
Research Journal of Applied Sciences, Engineering and Technology 7(8): 1507-1510, 2014   
DOI:10.19026/rjaset.7.426             
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2014 Maxwell Scientific Publication Corp. 
Submitted: May 05, 2013                        Accepted: June 10, 2013 Published: February 27, 2014 

 
Corresponding Author: Bassam Khuwaileh, Nuclear Engineering Department, Jordan University of Science and Technology, 

Jordan 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1507 

 

Research Article 

A Novel Hybrid Solving Approach Based on Combining Similarity Solutions with  
Laplace Transformation Technique to Solve Different Engineering Problems 

 
1Bassam Khuwaileh, 2Moh'd A. Al-Nimr and 3Mohanad Alata 

1Nuclear Engineering Department, 
2Mechanical Engineering Department, Jordan University of Science and Technology, Jordan 

3Mechanical Engineering Department, King Saud University, KSA 
 

Abstract: In this study Laplace transformation technique combined with similarity solutions are used to solve PDE 
involves derivatives with respect to time and two spatial parameters. The hybrid approach is based on transforming 
the PDE from the real physical time domain to the Laplacian domain. The obtained PDE in the Laplacian domain 
involves only derivatives with respect to the two spatial parameters. This transformed PDE is then solved by 
similarity solution approach to convert it from a PDE in the Laplacian domain to an ODE in another domain 
involves independent parameter consists of the Laplace parameter s and the two independent spatial parameters. A 
case is discussed to demonstrate the capabilities of the proposed approach in solving different engineering problems. 
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INTRODUCTION 

 
Partial differential equations are used to formulate 

physical problems involving functions of several 
variables; such as the propagation of electromagnetic 
waves, sound and heat, electrostatics, electrodynamics, 
fluid flow and elasticity. Different physical phenomena 
may have identical mathematical formulations and thus 
be governed by the same underlying dynamic, as 
discussed by Stanley (1993). In the literature, there are 
numerous numbers of analytical, semi-analytical, 
hybrid and numerical techniques used to solve different 
types of PDE under different assumptions, conditions 
and applications. Some of these methods were 
presented in Meleshko (2005). Examples of these 
analytical and semi-analytical solving techniques were 
presented in Scott (2003), Arthur (1995) and Richard 
and Roth (1984). These techniques include separation 
of variables, integral transforms, method of 
characteristics, change of variables, fundamental 
solution, superposition principles, Laplace 
transformation technique, Fourier series and Fourier 
integral technique, similarity solution technique, trial 
solution methods (collocation, sub domain, least square 
and Galerkin methods), variation methods and 
combining trial solution methods with Laplace 
transformation, trial solutions were discussed by Al-
Nimr et al. (1994) and Kiwan et al. (2000).  

Other methods used for non-linear PDE are the 
Split-step method which has been discussed in 
Tsuchiya et al. (2001), the h-principle method 

presented in Eliashberg and Mishachev (2002) to solve 
underdetermined equations. The Riquier-Janet theory, 
to obtain information about many analytic over 
determined systems, was investigated in Fritz (1984). 
The method of characteristics (Similarity 
Transformation method) used in some very special 
cases to solve partial differential equations, the 
perturbation analysis in which the solution is 
considered to be a correction to an equation with a 
known solution. Elemér (1987) presented generalized 
solutions of PDEs. Other methods used to solve non-
linear PDE are the Continuous group theory, Lie 
algebras and differential geometry that are used to 
understand the structure of linear and nonlinear partial 
differential equations for generating integrable 
equations and the Almost-solution of PDE which is a 
concept introduced by a Russian mathematician 
Vladimir Miklyukov.  

