Research Journal of Applied Sciences, Engineering and Technology 7(7): 1426-1431, 2014 DOI:10.19026/rjaset.7.412 ISSN: 2040-7459; e-ISSN: 2040-7467 © 2014 Maxwell Scientific Publication Corp. Submitted: May 16, 2013 Accepted: June 12, 2013 Publis

Published: February 20, 2014

Research Article

Study of Happiness Rate and Life Satisfaction in Malaysia

¹Rozmi Ismail, ²Mohammad Hesam Hafezi, ¹Rahim MohdNor and ²Mojtaba Shojaei Baghini ¹School of Psychology and Human Development, Faculty of Social Science and Humanities, Universiti Kebangsaan Malaysia, Selangor, Malaysia

²Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DarulEhsan, Malaysia

Abstract: The environment where a person lives has a significant impact on his or her development. The present study reports results of the study on happiness rating and life satisfaction among Malaysian household. The data were gotten from a Selangor and Klang Valley states study based on a representative sample in the Malaysia. The objective of the study is to determine the happiness rate and life satisfaction in Malaysia. Data was collected through interview using a set of questionnaire and analyzed using the SPSS program. The results of the study showed that in terms of happy rate, most aspects contribute to the human happiness such as life good health. Consequently, the important issue for a happy family is good health. The model results show that relationship the main influences on happiness of life are divided in two groups, namely, positive and negative with 0.44 and 0.34 coefficients, respectively.

Keywords: Family, happiness, happy rate, health, Malaysia

INTRODUCTION

During the past 20 years, numerous scholars the interaction between social sciences and environmental planning have proposed that measurements of environmental quality should include both objective measures of environmental phenomena and subjective measures of human responses to them (Bonaito *et al.*, 2006). Furthermore, scholars have suggested that such study can occur within the context of Quality of Life (QOL) research (Fahy and Cinneide, 2008).

Recently, QOL issues have increasingly been a focus in cities especially newly industrializing and developing countries. Pioneering studies in this field were conducted by researchers in western nations (Foo, 2000) who came from numerous disciplines such as planning, architecture, sociology and psychology. During recent decades QOL studies have been a growth area in the developed world. Meanwhile, documented research on QOL in the Asian region has been scarce and infrequent (Lee, 2008).

Many studies have shown that health conditions, quality of marriage and family life are important determinants of QOL (Burman and Margolin, 1992; Shek, 1995; Walker *et al.*, 1990). Satisfaction with marriage is a crucial source of physical, mental and social well-being in both spouses and children (Bookwala, 2011; Proulx *et al.*, 2007; Holt-Lunstad *et al.*, 2008; Le Poire, 2005). Marital satisfaction was

defined as individuals' global subjective evaluation of the quality of their marriage (Li and Fung, 2011). Also Anderson *et al.* (1983) defined marital satisfaction as subjective feelings of happiness, satisfaction and pleasure experienced by spouses considering all aspects of their life.

Some studies in the general population in the USA (Cherepanov *et al.*, 2010), Norway (Hjermstad *et al.*, 1998) and Iran (Montazeri *et al.*, 2005) have showed that health-related QOL is lower in women than in men. Furthermore, gender has been often used as an important factor to explain the higher level of marital satisfaction in men compared to women (Fowers, 1991; Shek, 1995); and Proulx *et al.* (2007) concluded that marital satisfaction is positively associated with life satisfaction in women (Freudiger, 1983) as well as with physical and mental health in both spouses (Holt-Lunstad *et al.*, 2008; Le Poire, 2005), based on findings from several investigations.

Furthermore, the results of longitudinal and crosssectional studies provided evidence that marital dissatisfaction is likely to lead to a high risk of depression because of high marital stress, negative communication, low spousal support, or low couple cohesion (Beach *et al.*, 2003; Karney, 2001; Proulx *et al.*, 2007). In this study we studied happiness rate and life satisfaction in Malaysia. The objective of the study is to determine the happiness rate and life satisfaction in Malaysia.

Corresponding Author: Rozmi Ismail, School of Psychology and Human Development, Faculty of Social Science and Humanities Universiti Kebangsaan Malaysia, Selangor, Malaysia

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

RESEARCH METHODOLOGY

This section presents the research approach used in this study, sample selection methods, data collection methods and method of data analysis. This study employed a correspondent design and using the survey method procedure to get a sample.

