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Evaluation for Confidence Interval of Reliability of Rolling Bearing Lifetime with
Type I Censoring
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Abstract: In the lifetime test of rolling bearings under type I censoring with a small sample, the confidence interval
of reliability needs to be evaluated to ensure safe and reliable operation of a system like an aerospace system. Thus
the probability density function of Weibull distribution parameters must be attained. Owing to very few test data and
for lack of prior knowledge, it is difficult to take it out for prevailing methods like the moment method, the
maximum likelihood method and the Harris method. For this end, the bootstrap likelihood maximum-entropy
method is proposed by fusing the bootstrap method, the maximum likelihood method and the Harris method. The
lifetime test data with the small sample are made into the simulated parameter data with the large sample to obtain
the probability density function on the parameters. The confidence intervals of the Weibull distribution parameters
are estimated and the confidence interval of reliability is calculated. The tests of the complete large-sample data, the
complete small-sample data and the incomplete small-sample data are produced to prove effectiveness of the
proposed method. Results show that the proposed method can assess the confidence interval of the reliability

without any prior information on the Weibull distribution parameters.
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INTRODUCTION

In the lifetime test of rolling bearings, the
confidence interval of the reliability needs to be
evaluated to ensure safe and reliable operation of a
system like an aerospace system, a nuclear reaction-
diffusion system and a weapon system (Xia et al., 2009;
Chowdhury and Adhikari, 2011). This is a new indicator
of reliability analysis for the rolling bearing lifetime.
Such a requirement, in theory, is justified in a
performance test because, according to metrology, the
estimated value of a parameter has uncertainty, along
with a confidence level and interval. The value of the
lifetime reliability is estimated by the parameters of a
lifetime probability distribution and it has necessarily
indirect uncertainty (Jean-Francois and Joseph, 2010;
Radoslav et al., 2011; Luxhoj and Shyur, 1995; Joarder
et al., 2011; Jiang et al., 2010; Chen et al., 2009; Fu
etal.,2010; Liu et al., 2009a).

The two-parameter Weibull distribution is one of
the most commonly used functions in reliability analysis
for the rolling bearing lifetime. To assess the confidence
interval of the reliability, the Weibull distribution
parameters, the shape parameter S and the scale
parameter #, should be estimated and the probability
density functions of the two parameters should also be
obtained.

According to Bayesian statistics, f and # can be
regarded as two independent stochastic variables. Thus,
the two should have their own probability density
functions, denoted by y (f) and ¢ (7), respectively.
According to classical statistics, a large amount of the
parameter data f§; and #;, where f; is the jth simulated
value of f, #; is the jth simulated value of # andj =1, 2,
..., 1s demanded in order to acquire y (f) and & (7).
Under type I censoring with a small sample, the
maximum likelihood method (Harris, 1991; Jiang and
Zhou, 1999; Joarder et al., 2011), the moment method
(Jiang and Zhou, 1999; Sirvanci and Yang, 1984; Tian
and Liu, 2009) and Harris method (Harris, 1991) are
usually employed to obtain f and 7. However, these
methods pose difficulty in estimating y (f) and ¢ (7).

Recently, many new methods are developed, along
with many findings. For example, depending on Bayes
theorem, Chen et al. (2007) proposed the single and
double wvariable sampling plans for the Weibull
distribution and Fu er al. (2010) made a reliability
assessment and a life prediction for very few failure
data; by means of stochastic resampling methods,
Heiermann et al. (2005) presented a strategy for the
assessment of uncertainty in the estimation of the failure
probability of ceramic components due to the scatter of
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material data; based on two independent normal random
variables, Barbiero (2011) proposed the procedure to get
confidence intervals for the reliability in stress-strength
models; and with the help of a gamma function model,
Kimura (2008) focused on the generalization of several
software reliability models and the derivation of
confidence intervals of reliability assessment measures.
Nevertheless, available findings rely on the priori
information of the parameters of a probability
distribution. For type I censoring with a small sample,
how to assess the confidence interval of the reliability of
the rolling bearing lifetime is still a puzzle under the
condition of the lack of the priori information about the
Weibull distribution parameters.

