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Abstract: The purpose of this study is to model the Thermoelectric Coolers (TEC) by means of computational 
intelligence system identification. Thermoelectric coolers are widely used in cooling, maintaining and stabilizing the 
temperature of the Single Photon Avalanche Diode (SPAD). SPAD is a temperature sensitive optoelectronic device, 
where even a slight variation in temperature can cause unstable performance in quantum efficiency, responsibility 
and dark counts. However, it is not a simple task to derive a mathematical model for TEC since it varies with the 
operating condition. In this study, Particle Swarm Optimization (PSO) was used to identify the mathematical model 
of the multistage TEC (1639733 from Element 14), which encapsulates dynamics of the SPAD, heat sink and 
components of the cooling heat exchanger. The model was validated by correlation tests, percentage accuracy and 
also by comparing its time and frequency responses against that of the TEC. It was found that the obtained model 
has a good representation of the actual system. 
 
Keywords: Mathematical model, Particle Swarm Optimization (PSO), Single Photon Avalanche Diode (SPAD), 

system identification, Thermoelectric Cooler (TEC) 

 
INTRODUCTION 

 

The Single Photon Avalanche Diode (SPAD) is an 

optoelectronic device that is very sensitive to variation 

of operating temperatures; even a slight temperature 

variation results to poor performance of quantum 

efficiency (Huang and Duang, 2000), responsibility 

(Aly and El-Lail, 2006) and dark current (Singh, 1996). 

The Thermoelectric Cooler (TEC) is a main component 

used in cooling, maintaining and stabilizing the 

temperature of the single photon avalanche diode 

(Huang and Duang, 2000; Aly and El-Lail, 2006). Thus, 

a system that consist of SPAD, TEC and a custom 

mounting design of heat sink and the cooling heat 

exchanger components is specifically designed to fulfill 

the purpose, shown in Fig. 1. 
SPAD supports and enables a host of numerous 

applications; Quantum Key Distribution (QKD), small-
signal fluorescence, Light Detection and Ranging 
(LIDAR), photon counting and laser range finder 
(Singh, 1996). Specifically, the SPAD C30902 from 
Perkin Elmer has many other favorable factors such as 
high quantum efficiency, high responsibility, fast time 
response, wide spectral response range, wide operating 
temperature range and low noise.  

 
Scale 1:0.3 cm 

 
Fig. 1: Front view cross section of SPAD, TEC and the 

custom mounting design 

 

There have been numerous works in modeling TECs 

using small-signal linearization (Huang and Duang,  

2000),   finite   element   analysis   (Wey  et al., 2006) 

and SPICE compatible equivalent circuit method 

(Lineykin and Ben-Yaakov, 2005). However, a 

drawback  in  those  works  is  that  the  model structure  
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Fig. 2: Schematic diagram of a thermoelectric cooler 

 

must be known a-priori. There is no work on system 

identification  of  thermoelectric   cooler  found   in  the   

literature   review.  Therefore,  in   this   study,  the 

mathematical model of a TEC together with its 

mounting design with SPAD is obtained using the PSO 

optimization algorithm in MATLAB. Input-output data 

from the TEC was extracted, (in particular input voltage 

and output temperature were measured) and injected 

into the PSO algorithm. The benefit of this method is 

that no-priori knowledge of the system is needed.  

The performance of the mathematical model was 

validated by the good quality correlation test within the 

normalized confidence band of ±1.96/√� for 95% of 

the correlation result, good percentage accuracy of 

98.03% by significantly small mean square error of 

0.79003 in tracking the actual output of the system and 

successful stability test within the unit circle of the z-

plane.  

A highly nonlinear characteristic of TEC has made 

the normal equations derivation becoming more 

complex. Therefore, the objective of this study is to 

obtain a mathematical model that represents the 

behavior of the TEC by means of particle swarm 

system identification technique.  

 

THERMOELECTRIC COOLER (TEC) 

OPERATING PRINCIPLE 

 

Figure 2 shows the schematic diagram of a 

Thermoelectric Cooler (TEC). TEC is a heat pump that 

operates based on the mechanism of Peltier effect. 