Examples of numerical methods used to solve 
PDEs are the Finite Element Method (FEM), Finite 
Volume Methods (FVM) and Finite Difference 
Methods (FDM). The FEM is the most efficient one 
among these methods and especially its exceptionally 
efficient higher-order version hp-FEM. FEM method 
was discussed in Pavel (2005), FVM was presented in 
Randall (2002) and FDM can be found in Mitchell and 
Griffiths (1997). Other versions of FEM include the 
Generalized Finite Element Method (GFEM), Extended 
Finite Element Method (XFEM), Spectral Finite 
Element Method (SFEM), mesh-free finite element 
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method, Discontinuous Galerkin Finite Element 
Method (DGFEM). 

The present study proposes a novel hybrid 
technique that combines the Laplace transformation 
technique (Richard and Roth, 1984) with the similarity 
solution approach Arthur (1995) to solve transient PDE 
that involves derivative with respect to time and 
derivatives with respect to two other spatial 
independent variables. Laplace transformation will 
transform the time dependent PDE from the time 
domain to the s-domain to yield a PDE that involves 
only derivatives with respect to the two independent 
spatial variables. The obtained PDE in the s-domain is 
then solved using similarity solution approach to 
convert it to an ODE in the similarity domain and the 
solution will be presented in terms of the s parameter 
and the similarity parameter that combines the two 
independent spatial parameters. The solution of the 
obtained ODE is then inverted back to the time domain 
either analytically (Bateman and Erd´elyi, 1954; 
Doetsch, 1958; Ditkin and Prudnikov, 1965) or 
numerically (Tzoub et al., 1997) and this solution 
represents the final solution of the considered PDE. The 
proposed novel method will be demonstrated by solving 
two dimensional time dependent case. 
 

ANALYSIS 
 

The two dimensional time dependent partial 
differential equation with a form similar to the 
Dispersionless Kadomtsev-Petviashvili (DKP) equation 
(Konopelchenko et al., 2001)):  

 

������� + ���	�	
 ��� + λ
������ = 0                                     (1) 

 ���, �, �� x, y, t ϵ � 
 

The DKP equation arises in many important 
physical applications especially in wave modeling. The 
form discussed here will be linear and will not include 

the non-linear term 
���	�	
 ���  (i.e., negligible convection), 

If the surface tension is weak compared to the 
gravitational forces then λ = +1 and if the surface 
tension is stronger than gravitational forces λ = −1 �Kadomtsev and Petviashvili, 1970). Here the 
nonlinear term will be neglected and consider a strong 
surface tension forces. Then Eq. (1) reduces to: 
 ������� − ������ = 0                                                      (2) 

 
Consider the following equation: 
 ������� − ������ = 0                                                      (3) 

 
With the following initial and boundary conditions: 

����,�,&��� = 0 , ��0, �, �� = '1 , ���, 0, �� = '2  

 
Laplace transformation: Taking the Laplace 
transform for Eq. (3) yields: 
 ) � �������� =  * �+��,�,,��� −  ����,�,&��� =  * ����,�,,���      (4) 

 
also, 
  ) �������� = ��+��,�,,���-                                              (5) 

 
and 
 L�Q1� = 012  & )�Q2� = 0-2                    
 
So Eq. (3) becomes: 
 * �+��,�,,��� − ��+��,�,,���� = 0                                    (6) 

 
Similarity solution: The similarity solution is then 
applied on Eq. (6). Assuming the following transition: 
 4 =∝6 4 ′  � =∝7 �′  � =∝8 � ′  

 * ∝698 �+′��,�,,���′ −∝69-7 ��+′��,�,,���′� = 0             (7) 

 

And in order for Eq. (7) to be invariant: 
 

c- a = c-2b then a = 2b 

 
Note that: 
 +′

�′
:; = ∝<: +�∝<; ��^:/8  = +

�:;                                           (8) 

 
also, 
 �′

�′
?; = ∝<? �

�∝<; ��?; = �
�?;                                               (9) 