As is well known, the bootstrap method (Kimura,
2008; Othman and Musirin, 2011; Xia et al., 2010) and
the maximum entropy method (Yonamoto et al., 2011;
Li and Zhang, 2011) are two of the prevailing methods
for data analysis and information processing. Based on a
small sample and via the maximum likelihood method,
the bootstrap method can be adopted to imitate a large
number of f; and #;, but it requires the priori knowledge
of y () and ¢ (n) in advance. If lack of the priori
knowledge of y (#) and ¢ (#), the estimated intervals of
and 7 and the confidence interval of the reliability can
be calculated hardly. So far the priori knowledge of y (5)
and &(n), in fact, is reported rarely from the experimental
investigation of the rolling bearing lifetime. For this
reason, the maximum entropy method can be applied to
structure the probability density functions y (#) and ¢ (),
but it demands a large number of §; and #;.

Synthesizing the strong points of the bootstrap
method, the maximum likelihood method and the
maximum entropy method, a novel method called the
bootstrap likelihood maximum-entropy method is
proposed to evaluate the confidence interval of the
reliability of rolling bearings under type I censoring with
a small sample. The procedure is as follows:

e Based on the test data with a small sample of size n,
a large number of the data ¢; (i = 1,2,...,n; j =
1,2,...,B) is generated by means of the bootstrap
method, where ¢; stands for the ith data in the jth
bootstrap sample, n for the number of the test data
obtained in a lifetime test and B for the number of
the bootstrap samples

e Based on #;, §; and #; are calculated with the help of
the maximum likelihood method

e  f;and 5; are processed with the aid of the maximum
entropy method and y(f) and ¢ () can accordingly
be acquired

e The expected value S, of f and the expected
value e Of # are computed via y (f) and ¢ (i),
respectively.

e Given a confidence level p, the estimated interval
[bL, ful of B and the estimated interval [#, ny] of 1
are obtained by y (f) and ¢ (), respectively

e Given a failure probability ¢, the lifetime L and its
reliability function R (¢) are calculated by f and 7,
where ¢ is the stochastic variable of the lifetime

e The interval [Li4, Lyq] of L and the interval [Ry (t),
Ry (V)] of R (¢) are estimated by [fr, fu] and [,

1ul-

It is easy to see from the procedure that the
bootstrap  likelihood = maximum-entropy  method
proposed in this study is characterized by theoretically
fusing the strong points of the bootstrap method, the
maximum likelihood method and the maximum entropy
method. It follows that the probability density functions
of the Weibull distribution parameters can be simulated,
the confidence intervals of the shape parameter and the
scale parameter can be obtained and then the confidence
interval of the reliability of rolling bearings can be
assessed. Clearly, only by the test data with small
sample sizes the bootstrap likelihood maximum-entropy
method is able to analyse the reliability without any
priori information of the shape parameter and the scale
parameter.

In this study, the tests of complete large-sample
data, the complete small-sample data and the
incomplete small-sample data are produced to prove the
effectiveness and practicability of the Dbootstrap
likelihood maximum-entropy method.

TWO-PARAMETER WEIBULL
DISTRIBUTION

Suppose the lifetime of rolling bearings is of the
two-parameter Weibull distribution with the probability
density function:

1@ =B PP exp(~(t/m)”) (1

where,
f(® = The probability density function of the two-
parameter Weibull distribution

The stochastic variable of the lifetime

The shape parameter

The scale parameter.

t =
B -
n -
The probability distribution function is given by:

F(t) =1-exp(—(t/1)") ()

where, F(f) is the probability distribution function of
the two-parameter Weibull distribution.
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TEST DATA

Under type I censoring, the test data include the
failure data and the truncated data. In terms of the
reliability theory, the test data of the type may be
classified as two categories, the complete data and the
incomplete data. The former consists simply of the
failure data and the latter consists of both the failure data
and the truncated data.