Peltier effect is a situation when a junction consisting of 

two contradictory materials, when supplied with 

electrical current through it resulting in cooling effects 

(Marlow and Burke, 1995). TEC consist of p-type and 

n-type semiconductor. Typically, the p-type and n-type 

are made of bismuth-telluride material. A pair of p-type 

and n-type is referred as a “couple”. A TEC may 

consist of hundreds of couples. These couples are 

arranged in arrays in order to make the most cooling 

effects. The arrays are connected electrically in series 

and thermally in parallel. For good housing rigidity, 

electrically insulated and thermally conducted, the TEC 

is fastened with plates of ceramic substrate on top and 

at the bottom of it (Marlow and Burke, 1995).  

The p-type material has surplus of holes and 

therefore shortage of electrons. Meanwhile, n-type 

material has surplus of electrons and therefore shortage 

of holes. TEC is operated using direct current (dc). This 

permits electrons to flow through the interconnecting 

conductor from lower energy level in the p-type 

material to a higher energy level in the n-type material, 

consequently, absorbing the heat of the object being 

cooled on the cold side of the TEC. Meanwhile, the 

electrons from the n-type of the higher energy level go 

to the lower energy level in the p-type through the 

interconnecting conductor, consequently, releasing heat 

to the environment on the hot side of the TEC. TEC has 

many significant applications, in cooling many 

optoelectronics devices, for example avalanche 

photodiode, diode laser, solid-state detectors, photo 

detectors and many others (Nolas et al., 2001). Due to 

nonlinearities of TEC system, deriving mathematical 

model is not that simple. Thus, a computational 

intelligent system identification technique, which is 

Particle Swarm Optimization (PSO) has been adopted 

to obtain the TEC mathematical model. 
 

PARTICLE SWARM OPTIMIZATION  

(PSO) METHOD 
 

Particle Swarm Optimization (PSO) is an 
optimization tool that was inspired by birds flocking 
(Kennedy and Eberhart, 1995). The swarm intelligence 
technique is chosen because of its simple 
implementation, very few parameters needed and 
excellence in performance. PSO can be applied to 
neural network training, combinational optimization, 
pattern recognition, complication function and fuzzy 
system control. 

In PSO, each bird is defined as “particle” flying 

through the dimensional space of X = (x1, x2…, xk). 

They are randomly initialized with positions of P = {p1, 

p2…, pk} and velocity of V = (v1, v2…, vk). Each 

particle has their own fitness value determined by the 

objective function that represents a candidate of a 

possible solution to the optimization problem. 

The particles approach to improve and move 

towards a better position is equivalent to how flock of 

birds improves their searching for food in a particular 

area (Kennedy and Eberhart, 1995). 
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The particles update to their new velocities by: 
 

      (1) 

where, 

v
i
k+1 = The particle updated velocity 

v
i
k = The particle previous velocity 

p
i
k = The particle best position reached so far 

x
i
k = The previous particle position 

p
g

k = The best swarm position reached so far 

x
g

k = The previous swarm position  

 

The equation is divided into three components, that 

shows that the particle’s new velocity by adding the 

previous momentum velocity (first component) and the 

“thinking” mechanism of both particles best position 

reached so far, p
i
k 

(second component) and the best 

swarm position has reached so far, p
g

k 
(third 

component). The first component, v
i
k serves as a 

memory so that the particle will not alter direction 

drastically. The second component, so called the 

cognitive component, c1r1 (p
i
k - x

i
k) is to ensure that the 

particles attain to the previously found best position, 

p
i
k. The third component, the social component, c2r2 

(p
g

k – x
g

k) 
serves to ensure the swarm attains the group 

norm or standard.  

Then, the particles update to their new positions by: 

 

x
i
k+1 = x

i
k + v

i
k+1                                                    (2) 

 

where, c1 and c2 are the cognitive coefficient and social 

coefficient, while, r1 and r1 are the random numbers 

between 0 and 1. The values of c1 and c2 are carefully 

selected (Shi and Eberhart, 1998b).  

 

Inertia weight: In order to balance the global search 

and local search throughout the searching process, an 

inertia weight, w was needed and introduced in the 

velocity Eq. (3) (Shi and Eberhart, 1998b): 

 

     (3) 

 

Later, a new improvement of Time Varying Inertia 

Weight (TVIW) was introduced: 

  

                   (4) 

 

where, w1 and w2 are the initial and final inertia weight, 

respectively while iter and max iter
 
is the current and 

final iteration, respectively (Shi and Eberhart, 1998a).  

The optimum solution is guided by the two 

stochastic acceleration components c1 and c2. Thus, a 

Time Varying Acceleration Coefficient (TVAC) to 

dynamically reduce the cognitive coefficient, c1 from 

2.5 to 0 and dynamically increase the social coefficient, 

c2 from 0 to 2.5 (Ratnaweera and Halgamuge, 2004). 