Respondents: Target respondent is a Malaysian household that is in the range of age between 15 and 60, living in Selangor state and Kuala Lumpur and has the experience of using public bus transport. The ages range 15 to 60 years old chosen because people in these age have a routine commute travel behavior and probably has taken public bus transport as their mode of choice. From the age of 15, the children usually have to go to school that is not in their own neighborhood. After the age of 60, people usually may not have routine commuter behavior because they already pension. The total number of 767 respondents was randomly selected and completed questionnaire.

Questionnaire/instrument: The questionnaire was divided into three parts: demographics, the items consist of a correspondent to the city they live, age, sex, driving license, happiness; and, public amenities and physical surroundings. Respondents were asked to rate 1 to 6 where 1 has a low rate and 6 have a high rate. Likert-type scale rate ranged from strongly disagree, moderately disagree, disagree, agree, moderately agree and strongly agree.

Procedure: Self-rating and handing out questionnaires were used as a data collection method in this study.

Reasons of using three sections questionnaire to collect data are:

- The respondent has break time when fill out the • questionnaire in order to understand the aim of each section questionnaire
- Ouestionnaire offers confidentiality

The respondents were asked to fill out the questionnaire at the street or at their convenient time.

DATA ANALYSIS AND RESULTS

As mentioned earlier, the aim of this study is to study of happiness rate and life satisfaction in Malaysia. SPSS software was used for data input and analysis. Data Analysis was conducted in fourth steps; first, frequency analysis was undertaken to highlight the most responder's choices. Second, correlation analysis was undertaken to measure linear correlation between variables. Then factor analysis was performed with the aim to identify groups or cluster of variables. Fourth, a regression analysis was performed to evaluate the contribution of each factor on overall satisfaction.

Table 1 shows the descriptive analysis of the different aspects contributes towards happiness where Fig. 1 shows the frequencies of happiness mean.

According to Table 1 and Fig. 1, health has the highest rating for the individual happiness where political stability has the lowest rating for the individual happiness. Table 2 shows the descriptive analysis of the different components for a happy family where Fig. 2 shows the frequencies of happy family mean.

According to Table 2 and Fig. 2, happy family 3 (good health) and happy family 15 (possess luxurious

Table 1: Frequency table of happiness

						Political			
	Health	Economy	Social	Family	Spiritual	stability	Occupation	Children	Spouse
Mean	2.960	4.700	6.930	4.140	6.250	7.000	4.870	4.260	3.500
Median	3.000	5.000	7.000	4.000	7.000	8.000	5.000	4.000	3.000
Std. deviation	1.843	1.987	1.839	2.489	2.499	2.273	2.226	2.266	2.302
Variance	3.397	3.947	3.382	6.196	6.243	5.166	4.956	5.134	5.297

	Economy	Occupational	Health	Spouse	Vast asset	Family
Mean	4.600	5.320	4.130	4.450	14.510	6.810
Median	3.000	4.000	3.000	3.000	17.000	6.000
Std. deviation	3.734	4.536	3.555	4.371	5.921	3.915
Variance	13.943	20.575	12.637	19.102	35.062	15.326
	Friends	Community	Pious	Self-esteem	Respected	Well-liked
Mean	9.360	10.470	9.770	11.920	13.290	16.830
Median	9.000	10.000	9.000	12.000	14.000	18.000
Std. deviation	4.138	4.166	5.933	4.901	4.546	4.078
Variance	17.127	17.354	35.205	24.020	20.667	16.636
	Debt	Comfortable	Luxurious	Free decision	Interest	
Mean	11.870	10.810	17.280	15.250	15.830	
Median	12.000	11.000	19.000	16.000	17.000	
Std. deviation	4.838	4.748	4.005	3.931	3.717	
Variance	23.407	22.545	16.040	15.453	13.815	
	Surrounding	Meaningful	Good children	Transportation		
Mean	12.210	11.720	9.670	13.940		
Median	12.000	12.000	9.000	15.000		
Std. deviation	4.670	5.020	5.563	4.879		
Variance	21.807	25.203	30.647	23.808		