Suppose n product units are randomly selected for a
time censored test and the number of failure product
units is 7 (0<r<n). The sample of the failure data is
geven by:

T: =(t,ty,....1,);t <t, <...<t, 3)
where,
Tr = The sample of the failure data
r = The number of the failure data
The sample of the truncated data is given by:
Te =ty tpinoeensty) = (testesens ) “)
%/—J

totaling s=n—r

where,

Tc = The sample of the truncated data
= The number of the test data

s=n-r = The number of the truncated data

Bootstrapt method: To facilitate the description, § and
n are noted by 0 and y (B) and € (1) are noted by & (0).
The bootstrap method is to simulate the large sample Tj
about the failure data with the bootstrap resampling
from the sample TF, the maximum likelihood method is
to calculate the simulated value 6j of the parameter 0
via the large sample Tj and the maximum entropy
method is to establish the probability density function &
(6) by 0;.

Assume the jth bootstrap sampling is conducted. A
sampling datum #; can be obtained by an equiprobable
sampling with replacement from 7. Resampling so »
times, the » sampling data which are regarded as a
sample (1, t2,..., ;) can be obtained. Considering the s
truncated data in equation (4), the jth bootstrap sample
of the incomplete data in the time truncated test is
structured, as follows:

T’j‘ = (ZA/-I’tj'z""’t/-l'""’tj‘r’t(/-,’”*’l’;/‘,’”*2""’;/‘,”);
j=12,..B

(6))
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where, B is the number of the bootstrapt samples.
In Eq. (5), the jth smaple of the truncated data is:

(6)

(trasljriamennln) = Upiislyiamenly)

MAXIMUM LIKELIHOOD METHOD

According to the maximum likelihood method for
simulating £ and #, there are:

1 )

— 4=

ﬂj r

r n

s
Zlntﬁ Ztﬁ’ Inz;
i=1 i=1 =0
S f
2
i=1

15,

The jth simulated value B; of f and the jth simulated
value #; of n can be calculated by Eq. (7) and (8),
respectively and the B simulated results can hence be
obtained, which are noted by:

n B

o
:

i=1

®)

0=(0,,6,,..., 0,) )

0;5eees
where, 0, stands for the jth simulated value of 6 and ®
for a sample of the simulated values of 6.

The sample ® can be applied to establish & (¢) by
means of the maximum entropy method deduced in
detail below.

MAXIMUM ENTROPY METHOD

According to the information entropy theory, the
information entropy H of £ (6) is defined as:

H=- j E(O)In&EB)dO (10)
Q

where, H stands for the information entropy of & (6) and
QelQ,,,.Q,, ] for the integral domain.

A basic idea of the maximum entropy method is
that in all the feasible solutions to a problem, the
solution of maximizing the information entropy is the
most unbiased solution. Accordingly, let:

max

(11)

H — max

The constraint condition is:
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J‘Qkf(ﬁ)dﬁzmk;k:O,l,.,.,m;mO 1 (12)
Q

where, k stands for the sequence number of the order of
the origin moment, m; for the kth origin moment and m
for the highest order of the origin moment.

With the help of the histogram principle in
statistics, §; is rearranged from small to large order and
is divided into Z groups. As a result, the kth origin
moment iy, is given by:

A
mk:ZHsz;k:O,l,...,m;mo =1 (13)
z=1
where,
0, = The median in the zth group
E, = The frequency at 6,

According to the Lagrange method of multipliers,
the probability density function of satisfying Eq. (10) to
(13) is:

£0)=exp(Y 400) (14

k=0

where 4, is the kth Lagrange multiplier and should meet
Eq. (15):

ja’( exp(>_ 2,67)d6
1-& il =0;k=1,2,.,m (15)
mkjexp(lkﬂk)dﬁ
Q
The Lagrange multiplier 4, is given by:
Jo == In([exp(Y. 446" )d) (16)
Q k=1
Let the significance level «e[0]1], then the
confidence level p is:
p=(01-a)x100% (17)

Given the confidence level p, the estimated interval
of 6 can be obtained, as follows:

[6.,6001=16,/2,6_0/2] (18)

where, 0, and 6y are, respectively, the lower bound and
the upper bound of 8 and there are:
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0{1/2
a_ (19)
0= J'g(e)de
Qmin
And
O a2 (20)
a —
1-2= QI;(&)d&
The expected value O, of 6 is defined as:
e = [ 06000 1)
Q
The mid-value 6, 5 of 6 is defined as:
'90.5
0.5= j £0)d0 (22)
Q

min

EVALUATION FOR RELIABILITY

Let the failure probability be g, then lifetime L, is
defined as Harris (1991):

_ 1/

L, =rl-In(-g)] (23)
The reliability function R (¢) is defined as:

R(t) = exp[—(¢/m)"] (24)

In this study, the expected lifetime Liean, based on
the bootstrap likelihood maximum-entropy method is
defined as:

Lmeanq = Mmean [_ ln(l - q)]l/ﬂmm (25 )

where, frean 1S the expected value of £ and #pea, is the
expected value of 7.

Let the lifetime interval be [Li4 , Ly,] based on the
bootstrap likelihood maximum-entropy method, where
Ly, is the lower bound of L,csn, and is given by:

L, =m [— In(1- q)]l/ﬂL (26)
and Ly, is the upper bound of L., and is given by:
LUq =Ty [— In(1- Q)]l/ﬁu 27

where, B and By are, respectively, the lower bound and
the upper bound of § and n; and ny are, respectively, the
lower bound and the upper bound of #.
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The mid-value lifetime L, based on the bootstrap
likelihood maximum-entropy method is defined as:

Ly =1l 5[~ 1= )] "/ (28)
where S5 is the estimated mid-value of § and 7,5 is the
estimated mid-value of 7.

The expected reliability function R ., (¢) based on

the bootstrap likelihood maximum-entropy method is
defined as:

mean

Riean(t) = €XPIE/ Tyeqn) ™ 29)

At the given confidence level p, let the estimated
interval of Ry, (t) be [Rp (t), Ry (t)] based on the
bootstrap likelihood maximum-entropy method, where
Ry (t) is the lower bound which is given by:

Ry () = min(exp[—(t/ 7. )" 1, exp[~(t/ )"V ],

exp[~(t/ 7)1 exp[~(¢/774)™ ]) (30)

and Ry (t) is the upper bound which is given by:

Ry (#) = max(exp[—(t/n )" 1.exp[—(t /0. )"V ],
exp[—(t/7y)"+ Lexp[—(t/ 7)™ 1)

€3]

The mid-value reliability function R, (t) based on
the bootstrap likelihood maximum-entropy method is
defined as:

R, () =exp[~(t/17,5)" ] (32)

EXPERIMENTS AND DISCUSSION

In this section, different types of experiments (three
cases) are done to test the soundness and effectiveness
of the bootstrap likelihood maximum-entropy method
proposed in this study, along with a comparison with the
existing methods.

Case study of complete large-sample data:

Case 1: This is a case of evaluation for the complete
large-sample data, along with a comparison with the
moment method, the maximum likelihood method and
Harris method. Let = 2.5 and # = 200, which can be
regard as the true values of Weibull distribution
parameters, then the failure data are imitated, as follows
(n=r=50)(Jiang and Zhou, 1999):

4049 597085939699 105111 115116 116 118
123 128 130 131 132 135 136 139 146 154 157 162 169
170 188 191 199 205 207 210 215 222 234 253 264 279
281287316319 319 321 326 344 386 392

The results estimated for f and 7 are listed in
Table 1. For g, the relative errors of the four methods
are less than 5%, having a good effect. For 7, the
relative error of the proposed method is less than 10%,
but the relative errors of the existing methods are more
than 10%.

