1}{2}} z + y \right) + x = \alpha^{p^{n}-1} z + \alpha^{\frac{p^{n}-1}{2}} y + x = z + \alpha^{\frac{p^{n}-1}{2}} y + x = x + \alpha^{\frac{p^{n}-1}{2}} y + z.$$
(7)

From (6) and (7), we get:

$$(x \otimes y) \otimes z = (z \otimes y) \otimes x$$
, for all $x, y, z \in W$.

Hence (W, \otimes) is an AG-groupoid. It is not a semigroup because:

$$x \otimes (y \otimes z) = \alpha^{\frac{p^{n}-1}{2}} x + (\alpha^{\frac{p^{n}-1}{2}} y + z)$$

$$= \alpha^{\frac{p^{n}-1}{2}} x + \alpha^{\frac{p^{n}-1}{2}} y + z.$$
(8)

(6) and (8) simply that:

$$(x \otimes y) \otimes z \neq x \otimes (y \otimes z)$$
, for some $x, y, z \in W$.

Also (W, \otimes) is not commutative because:

$$u \otimes v = \alpha^{\frac{p^n - 1}{2}} u + v, \text{ and } v \otimes u = \alpha^{\frac{p^n - 1}{2}} v + u,$$

so $u \otimes v \neq v \otimes u$, for some $u, v \in W$

Now:

$$0 \otimes x = \alpha^{\frac{p^n - 1}{2}} 0 + x = x, \text{ for all } x \in W$$

Hence (W, \otimes) is an AG-groupoid with left identity 0

Example 4: Put p = 3 and n = 1, in theorem 2, then the cardinal of F is 3 and $u \otimes v = \alpha u + v$, for all u, v and fixed element α of *F*.

Obviously $F = Z_3 = \{0, 1, 2\} \mod 3$, $F \setminus \{0\} = \{1, 2\} = \langle 2 : 2^2 = 1 \rangle$, here $\alpha = 2$, we get the following table of an AG-groupoid $\{0, 1, 2\}$:

\otimes	0	1	2	
0	0	1	2	
1	2	0	1	
2	1	2	0	

Now we can draw the Cayley diagram for the formed example of an AG-groupoid (F, \otimes) , which is a bi-partite, planar disconnected graph (Fig. 2).

Fig. 2: Bi-partite, disconnected graph

Fig. 3: Bi-partite, planar graph

Example 5: Put p=5 and n=1, in theorem 2, then we get |F| = 5 and $u \otimes v = \alpha^2 u + v$.

Now clearly
$$GF(5) = F = Z_5 = \{0, 1, 2, 3, 4\} \mod 5$$

 $F \setminus \{0\} = \langle 2 : 2^4 = 1 \rangle$, taking α as a generator which is 2, in this case, then:

$$u \otimes v = 2^2 \cdot u + v = 4 \cdot u + v.$$

Hence we get the following AG-groupoid:

\otimes	0	1	2	3	4
0	0	1	2	3	4
1	4	1 0 4 3 2	1	2	3
2	3	4	0	1	2
3	2	3	4	0	1
4	1	2	3	4	0

The Cayley diagram for the above example is given by, which is a bi-partite, planar disconnected graph (Fig. 3).

Theorem 3: Let W be a sub-space of a vector space V over a field F of cardinal r such that r>1. Define the binary operation * on W as follows:

 $u * v = \alpha u + \alpha^2 v$, where α is a generator of $F \setminus \{0\}$ and $u, v \in W$. Then (W, *) is an AG-groupoid.

Proof: Clearly *W* is closed. Next we will show that *W* satisfies the left invertive law:

$$(x*y)*z = \alpha(\alpha x + \alpha^2 y) + \alpha^2 z = \alpha^2 x + \alpha^3 y + \alpha^2 z.$$
(9)

Now:

$$(z*y)*x = \alpha(\alpha z + \alpha^2 y) + \alpha^2 x$$

= $\alpha^2 z + \alpha^3 y + \alpha^2 x = \alpha^2 x + \alpha^3 y + \alpha^2 z.$ (10)

From (9) and (10), we get:

$$S(x * y) * z = (z * y) * x$$
, for all $x, y, z \in W$.

Fig. 4: Tri-partite directed graph

Hence (W,*) is an AG-groupoid. It is not a semigroup because:

$$x * (y * z) = \alpha x + \alpha^{2} (\alpha y + \alpha^{2} z)$$

= $\alpha x + \alpha^{3} y + \alpha^{4} z$ (11)

(9) and (11) imply that:

 $(x * y) * z \neq x * (y * z)$, for some $x, y, z \in W$.