Res. J. App. Sci. Eng. Technol.,	, 7(7): 1426-1431, 2014
----------------------------------	-------------------------

Table 3: Correlation matrix of happin

Table	3: Correlation	matrix of happ	oiness							
	1	2	3	4	5	6	7	8	9	10
1	1.000									
		1.000								
2	-0.261									
3	-0.010	0.029	1.000							
4	0.015	0.007	0.412	1.000						
5	0.224	-0.080	0.011	-0.067	1.000					
6	0.150	-0.036	-0.019	-0.031	0.359	1.000				
							1 000			
7	-0.030	0.033	0.017	0.170	-0.147	-0.202	1.000			
8	0.112	-0.102	0.217	0.374	0.131	0.040	0.210	1.000		
9	0.171	-0.064	0.260	0.394	0.133	0.132	0.206	0.462	1.000	
10	0.189	-0.052	0.109	0.092	0.236	0.225	-0.023	0.137	0.215	1.000
	0.072	0.101	0.067	0.174	0.105	0.004	0.318	0.108	0.187	0.062
11						0.004				
12	0.129	-0.029	0.183	0.255	0.060	0.175	0.164	0.313	0.316	0.157
13	0.174	-0.061	0.068	0.055	0.132	0.118	-0.012	0.097	0.092	0.215
14	0.169	-0.118	-0.017	0.009	0.185	0.125	-0.072	0.112	0.151	0.124
15	0.107	0.012	0.229	0.388	0.079	0.063	0.306	0.415	0.444	0.154
16	0.078		0.230	0.264	0.036	0.036	0.218	0.246	0.315	0.111
		0.052		0.204		0.030				
17	0.045	-0.028	0.152	0.349	0.063	-0.029	0.325	0.385	0.317	0.134
18	0.043	0.014	0.218	0.364	0.044	-0.023	0.282	0.448	0.378	0.138
19	0.179	-0.066	0.012	0.082	0.116	0.187	-0.041	0.084	0.070	0.109
20	0.039	0.003	0.144	0.143	0.012	-0.057	0.176	0.303	0.172	0.016
20	-0.013	-0.019	0.168	0.225	0.003	-0.020	0.174	0.371	0.200	0.091
22	0.057	-0.037	0.144	0.263	0.080	-0.023	0.324	0.437	0.367	0.134
23	0.040	-0.146	-0.063	0.013	-0.008	-0.027	0.055	0.079	0.016	-0.015
24	0.140	0.002	0.093	0.011	0.196	0.261	-0.161	0.041	0.071	0.185
25	0.005	0.044	0.135	0.145	0.042	0.037	0.237	0.240	0.189	0.081
26	0.007	0.064	0.238	0.231	0.007	-0.057	0.256	0.318	0.240	0.117
27	0.132	-0.069	0.134	0.152	0.176	0.172	-0.028	0.117	0.194	0.260
28	0.163	-0.112	0.128	0.103	0.066	0.048	-0.004	0.082	0.176	0.103
29	0.273	-0.176	0.156	0.101	0.091	0.097	0.024	0.144	0.253	0.171
	11	12	13	14	15	16	17	18	19	20
11		12	15	17	15	10	1 /	10	1)	20
11	1.000									
12	0.308	1.000								
13	0.042	0.001	1.000							
14	0.012	0.182	0.217	1.000						
15	0.363	0.433	0.175	0.091	1.000					
						1 000				
16	0.248	0.254	0.050	0.015	0.499	1.000				
17	0.307	0.283	0.079	0.114	0.488	0.365	1.000			
18	0.247	0.313	0.108	0.042	0.470	0.314	0.609	1.000		
19	0.026	0.127	0.184	0.192	0.043	-0.008	0.041	0.025	1.000	
20	0.159	0.196	0.100	0.076	0.293	0.190	0.280	0.368	-0.087	1.000
21	0.120	0.191	0.065	0.036	0.289	0.154	0.271	0.345	-0.114	0.447
22	0.334	0.370	0.050	0.073	0.497	0.282	0.483	0.481	0.052	0.367
23	0.010	0.098	0.152	0.200	0.026	-0.066	0.066	0.009	0.121	0.110
24	0.055	0.050	0.255	0.071	0.057	0.135	-0.045	0.042	0.180	0.024
25	0.210	0.261	0.057	0.024	0.329	0.204	0.302	0.319	0.081	0.403
26	0.166	0.218	0.010	0.019	0.327	0.176	0.315	0.403	-0.018	0.279
				0.017						
27	0.071	0.067	0.227	0.089	0.139	0.108	0.119	0.151	0.175	-0.001
28	0.010	0.054	0.165	0.152	0.110	0.102	0.129	0.086	0.201	0.043
29	0.035	0.117	0.236	0.191	0.173	0.102	0.147	0.171	0.126	0.059
	21	22	23	24	25	26	27	28	29	
21		22	25	27	23	20	21	20	2)	
21	1 000									
22	1.000	1.000								
22	0.356	1.000								
22 23		1.000 0.022	1.000							
22 23	0.356 -0.022	0.022		1.000						
22 23 24	0.356 -0.022 0.024	0.022 0.003	0.023	1.000	1.000					
22 23 24 25	0.356 -0.022 0.024 0.310	0.022 0.003 0.353	0.023 0.059	-0.105	1.000	1.000				
22 23 24 25 26	0.356 -0.022 0.024 0.310 0.408	0.022 0.003 0.353 0.368	0.023 0.059 0.014	-0.105 -0.067	0.471	1.000	1.000			
22 23 24 25 26 27	0.356 -0.022 0.024 0.310 0.408 0.060	0.022 0.003 0.353 0.368 0.102	0.023 0.059 0.014 0.063	-0.105 -0.067 0.319	0.471 0.002	0.011	1.000			
22 23 24 25 26	0.356 -0.022 0.024 0.310 0.408	0.022 0.003 0.353 0.368	0.023 0.059 0.014	-0.105 -0.067	0.471		1.000 0.306	1.000		
22 23 24 25 26 27	0.356 -0.022 0.024 0.310 0.408 0.060	0.022 0.003 0.353 0.368 0.102	0.023 0.059 0.014 0.063	-0.105 -0.067 0.319	0.471 0.002	0.011		1.000 0.436	1.000	

