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Abstract: Capillary pressure is a basic parameter in the study of the behavior of porous media containing two or 
more immiscible fluid phases. In this study, the capillary pressure of porous media is predicted based on based on 
fractal property of pore in porous media. The formula of calculating the capillary pressure of porous media is given. 
The capillary pressure of porous media is expressed as a function of porosity, fractal dimension of pore and 
saturation. Based on the parametric effect analysis, we conclude that the capillary pressure of porous media is 
negatively correlated with the porosity and saturation. Besides, it is shown that the capillary pressure of unsaturated 
porous media decreases with the increase of saturation. No additional empirical constant is introduced. This model 
contains less empirical constants than the conventional correlations. The model predictions are compared with the 
existing experimental data and good agreement between the model predictions and experimental data is found. The 
validity of the present fractal model is thus verified. 
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INTRODUCTION 

 
In recent years, the capillary pressure of porous 

media have captured great attentions from engineers 

and scientists in various areas including filtration, fuel 

cells, functional clothing, thermal insulation, paper 

products and medical science. Many parameters such as 

capillary pressure and the porosity are very important 

for design and manufacture of fiber-reinforced 

composites with high quality (Meng and Hu, 2009). 

The capillary pressure of porous media is critically 

important in many applications. So far, a number of 

experimental techniques and theoretical methods have 

been developed to predict the capillary pressure of 

porous media.  

Ahn et al. (1991) measured capillary pressure 
difference of thermosetting matrices in woven fabric 
reinforcements. They found that the capillary pressure 
difference decreases with the increase of porosity and at 
low porosity the capillary pressure difference is quite 
sensitive to porosity for saturated porous media. Gauvin 
et al. (1996) suggested that capillary pressure difference 
has great effect on the permeability measurements. 
Accordingly the relative permeability is also affected 
by capillary pressure difference. Masalmeh et al. (2003) 
studied the effect of wet ability heterogeneity on the 
capillary pressure difference and relative permeability. 
They found that capillary pressure difference effect has 
to be taken into account in relative permeability. But no 

quantitative relation between relative permeability and 
capillary pressure difference was reported.  

Since the limitations of experiment conditions and 
various postulated mechanisms, a comprehensive 
theory and unified model still lacking. The literature on 
the interrelationship between capillary pressure and 
permeability has been few.  

Until now many researchers are arguing the 
capillary pressure of porous media. There are many 
empirical correlations and models for fabric structures 
and mechanics in the literature, with each applicable to 
somewhat narrow range of experimental conditions. 
And they have own disadvantages because of the 
limitations of experiment conditions and various 
postulated mechanisms. So, comprehensive theories 
and unified models are desirable. In this study, we 
derive a model for capillary pressure of porous media 
based on fractal theory. 
 

STRUCTURE OF SOME POROUS MEDIA 
 

The structure of porous media is highly complex 
and difficult to describe. It is even more complicated to 
analyze the transfer behaviors within porous systems, 
especially when different transport mechanisms happen 
together. Moreover, the range of the scale from nano to 
macro within one porous media is huge, which adds 
further complexity of the system. Modeling the 
transport phenomena of fibrous media is therefore a 
great challenge. In many applications, textile materials  
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Fig. 1: A fiber sample constructed with the deposition model 

 

 
 

Fig. 2: The velocity field of fluid flow through the fiber web 

 

serve as porous media, which air, vapor, particles, heat 

or electricity pass through. Therefore, it is of 

importance to understand the transport properties of 

fibrous media. 

 

Fibers: Synthetic fibers can either be modified during 

manufacture, e.g. by producing fibers with irregular 

cross-section, or be optimally blended with natural 

fibers to improve their thermo-physiological properties. 

It was adjustable by blending a desired amount of a 

compound having a high water ratio with the synthetic 

fiber of introducing a desired amount of hygroscopic 

functional group into polymer. It may be covered, 

entangled or twisted with other fibers to form a 

composite yarn which then is knit or woven to form a 

fabric. The cross-sectional shape of the fiber may be 

circular, triangular, L-shaped, T-shaped, Y-shaped, W-

shaped, flat-shaped, dog-bone shaped, hollow or 

indefinite. Fabrics were produced by knitting or 

weaving of bicomponent conjugate filaments. After that 

the fabrics were exposed to an alkaline solution in 

combination with thermal and mechanical treatment, 

which separates the bicomponent conjugate filaments. 

Hence split type micro-fiber fabrics were formed. As 

these contain numerous capillaries, it can absorb the 

sweat rapidly and transport moisture faster because of 

these capillaries. 

Textiles are fibrous porous media made up of 

textile fibers in different structural forms. Figure 1 is a 

fiber sample constructed with the deposition model 

(Koponen et al.,
 
1998). Figure 2 is the velocity field of 

fluid  flow through the fiber web. Koponen et al.
 