The reason is to enhance the global exploration at the 

beginning stage and to encourage the particles to 

converge towards the local exploration to achieve 

global optimum in the end of the findings: 

 

                            (5) 

 

                            (6) 

 

Therefore, to achieve a global optimum searching 

result, a large inertia weight is necessary at the 

beginning of the searching process for particles global 

exploration, while a small inertia weight is essential 

towards the end of the searching process for particles 

local exploration.  

 

Dynamic spread factor: Dynamic spread factor was 

introduced into the initial PSO algorithm in order to 

improve the result with guaranteed fast convergence 

(Shi and Eberhart, 1998a). The proposed algorithm 

result has better-quality in improving the basic PSO 

algorithm two main problems of premature 

convergence and preservation of diversity.  The result 

shows that, in order for the particles to keep explore 

within the search space, it is important that they know 

their distributions and relative distances from one to 

another. The relative distances are measured in terms of 

precision and accuracy. Precision (spread) means the 

extreme distance between the best and the worst 

position of the particles with respect to the fitness 

function, stated in Eq. (7): 

 

               (7) 

 

While accuracy (deviation) means the average 

distance of particles from the global best position, 

depicted in Eq. (8): 

 

               (8) 

 

where, S is the number of particles. Precision and 

accuracy are used to determine the dynamic spread 

factor, described in Eq. (9):  

 

              (9) 

 

where, rangemax 
and  rangemin are the maximum and 

minimum range of particle, respectively. So, when the 

particles drop in the neighborhood of global optimum, 

the dynamic spread factor will drop down extremely. 
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Consequently, will cause the inertia weight to drop 

down, refer to Eq. (10): 

 

             (10) 

 

Thus, results in faster convergence and higher 

precision. The cognitive component, c1 is described in 

Eq. (11): 

 

                           (11) 

 

so that it will linearly decreases with time from 2 to 0 to 

have better global exploration at the beginning of the 

search and converge to local exploration towards the 

end of the search, while social component, c2 is 

maintained at 2 so that the particles are pulled towards 

the global optimum (Latiff and Tokhi, 2009). 

 

PARAMETRIC SYSTEM IDENTIFICATION 

USING PSO 

 

Parametric system identification is defined by the 

model structure and parameters from a given data input 

and output to describe the real physical system (Ljung, 

1999). Also, it is a method to forecast the output of the 

system once the parameters of the mathematical model 

is identified. In other words, parametric system 

identification is a practice of control and prediction of a 

real world physical system. The determination of 

mathematical model using Particle Swarm Optimization 

(PSO) is realized by minimizing the mean square error 

prediction output to the actual output of the system. 

There are four steps in determining parameter system 

identification:  

 

• Collection of information about the system 

• Determination of a model structure to represent the 

system 

• Selection of the parameters mathematical model  

• Validation of the mathematical model (Toha and 

Tokhi, 2010)  

 

Collection of input and output experimental data of 

the system: The collection of input and output 

experimental data of the system is taken up to 1400 

points to ensure that the information are rich in spectral 

density corresponding to the system bandwidth by 

exciting all the dynamic modes of interest (Ljung, 

1999). This parameter system identification is 

designated in the discrete time domain due to the reason 

that we sampled the experimental data. It is important 

to   make   the  collected  data  almost  continuous  by  a 

 
 
Fig. 3: The collected experimental data input and output of 

the system 

 

 
 
Fig. 4: PSO based parametric system identification of TEC 

for SPAD application 

 

significant small sampling time, to represent the actual 

system. Hence, 1400 input and output experimental 

data points were taken with the sampling time of 1 

second. The input, u (t), from 0 up to 5V with the small 

increment of 0.003V is supplied to the TEC. The 

corresponding output, y (t), temperature of the SPAD at 

the cold side of the TEC were taken. Figure 3 shows the 

result of the collected experimental data consisting of 

the output temperature corresponding to the input 

voltage of the system. The simulation of PSO was run 

in the m-file of MATLAB on a PC (Intel (R) Core 

(TM) 2 Duo CPU, 2.93 GHz, 1.96 GB of RAM) by 

extracting the obtained input and output data, producing 

a mathematical model to represent the dynamic model 

of the TEC mounting design including the SPAD, heat 

sink and the cooling heat exchanger components. 