things) have the highest and lowest ranking of happy family, respectively.

The correlation is one of the most common and most useful statistics. A correlation is a single number that describes the degree of relationship between two variables. The correlation matrix computes the correlation coefficients of the columns of a matrix through indicating maximum and minimum coefficients. Table 3 shows the correlation matrix of happiness. Table 4 shows the KMO and Bartlett's test analysis for the constructs in the proposed model. The analysis found that the Measurement of Sample Adequency (MSA) KMO is 0.849 more than 0.5 (minimum value) and that the survey data suitable for analysis of Principal Component Analysis (PCA). Similarly, Bartlett Sphericity test values were significant (p<0.001), suggesting that the variables are closely related to each other and suitable for further analysis. Analysis of the suitability of the measurement matrix

Res. J. App. Sci. Eng. Technol., 7(7): 1426-1431, 2014

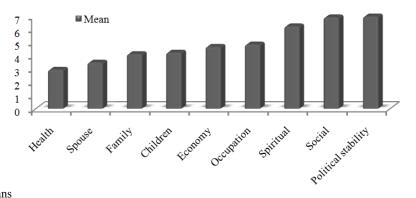


Fig. 1: Happiness means

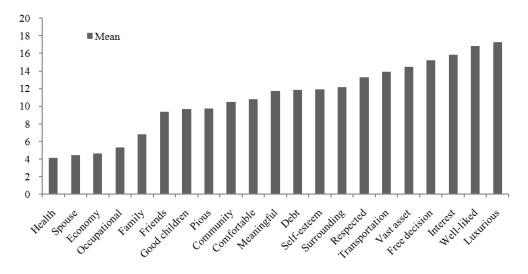


Fig. 2: Happy family means

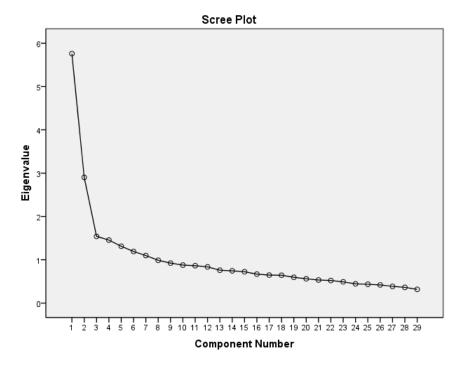


Fig. 3: Plot of the components in the model skri

Table 4: KMO and Bartlett's test of happiness

Kaiser-Meyer-Olkin measure	of sampling	0.849
Adequacy.		
Bartlett's test of Sphericity	Approx. chi-square	5493.058
	df	406
	Sig.	0.000