(1998)  

 
 

(a)                      (b)                        (c) 
 

Fig. 3: (Color online) Structures with different fibers 

Orientation, (a) 1 directional (1D), (b) 2 directional 

(2D) and (c) 3 directional (3D) 

 
reported the results of essentially ab initio simulations 
of creeping flow through large three dimensional 
random fiber webs that closely resemble fibrous sheets 
such as study and nonwoven fabrics (Koponen et al.,

 

1998). Since the limitations of postulated mechanisms, 
the method can apply specify fiber webs. Textile is 
certainly a complex multi-pore structure, which can be 
described as parallel pore structure or pellets 
accumulation pore structure (Park, 2006). The heat and 
moisture transfer through textile is affected by its 
structure.  
 
Fiber web: Fibrous materials can be divided into one-, 
two- and three-directional media (Fig. 3) (Tamayol and 
Bahrami, 2011). In One-Directional (1D) structures, the 
axes of fibers are parallel to each other. In Two 
Directional (2D) fibrous matrices, the axes of fibers are 
located on planes parallel to each other with random 
positions and orientations on these planes. The axes of 
fibers in Three-Directional (3D) structures are 
randomly positioned and oriented in space. 1D and 2D 
materials are anisotropic, e.g., see for more details. 
However, 3D structures can be considered isotropic, 
e.g., metal-foam samples studied in this study. The 
considered microstructures are indeed anisotropic; thus, 
this study can only be applied to transverse flows. 
Transverse direction for 1D fiber is normal to the 
fibers’ axes and for 2D materials is perpendicular to the 
fibers’ planes. In isotropic 3D structures, transverse 
flow is perpendicular to any plane (Tamayol and 
Bahrami, 2011). 

In porous textiles the liquid water transfer coupled 
with moisture and heat transfer is a complicated process 
involving simultaneous, coupled heat and mass 
transfers. 
 
Yarns: Composite yarns also were developed for 
making moisture management fabrics. These novel 
yarns yielded fabrics capable of quickly absorbing 
perspiration from a wearer’s skin and yet capable of 
quickly releasing that moisture, resulting in surprising 
levels of wearer comfort and wearer preference. A 
composite yarn was made (Peters et al., 1999). The 
yarn comprising hydrophilic fibers embedded at the 
yarn center within a matrix of hydrophobic fibers, in 
which there was a gradual transition between fiber 
types. The transition began at the center of the 
composite yarn where hydrophilic fibers were 
concentrated  and  progressed  to   the   outermost  layer  
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Fig. 4: Schematically illustrates the composite fabric and how 

it functions  

 
where hydrophobic fibers predominate. An increase in 
the area of the inter face between hydrophobic and 
hydrophilic components did not increase the total 
amount of moisture that can be taken up by the 
composite yarn, however, enhanced the kinetics of 
absorption so that moisture transfers become more 
rapid and effective in the moisture management fabric.  

 
Knitted fabrics: There are many fabrics made by 
weaving, knitting and non-weaving. Traditional knits 
such as pique, honeycomb of ribbed raise textures trap a 
certain amount of air between the body and knits. By 
reducing the contact points between the skin and 
garment, air circulates freely and lets the body breathe. 
Figure 4 schematically illustrates the composite fabric 
and how it functions. Knitted fabric had at least two 
layers made from yarns mainly composed of non-
hygroscopic fiber of at least 1 denier, characterized in 
that the inter-fiber space of a yarn in one layer differs 
from that in the other layer. To achieve hygroscopic 
property, an inter-fiber space of a first yarn forming one 
layer of the fabric was made with a different size from 
that of a second yarn forming the other layer. The 
difference in inter-fiber space size can be impacted by 
suitably selecting the structure of the yarn forming the 
respective layers and the fineness of the fiber 
composing the yarn and the fabric structure itself. 

 
Coaed and laminated fabrics: Thomas et al. (2005) 
invented a method for providing a laminate of at least 
two layers to provide breathability and moisture barrier 
properties without appreciably reducing elastic 
properties. A first material comprised a woven or 
nonwoven web and a second material comprises a 
cellular elastomeric film or fiber. Such materials maybe 
integrated into a laminate by forming first materials 
onto second material, or by joining the two materials 
through chemical or physical means such as the use of 
adhesives. The second material can be prepared by 
mixing a cell opening agent with the elastomeric 
polymer resin and extruding the mixture at appropriate 
conditions whereby the cell opening agent decomposes 
or reacts to release agents that forms cells in the 
elastomeric film. The material was useful in personal 
care products such as diapers, feminine care products, 
child care products, incontinence products and health 
care products where such properties are desirable for 

attributes such as comfort, body shaping, conformance, 
dryness and the like. Hall (2009) invented a multilayer 
breathable moisture management and compressive 
device, having a laminated material that including thin, 
hydrophilic polyurethane foam coated on both surfaces 
with an adhesive. 

 

FRACTAL MODEL 

 
The cumulative size-distribution of pores in porous 

media whose sizes are greater than or equal toλ  have 

also been proven to follow the fractal scaling law (Yu 
and Cheng, 2002): 
                  

fDmax )()L(N
λ

λ
λ =≥                                       (1) 

 
Where N is the number of pores or islands(on 

earth) or spots (on engineering surfaces) whose sizes 

are greater than or equal to the size λ , λ  and maxλ  

are the pore size and the largest pore size, respectively 
and Df  is the fractal dimension for pore area. The total 
number of the pores or islands or spots from the 

smallest diameter 
minλ  to the largest diameter maxλ  

can be obtained from Eq. (1) as Yu and Cheng (2002):                         
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Differentiating Eq. (1) with respect toλ  yields: 
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Equation. (3) gives the pore number between the 

pore sizesλ  and λλ d+ . The negative sign in Eq. (3) 

implies that the island or pore number decreases with 

the increase of island or pore size and –d N > 0. 