 

Determination of the model structure: It is important 

to determine the order of the mathematical model to 

represent   the   actual   system.   Improper  lower  order 
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Fig. 5: The auto-correlation of residuals result 

 

model may imply that the mathematical model is 

inadequate, while improper higher order model may 

escalate the mathematical model uncertainties.  

From Fig. 4, Eq. (12) is the model structure of auto 

regression with exogenous input (ARX) was chosen to 

represent the model structure of the system: 

 

      (12) 

 

where,  

ŷ (t) = The predicted output  

ai = The denominator 

bj = The numerator 

N = The number of the denominator 

M = The number of the numerator 

u (t) = The input  

y (t) = The actual output  

 

Second order model was chosen because it gives better 

representation of the system dynamics and produced 

less mean square error compared to the other order 

models. Hence, an easier way to represent Eq. (12) is 

by using the backshift operator z
-1

: 

 

                          
(13) 

 

Equation (14) is the Mean Square Error (MSE), 

which is the objective function for the PSO 

optimization process.  The result of the MSE should 

converge to zero: 

 

            (14) 

 
 
Fig. 6: The cross-correlation of input and residuals 

 

SIMULATION RESULTS 

 

The mathematical model obtained from the PSO 

simulation in the z-plane is: 

 

                          (15) 

 

In the s-plane, the mathematical model is: 

 

                       (16) 

 

There are three ways to validate the mathematical 

model system: 

 

• Correlation test 

• Percentage accuracy 

• Mean Square Error (MSE) in tracking the actual 

output of the system 

 

Correlation test: These following correlation test 

conditions to validate the mathematical model have 

been full filled. The graphs are shown in Fig. 5 to 9 

(Billings and Voon, 1986): 

 

                        (17)
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Fig. 7: The cross-correlation of squared input and residuals 

 

 
 
Fig. 8: The cross-correlation of squared input and squared 

residual 

      

(21)
      

 

Equation (21) is the normalized correlations of two 

given sequences, ψ1 (t) and ψ2 (t): 
 

                          (22) 

 

The result of the normalized correlation is within 

±1.96/√� for 95% of  the  confidence  band,  shown  in 

 
 
Fig. 9: The cross-correlation of residual and (input*residuals) 

 

 
 
Fig. 10: The Mean Square Error (MSE) against the number of 

iterations 

 

Fig. 5 to 9, where N is the number of data series 

(Thomson et al., 1996). The red lines are the confidence 

band while the blue lines are the correlation test results. 

 

Percentage accuracy and Mean Square Error (MSE) 

in tracking the actual output of the system: The PSO 

predicted output managed to track the actual output of 

the  system  by  98.03%  of  percentage accuracy. 

Figure 10 shows the best minimum Mean Square Error 

(MSE) against the number of iterations, which is 

0.79003. It is shown from Fig. 10 that the MSE 

significantly converged from the beginning towards the 

end. The elapsed time to complete the iterations is 

151.973231 sec.  
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Fig. 11: The predicted outputs against the actual output in the 

time domain 

 

 
 
Fig. 12: The PSO predicted output against to the actual output 

in the frequency domain 

 

The predicted output trailing the actual output is 

presented in Fig. 11 and 12 for the time and frequency 

domain. The blue lines are the actual output while the 

black lines are the PSO predicted output. 

 

Stability test: The stability of the system is determined 

directly from its transfer function where all zeros and 

poles  must be in the unit circle of the z-plane. From 

Fig. 13, all the polynomial roots of the determined 

transfer function are located inside the unit circle of the 

z-plane, hence, the estimated mathematical model is 

stable. 

 
 
Fig. 13: The stability test of the transfer function in the z-

plane 

 

CONCLUSION 

 

In this study, the parameter system identification 

using Particle Swarm Optimization (PSO) algorithm 

has been carried out to determine the mathematical 

model of multistage TEC for SPAD application. The 

PSO algorithm is introduced with the dynamic spread 

factor to produce better-quality in improving the 

premature convergence and preservation of diversity.  

The PSO algorithm extracts the collected input and 

output data of the TEC system which has been obtained 

experimentally. Auto Regression with exogenous input 

(ARX) is found to be the second order model structure 

of the system. The minimization of Mean Square Error 

(MSE) was used as the objective function of PSO 

results to significantly small mean square error. The 

mathematical model was validated with correlation test, 

percentage accuracy in tracking the actual output of the 

system which shows that the TEC has been modeled 

closely representing the actual system. 
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