Table 5: Analysis of Principal Component Analysis (PCA) for each item rotated component Matrixa

	Components				
Item	1	2			
3	0.385				
4	0.539				
7	0.406				
8	0.649				
9	0.624				
11	0.431				
12	0.549				
15	0.745				
16	0.524				
17	0.684				
18	0.718				
20	0.499				
21	0.505				
22	0.694				
25	0.519				
26	0.547				
2 1	0.458				
1		0.466			
5		0.450			
6		0.488			
10		0.390			
13		0.440			
14		0.402			
24		0.507			
27		0.503			
28		0.433			
29		0.494			
19		0.494			
23		0.247			
Eigen values	5.760	2.900			
% variance	19.860	10.010			
		$\Sigma = 29.870\%$			

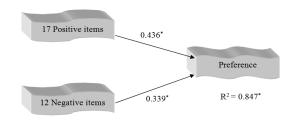


Fig. 4: Regression model for happiness

revealed that all the items in the MSA meet the compatibility matrix (>0.5) and so is all the commonality in the range 0.4 to 0.7.

The Principal Component Analysis (PCA), the values of the scale (loading), eigenvalues and percentage changes shown in Table 5. Varimax rotation methods were performed to produce the maximum value of the scale factor. The result shows that two factors included positive and negative happiness were produced and the value of each item exceeds the value 0.4. While the eigenvalues of these two factors are 5.76 and 2.90, respectively, with 29.87% of the total variability that can be explained. Meanwhile, the scree plot in Fig. 3 also shows that there are three components that have eigenvalues ≥ 1.0 . Group 1 is included positive happiness and group 2 is included negative happiness.

Based on analysis of PCA we have found two different groups included positive happiness and negative happiness. The next analysis is to predict what the main factor is contributing to happiness and life satisfaction. In this study multiple regression analysis was performed to asses the contribution variable for the preference model for the happiness. Table 6 shows the ANOVA summary table or analysis of variance of the dependent variable and independent variable of happiness model. The analysis found that the F-test show that there is a significant relationship (p = 0.000)between the dependent variable with the independent variables (positive and negative).

Table 7 shows the regression coefficients for hapiness model. The analysis of all variables included positive and negative has a significant relationship (p<0.05), with variable factors. Positive factors can be summed variables have a positive influence ($\beta 1$ = 0.436, 0.578, respecvively) on the hapiness and negative factors ($\beta 2 = 0.339$, 0.478, respectively). Provisional value of R^2 can explain the influences of independent variables on the dependent variable. According to Fig. 4 this explains shows that 84.7 percent of variation in hapiness can be explained by the variables of positive and negative parameters.

Table 6: Summar	Table 6: Summary of ANOVA table HBM model ANOVA ^o									
Model	Total power of two	d.k	M.S.	F	Sig.	Model				
Happiness	Regression	87770.113	4	29256.704	1133.946	0.000 ^a				
	Error	15815.881	310	25.801						
	Total	103585.994	312							

M.S.: Mean square

Table 7: Preference coefficient regression model coefficients ^a
--

		Non-standar	dized coefficients	Standardize			
	Model	В	S.E.	β	t	Sig.	\mathbb{R}^2
Bus	(Constant)	-4.308	1.694	•	-2.543	0.011	0.847
	Positive	1.214	0.063	0.436	19.336	0.000	
	Negative	0.978	0.068	0.339	14.335	0.000	

^a: Dependent variables: Preference; S.E.: Standard error

DISCUSSION AND CONCLUSION

This study aimed at perception happiness factors in Malaysia. Kuala Lampur and Kelang Vally citizen were asked to rate their points on the study and pencil questionnaire. It is understand that the Malaysian people in terms of happy rate, most aspects contribute of persons are related to a health issue and good health. Consequently, the important issue for a happy family is good health. Furthermore, the correlation matrix has significant correlations among happiness factors.