The results estimated for the lifetime are listed in
Table 2. It can be seen that the results estimated using
the four methods are less than the true value. By
contrast the bootstrap likelihood maximum-entropy
method achieves the smallest relative error, about 2.7%
and the moment method achieves the largest relative
error, about 9.4%. More significantly, the bootstrap
likelihood maximum-entropy method is able to estimate

Table 1: Comparison between estimated results of Weibull distribution parameters in case 1

Moment method

Maximum likelihood
method and Harris method

Bootstrap likelihood maximum-entropy
method (B =10000)

Item B 1 B 1 B n
Expected value 2.161 208.716 2.198 209.487 2.306 209.893
Relative error between expected value and  13.56 4.36 12.08 4.74 7.76 4.95
true value /%

Mid-value - - - 2.293 209.531
Relative error between mid-value and true - - - 8.28 4.77
value /%

Estimated interval at 90% confidence level

[2.003,2.642] [187.517,232.816]

Table 2: Comparison between results of lifetime in case 1 (¢ = 10%)

Moment  Maximum likelihood Bootstrap likelihood
Item method method and Harris method =~ maximum-entropy method ~ Remark
Estimated value of lifetime 73.6718 75.2516 79.1008 True value of lifetime is 81.3020
Relative error /% 9.3850 7.4419 2.7074
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Fig. 1: Probability density function y(f) of shape parameter f
in Case 1 (bootstrap likelihood maximum-entropy

method)
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Fig. 2: Probability density function &(5) of scale parameter
in Case 1 (bootstrap likelihood maximum-entropy

method)
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Fig. 3: Probability density function y(f) of shape parameter f
in Case 2 (bootstrap likelihood maximum-entropy
method)
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Fig. 4: Probability density function () of scale parameter 7

in Case 2 (bootstrap likelihood maximum-entropy
method)

y(B) and &(n), as shown in Fig. 1 and 2 and Table 1, but
the moment method, the maximum likelihood method
and the Harris method are unable to do those.

Case study of complete small-sample data:

Case 2: This is a case of evaluation for the complete
small-sample data, along with a comparison with the
Harris method employed frequently in reliability
analysis of the rolling bearing lifetime test with a small
sample. The failure data obtained by Harris (1991) are
cited, as follows (n =r=10):

14.01 15.38 20.94 29.44 31.15 36.72 40.32 48.61
56.42 56.97

With the help of the bootstrap likelihood maximum-
entropy method, y (f) and ¢ () are estimated, as shown
in Fig. 3 and 4. The results of the Weibull distribution
parameters and the rolling bearing lifetime are shown in
Table 3 and 4.

It is easy to see from Table 3 and 4 that the
bootstrap likelihood maximum-entropy method is able
to obtain the estimated interval of the reliability, but the
Harris method is unable to do that.

Case study of incomplete small-sample data:
Case 3: This is a case of evaluation for the incomplete
small-sample data.

The accuracy life of bearing units for gyro motors is
tested under type I censoring with a small sample and
the truncated time is 4000h. The test is done with eight
bearing units and the result is that the five bearing units
lose the accuracy. The failure data, in h, are obtained as
Liu et al. (2009b):

1313 2288 2472 2506 3382 and the truncated data,
in h, are 4000 4000 4000.
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Table 3: Estimated result of Weibull distribution parameter in case 2 (p = 90%)

Harris method

Bootstrap likelihood maximum-entropy method (B = 10000)

Item

B 1 B Ui
Estimated mid-value 2.15 - 2.9204 39.3103
Expected value 2.5835 39.5578 3.0285 39.2979
Estimated interval [1.41,3.51] - [2.0875,4.3290 ] [31.4256, 46.8431]