Also it is not commutative because:

 $u * v = \alpha u + \alpha^2 v$, and $v * u = \alpha v + \alpha^2 u$, so $u * v \neq v * u$, for some $u, v \in W$.

Hence (W,*) is an AG-groupoid.

Example 6: Let |F| = 4.

Obviously the field of order 4, is $GF(2^2) \setminus \{0\} = \langle t : t^3 = 1 \rangle = \{1, t, t^2\}$, further put $\alpha = t$ in $u * v = \alpha u + \alpha^2 v$, for all $u, v \in F$, thus obtain the following table for an AG-band $\{0, 1, t, t^2\}$:

This table now evolves the following diagram (Fig. 4).

Example 7: Let $S = \{1, 2, 3, 4\}$, the binary operation . be defined on S as follows:

Then (S, \cdot) is an AG-band, (also given in (Protić and Stevanović, 2004)). This example is a particular form of the theorem 3.

Fig. 5: Bi-partite, disconnected planar graph

Example 8: Let us put the value of r = 9 in theorem 3, then |F| = 9.

Now we need to construct a field of 9 elements, for this take an irreducible polynomial $t^2 + t + 2 + 0$ in $Z_3 = \{0, 1, 2\}$. Then simple calculations yields:

$$GF(3^{2}) \setminus \{0\} = F \setminus \{0\} = \langle 1 + \sqrt{2} = \alpha : \alpha^{8} = 1 \rangle$$

= $\{1, 2, \sqrt{2}, 2\sqrt{2}, 2 + \sqrt{2}, 2 + 2\sqrt{2}, 1 + 2\sqrt{2}, 1 + \sqrt{2}\}.$

Now put the value of $\alpha = 1 + \sqrt{2}$ in $u * v = \alpha u + \alpha^2 v$, we get:

$$u * v = (1 + \sqrt{2})u + (1 + \sqrt{2})^{2}$$

$$v = (1 + \sqrt{2})u + 2\sqrt{2}v, \text{ for all } u, v \in F.$$
(12)

Putting all the values of u, v from F in Eq. (12) we get an AG-band:

We get the following bi-partite, disconnected, planar directed graph (Fig. 5).

Remark 4: If we take finite fields instead of subspaces *W* of vector spaces V, in theorems 1, 2 and 3, then we can make the Cayley diagrams for these AG-groupoids by using the definition of a Cayley graph.

Example 9: Let $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$, the binary operation . be defined on S as follows:

•	1	2	3	4	5	6	7	8
1	1	2	4	4	4	4	4	8
2	8	4	4	4	4	4	4	4
3	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4	4
6	4	4	4	4	4	4	4	4
7	4	4	4	4	4	4	4	4
8	2	2 2 4 4 4 4 4 4 4 4 4 4	4	4	4	4	4	4

It is non-commutative and non-associative because $8 = 1 \cdot 8 \neq 8 \cdot 1 = 2$, $2 = (2 \cdot 1) \cdot 1 \neq 2 \cdot (1 \cdot 1) = 8$.

Also it is easy to verify that left invertive law holds in S. Hence (S, \cdot) is an AG-groupoid.

Example 10: Let $S = \{1, 2, 3, 4\}$, the binary operation. be defined on *S* as follows:

	1	2	3	4	
1	1	2	3	4	
2	4	3	3	3	
3	3	3	3	3	
4	2	2 3 3 3	3	3	

It is non-commutative and non-associative because, $4=1\cdot4\neq 4\cdot 1=2$ and $2=(2\cdot 1)\cdot 1\neq 2\cdot (1\cdot 1)=4$. Thus (S,\cdot) is an AG-groupoid with left identity 1.

REFERENCES

- Holgate, P., 1992. Groupoids satisfying a simple invertive law. Math. Stud., 61(1-4): 101-106.
- Kazim, M.A. and M. Naseeruddin, 1972. On almost semigroups. Alig. Bull. Math., 2: 1-7.
- Mushtaq, Q. and S.M. Yusuf, 1978. On LA-semigroups. Alig. Bull. Math., 8: 65-70.
- Mushtaq, Q. and S.M. Yusuf, 1988. On LA-semigroup defined by a commutative inverse semigroup. Math. Bech., 40: 59-62.
- Mushtaq, Q. and Q. Iqbal, 1990. Decomposition of a locally associative LA-semigroup. Semigroup Forum, 41: 154-164.
- Protić, P.V. and N. Stevanović, 2004. Abel-Grassmann's bands. Quasigroups Relat. Syst., 11: 95-101.
- Stevanović, N. and P.V. Protić, 2004. Composition of Abel-Grassmann's 3-bands. Novi Sad. J. Math., 34(2): 175-182.