ACKNOWLEDGMENT

The authors would like to acknowledge The National University of Malaysia (UKM) and the Malaysian of Higher Education (MOHE) for research sponsorship under project UKM-AP-CMNB-20-2009/5.

REFERENCES

- Anderson, S.A., C.S. Russelland W.R. Schumm, 1983. Perceived marital quality and family life-cycle categories: A further analysis. J. Marriage Family, 45(1): 127-139.
- Beach, S.R.H., J. Katz, S. Kim and G.H. Brody, 2003. Prospective effects of marital satisfaction on depressive symptoms in established marriages: A dyadic model. J. Soc. Pers. Relat., 20(3): 355-371.
- Bonaito, M., F. Fornara and M. Bonnes, 2006.Perceived residential environment quality in middle and low extension Italian cities. J. Environ. Psychol., 56: 23-24.
- Bookwala, J., 2011. Marital quality as a moderator of the effects of poor vision. J.Gerontol. Soc. Sci., 66: 605-616.
- Burman, B. and G. Margolin, 1992. Analysis of the association between marital relationships and health problems: An interactional perspective. Psychol. Bull., 112(1): 39-63.
- Cherepanov, D., M. Palta, D.G. Fryback and S.A. Robert, 2010. Gender differences in healthrelated quality-of-life are partly explained by sociodemographic and socioeconomic variation between adult men and women in the US: Evidence from four US nationally representative data sets. Qual. Life Res., 19(8): 1115-1124.
- Fahy, F. and O. Cinneide, 2008. Developing and testing an operational framework for assessing quality of life. Environ. Impact Assess. Rev., 28: 366-379.
- Foo, T.S., 2000. Subjective assessment of urban quality of life in Singapore (1997-1998). Hum. Habitat., 24: 31-49.

- Fowers, B.J., 1991. His and her marriage: A multivariate study of gender and marital satisfaction. Sex Roles, 24(3-4): 209-221.
- Freudiger, P., 1983. Life satisfaction among three categories of married women. J. Marriage Family, 45(1): 213-219.
- Hjermstad, M.J., P.M. Fayers, K. Bjordal and S. Kaasa, 1998. Health-related quality of life in the general Norwegian population assessed by the European Organization for research and treatment of cancer core quality-of-life questionnaire: The QLQ0C30 (+ 3). J. Clin. Oncol., 16(3): 1188-1196.
- Holt-Lunstad, J., W. Birmingham and B.Q. Jones, 2008. Is there something unique about marriage? The relative impact of marital status, relationship quality and network social support on ambulatory blood pressure and mental health. Annals Behav. Med., 35(2): 239-244.
- Karney, B.R., 2001. Depressive Symptoms and Marital Satisfaction in the Early Years of Marriage: Narrowing the Gap between Theory and Research. In: Beach, S.R.H. (Ed.), Marital and Family Processes in Depression: A Scientific Foundation for Clinical Practice. American Psychological Association, Washington, DC, US, pp: 45-68.
- Le Poire, B.A., 2005. Family Communication: Nurturing and Control in a Changing World. Sage, California.
- Lee, Y.J., 2008. Subjective quality of life measurement in Taipei. Build. Environ., 43: 1205-1215.
- Li, T.L. and H.H. Fung, 2011. The dynamic goal theory of marital satisfaction. Rev. General Psychol., 15(3): 246-254.
- Montazeri, A., A. Goshtasebi, M. Vahdaninia and B. Gande, 2005. The short form health survey (SF-36): Translation and validation study of the Iranian version. Qual. Life Res., 14(3): 875-882.
- Proulx, C.M., H.M. Helms and C. Buehler, 2007. Marital quality and personal well-being: A met aanalysis. J. Marriage Family, 69(3): 576-593.
- Shek, D.T.L., 1995. Gender differences in marital quality and well-being in Chinese married adults. Sex Roles, 32(11-12).
- Walker, A., M.P. Lee and M. Bubolz, 1990. The Effects of Family Resources and Demands on Quality of Life: A Rural-Urban Comparison of Women in Middle Years. In: Lee, M.H. and S.M. Josef (Eds.), Quality of Life Studies in Marketing and Management. Virginia Polytechnic Institute and State University, Blacksburg, pp: 397-411.