Table 4: Estimated result of lifetime in Case 2 (p = 90% and g = 10%)

Ttem

Bootstrap likelihood

Harris method maximum-entropy method

Estimated mid-value lifetime
Estimated expected-lifetime
Estimated lifetime interval
Reliability of lifetime, R/%

Estimated interval of reliability of median lifetime at 90% confidence level /%
Estimated interval of reliability of expected lifetime at 90% confidence level /%

153 18.1908

16.5553 18.6922
[7.25,23.3] [10.6931, 27.8538]
90 90

[72.66, 98.35]
[71.31, 98.14]

Table 5: Result estimated by bootstrap likelihood maximum-entropy method in case 3 (B = 10000)

Confidence level, p%

Item 90 95 99
Failure probability, ¢/% 10 5 1
Expected value of shape parameter, Smean 2.5976 2.5976 2.5976
Expected value of scale parameter, #mean/h 3823.7 3823.7 3823.7

Estimated interval of shape parameter, [f1, Su]
Estimated interval of scale parameter, [#., #u]/h
Expected lifetime, Lmeang/h

Estimated lifetime interval, [Li,, Lyg]/h
Reliability of expected lifetime, Rucan(Limeang)/%0

Estimated interval of reliability of expected lifetime, [Ri.(Lmeanq), RU(Lmeang)]/%0

[1.7419, 3.5825]
[3739.3,3931.9]

[1.6212, 3.7736]
[3726.5, 3950.1]

[1.4099, 4.1759]
[3701.9, 3977.9]

1607.8 1218.7 650.70
[1027.4,2.098.0] [596.53,1797.9]  [141.72, 1322.0]
90 95 99

[79.46, 96.02] [84.93, 98.82] [91.74, 99.95]

07 T T T T T

06

0&r

7(B)

03

02

01t

Fig. 5: Probability density function y(f) of shape parameter S
in Case 3 (bootstrap likelihood maximum-entropy
method)

The results estimated by the bootstrap likelihood
maximum-entropy method are shown in Table 5 and
Fig. 5 to 7. Let t = Lyeang = 1023h, then the reliability of
the expected lifetime of the bearing units takes value
Rinean (1023) = 96.8% and the estimated interval of the
reliability is [Ry (1023), Ry (1023)] = [90.08, 99.20] at
the p = 96.8% confidence level.
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Fig. 6: Probability density function &(#) of scale parameter # in
Case 3 (bootstrap likelihood maximum-entropy
method)

Feature of probability density function of weibull
distribution parameter: It can be seen from Fig. 1 to 3
that y (B) is a curve with one left peak and € (1) is a
curve with one approximatively symmetrical peak.

In order to study y (f) and ¢ (), in Case 3, their
change with s, the number of the truncated data, is
presented In Fig. 8 and 9. As s increases, their widths
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decrease, their heights increase and their peaks move to
the left and to the right, respectively. This indicates that
the number of the truncated data has an effect upon the
probability density functions of the Weibull distribution
parameters. In addition, the feature of the left peak of y
(#) and of the approximatively symmetrical peak of ¢
() is irrelative to the number of the truncated data
according to Fig. 8 and 9 and is also irrelative to the
number of the failure data and the category of the test
data according to Fig. 1 to 6.

CONCLUSION

Under type 1 censoring, without any priori
information beyond the test data to be dealt with, the
bootstrap likelihood maximum-entropy method is able
to calculate the estimated interval of the reliability of the
rolling bearing lifetime based on the two-parameter
Weibull distribution.

The tests of the complete large-sample data, the
complete small-sample data and the incomplete small-
sample data prove the effectiveness of the bootstrap
likelihood maximum-entropy method.

The probability density function of the shape
parameter is a curve with one left peak and the
probability density function of the scale parameter is a
curve with one approximatively symmetrical peak. The
feature of the two curves is irrelative to the number of
the truncated data, the number of the failure data and the
category of the test data.
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