Dividing Eq. (3) by Eq. (2) results in: 

                     

λλλλλ dfdD
N

dN ff DD

f

t

)(
)1(

min ==−
+−                  (4) 

 

where, f(�)= ��������

	

���	��� is the probability 

density function. According to probability theory, the 

probability density function, ����, should satisfy the 

following normalization condition: 

      

max

min

min

max

( ) ( ) 1 1

fD

f d f d
λ

λ

λ
λ λ λ λ

λ

∞

−∞

 
= = − = 

 
∫ ∫           (5) 

 

It is clear that Eq. (5) holds if and only if (Yu and 

Cheng, 2002): 
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Eq. (6) can be considered as a criterion whether a 

porous medium can be characterized by fractal theory 
and technique. In general

7
, porous media is

2

maxmin 10/ −<λλ , thus Eq. (6) approximately holds for 

porous media. Thus, the fractal theory and technique 
can be used to analyze the characters of porous media. 
In Eq. (6), Df  can be obtained by Yu and Cheng 
(2002): 
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λ
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                                                  (7) 

 
where, d is the Euclidean dimension and equal to 2 and 
3 in the two- and three-dimensional spaces, 
respectively. � is porosity of a porous medium. 

 The capillary pressure of porous media is given by 
Ahn et al. (1991): 
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In Eq. (8), T is surface tension of fluids, θ is 

contact angle between liquid and solid and F is shape 
factor depending on geometry of a medium and on flow 
direction (F = 4) when the capillary is cylindrical, (Ahn 
et al., 1991).  

  The average capillary pressure of porous media 
can be obtained by: 
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For unsaturated porous media, the average 

capillary pressure of porous media can be expressed by: 
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where,  �� is the equivalent diameter for wetting phase,  
�� is the volume fraction of the wetting phase: 
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where, Df,w is the fractal dimension for wetting phase, 
which can be obtained by extending the fractal 
dimension for saturated fluid as Yu and Li (2004): 
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Fig. 5: The average capillary pressure versus porosity 
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Fig. 6: The average capillary pressure of unsaturated porous 

media predicted by Eq. (11) compared with 

experimental data (Dana and Skoczylas, 2002) at 

porosity 0.18  

 

where ����,� and ����,�  are related by Yu and Li 

(2004): 

  

min, min max, max,w w w wS Sλ λ λ λ= =                  (13) 

 

where, Sw is the saturation of the wetting phase and is 

related to porosity by  �� = ��� ( Bear, 1972).  

 

RESULTS AND DISCUSSION 

 

In porous media, capillary pressure is the force 

necessary to squeeze a hydrocarbon droplet through a 

pore throat (works against the interfacial tension 

between oil and water phases) and is higher for smaller 

pore diameter. Accurately predicting capillary pressures 

in a porous medium is central to understanding the 

movement and distribution of fluids within such 

systems. The capillary pressure of porous media relates 

the pressures in the two fluid phases. The capillary 

pressure in a porous medium is an increasing function 

of the non-wetting phase saturation or, alternately, a 

decreasing function of the wetting phase saturation. 

Figure 5 is a plot of the average capillary pressure 

of  porous  media  versus  porosity.  Figure 5 shows that  



 

 

Res. J. Appl. Sci. Eng. Technol., 6(4): 593-597, 2013 

 

597 

the average capillary pressure of porous media 

decreases as the porosity increases. 

Figure 6 compares the predicted average capillary 

pressure of unsaturated porous media by Eq. (11) with 

the available experimental data (Dana and Skoczylas, 

2002). The present model predictions show good 

agreement with the experimental data (Dana and 

Skoczylas, 2002). It is also found from Fig. 6 that the 

average capillary pressure of unsaturated porous media 

increases with the decrease of saturation Sw and at low 

saturation the capillary pressure difference increases 

remarkably with the decrease of saturation Sw. These 

are all expected and consistent with the practical 

physical phenomena. 

 

CONCLUSION 

 
In this study, the formula of calculating the 

capillary pressure of porous media is given by taking 
into account the fractal property of pore in porous 
media. In the present approach, the proposed fractal 
model is explicitly related to porosity, fractal dimension 
of pore and saturation. It is found that the capillary 
pressure of porous media increases with decreasing of 
the porosity. In addition, based on the parametric effect 
analysis, we conclude that the capillary pressure of 
porous media is negatively correlated with the 
saturation. This model contains less empirical constants 
than the conventional correlations. No additional 
empirical constant is introduced. A good agreement 
between the proposed model predictions and 
experimental data is found. The validity of the present 
model for the capillary pressure of porous media is thus 
verified. The proposed fractal model can reveal the 
transport property of porous media. 
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