 
So both grouping of variables are invariant under 

the transformation, then we can assume: 
 4 = � :;  @Aἠ, BC where ἠ =  �

�?; =  �
� G�   

 �+ ��,�,,��� =  � :;  HI�ἠ  �ἠ��  + 67  � :;91 F                 (10) 

 but, MἠM�  = − 12ἠ�−1                                  
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then �+��,�,,��� =   � :;91 �− 1- ἠ HI�ἠ    + 67  F�        (11)   
also, 
 H�+��,�,,���� =  ��� �� :;  �I�ἠ   �ἠ��� = ��� �� :;9G� HI�ἠ� =

� :;91 ��I�ἠ�                                                             (12) 

 
So Eq. (6) becomes: 
 B � :;91 �− 1- ἠ HI�ἠ    + 67  F� − � :;91 ��I�ἠ� = 0        (13) 

 B �− 1-ἠ HI�ἠ    + 67  F� − ��I�ἠ� = 0                         (14) 

 
But now if we consider the assumed boundary 

conditions: 
  ��0, �, *� = � :;  @�∞, B� = O1,  , ���, 0, *�  

= � :;  @�0, B� = O-2                
 

Assuming that '1 or '2 ≠ 0  then QR = 0 which 

means that c = 0. Equation (14) will then be simplified 
to become as follows: 
 1- ἠ HI�ἠ + ��I�ἠ� = 0                                                 (15) 

 
Equation (15) is an ODE in ἠ and it could be 

solved analytically as follow: 
  1- Bἠ@′ + F′′ = 0                                                 (16) 

Then, 
  I′′

I′
= − 1- Bἠ                                                         (17) 

 
Integrating both sides, we get: 
 

 @′ = S1T9Uἠ�
V                                                      (18) 

  

 W @′Xἠ = W S1T9Uἠ�
V  Xἠ                                     (19) 

 

@�ἠ, B� = S3 erf [\ἠ�,] ^ + S2                                  (20) 

 
This Function of S and ἠ could be transformed to 

the time domain using Laplace inversion, either 
analytically or using a computer program, here Eq. (15) 
will be transformed for special boundary conditions 
which imply special values of the constants C3 and C2 
take: 
 �0, �, *� = '1*  , ���, 0, *� = '2*          
 �@�∞, B� = O1,  , @�0, B� = O-2    

 

 @�∞, B� = O1, =  S3 erf�∞�  + S2                           
 
with erf�∞� = 1 then, 
  S3 + S2 = O1,                                                    (21) 

 
Also:

 

 
 
Fig. 1: The value of function F at (real time = 4. s) and different values for (n) 
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@�0, B� = '2* =  S3 erf�0�  + S2  
 
with erf  �0� = 0 then, 
 S2 = O-2  and S3 = �O19O-�,                                  

 
Therefore, Eq. (6) becomes: 
 

 @�ἠ, B� = *91��'1 − '2� erf [\ἠ�,] ^ + '2�   (22) 

 
And for the special values of Q1 = 0 and Q2 = 1, 

Eq. (22) reduces to: 
 

@�ἠ, B� = 19_`abcἠ�dV e
, = fgh6bcἠ�UV e

2       )23(               

 
The Laplace inversion of the right side of Eq. (23) 

could be obtained using a computer program based on 
Riemann sum (Tzoub et al., 1997), here the special 
values of Q1 = 0 and Q2 = 1 are considered and the 
Laplace inversion is performed at a certain value of real 
time (t = 4) within an interval 3<ἠ<4. Using a proper 
error function expansion (Prudnikov et al., 1990), Fig. 1 
is created. The obtained Points were fitted by the 
straight line as shown in Fig. 1. 

 
CONCLUSION 

 
In this study a new hybrid method for solving time 

dependent PDEs were developed. This hybrid method 
combines the Laplace transformation with the similarity 
solution technique by transforming the PDE from the 
time domain to the s-domain and then applying the 
similarity solution which will yield an ODE that could 
be solved by various methods. The ODE solution is 
then inverted to the time domain. 
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