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Abstract: A new mode parameter estimation method of vibration signal is put forward in this study. At first, the 
frequency response curve of vibration signal is fitted by Levy polynomial and the each distance between the fitted 
curve point and the frequency response curve point is calculated. Then the distance set is clustered by k-means 
algorithm into two classes. One class is clustered with smaller distance points and another class is clustered with 
larger distance points which are named aberrant point set. The class of larger distance points clustered will be 
eliminated and the new frequency response curve is obtained. At last, the new frequency response curve is fitted by 
Levy polynomial again and the new aberrant point set is eliminated again and so on. Finally, the fitting accuracy will 
be arrived according to the above algorithm. Plenty of simulation tests to vibration signals show that this algorithm 
can accurately extract mode parameters of the vibration frequency spectrum. It also confirms that in the different 
noise intensity and different distance between adjacent frequency cases, the precision of the algorithm proposed by 
this study is obviously superior to the existing Levy algorithm. 
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INTRODUCTION 

 
Mode parameter identification is an important 

element in Structural Health Monitoring (SHM). 
Accurate mode parameters are the prerequisite for the 
finite element model updating, structural damage 
detection and evaluation of the structural performance. 
Modes of vibration are global properties of a structure. 
That is, a mode is defined by its natural frequency, 
damping and mode shape, which can each be measured 
(or estimated) from a set of FRF measurements taken 
from the structure. Therefore, the process of identifying 
parameters from the dynamic response is called curve 
fitting, or parameter estimation, i.e., time-frequency 
analysis FFT, Time-series Decomposition and so on. 
The Wavelets Transform (WT) (Ge et al., 2006; Xu and 
Song, 2011), one of time-frequency analysis, has good 
performance on the outlier detection but the choice of 
wavelet function and its parameters will affect the 
identification precision. Frequency domain method is 
affected by not only the FFT error but also the noise, 
especially in high damping ratio case. The researchers 
are trying new ways to improve the frequency domain 
method, for example, the Levy algorithm and 
orthogonal polynomial algorithm (Richardson, 1986) 
improved with the high accuracy and simple idea. 
However, the precision of the mode parameters is low 
when the noise is strong or the modes are dense, such as 

a strong noise near the peak spectrum will lead to a 
large deviation. 

This study comes up with a new Levy algorithm 
improved by importing the k-means clustering 
algorithm into spectrum analysis. To improve the fitting 
precision, it use k-means clustering algorithm to 
eliminate those points far away from the fitting curve. 
Plenty of simulation tests of vibration signal turn out 
that the algorithm proposed by this study can accurately 
extract mode parameters of the vibration frequency 
spectrum and the precision is obviously superior to the 
existing Levy algorithm. 
 
Levy algorithm: The vibration responses of viscous 
damping system (Fu and Hua, 2000) is given by: 
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The rational fraction of (1)' FFT is: 
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The FRF can be represented as a ratio of two 
polynomials, as shown in Eq. (2). So transform the 
rational fraction into the general polynomial form, then 
get Eq. (3): 
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When curve fitting this analytical form to the 

measurement data, the unknown coefficients of both the 
numerator  and  denominator  (αk, k = 0,…, m)  and (βi, 
i = 0,…, n) are determined. Then, three mode 
parameters (frequency, damping and complex residue) 
can be solved out according to the coefficients. 

Now, the curve fitting can be done in the least 
squared error sense by solving a set of linear Eq. (3), 
for the coefficients. To begin the problem formulation, 
we need to define an error criterion. First we can write 
the error at a particular value of frequency (ωk) as 
simply the difference between the analytical value (Yk) 
and the measurement value of the FRF (Ỹk), as shown 
in following expression: 
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Furthermore, we can make up an entire vector of 

errors, one for each frequency value where we wish to 
curve fit the data, as shown in expression �� = {e1, 
e2,…,en}′ A squared error criterion can be form from 
the error vector, as shown in E = ��H�� Notice that, this 
criterion (E) will always have a non-negative value. 
Therefore, we want to find values of the αk and βk so 
that the value of E is minimized, ideally zero. Using the 
error vector expression: 
 

e P Q wα β= − −
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Note that it is now written as a function the two 

unknown coefficient vectors ��
 

and ��. This criterion 
function has a single minimum value, so we can set its 
derivatives (or slope) with respect to the variables ��

 
and ��

 
to zero to find the minimum point. The linear 

equations are: 
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In principle then, the least squares estimates of ��

 
and ��

 
can be obtained by solving the above linear 

equations. 
From the foregoing, all the frequency points are 

used to fit the FRF curve by the Levy parameter 
identification method. When there is no noise or the 
noise is very low, it’s fitting precision is good. If there 
are strong noises or larger error caused by 
misoperation, the fitting curve will deviate so seriously 
that the identification parameters are less accurate. 

In previous studies (Verboven et al., 2005; Liu     
et al., 2005), many new methods based on the local 
curve fitting had been put forward to improve these 
disadvantages. To achieve better interference rejection, 
these local curve fitting methods select threshold 
artificially according to experience or select a part of 
mode peaks to fit the frequency response curve. 
However, it fails to select the effective frequency 
response point automatically, so it’s difficult to 
practice. So for these frequency response points, this 
study uses clustering thought to find out and eliminate 
the outliers automatically. This will improve the Levy 
fitting accuracy and availability and estimate the natural 
frequency, damping and mode shape accurately. 

 
IMPROVED LEVY ALGORITHM BASED  

ON OUTLIERS CLUSTERING 

 
According to the clustering of k-means algorithm, 

this study constructs an iterative algorithm. It identifies 
and eliminates the frequency response outliers 
constantly and then uses the Levy algorithm to fit the 
rest of the effective frequency response points, finally, 
obtains the accurate mode parameters. The algorithm is 
described as follows: 

According to the Eq. (3), Frequency response 
functions polynomial expression in frequency ωk 

is: 
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Given the measurement value of the FRF (Ỹk), its 

discrete data point sets is:  
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• The frequency response  point  sets  is  into  the  

Eq. (4) to obtain the polynomial coefficients 
{v2m

(1), v2m-1
(1), …v0

(1)} where the superscript (1) is 
the first iteration coefficients, so the polynomial 
expression after the first iteration is: 
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• The analytical value of the frequency ωk is Y 
(ωk)

(1), the error between the analytical value and 
the measurement value is calculated by the below 
equation: 

 
(1) (1)| ( ) ( ) | 1, 2,...,k k ke Y Y k sω ω= − =%  

 
• The error set E = {ek

(1)} is considered to be the 
clustering set. It divides the set E into two classes 
using the k-means algorithm, one is the large error 
Z1

(1) and the other Z2
(1) is smaller, that is: 
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• The mapped frequency response point of Z1

(1) is 
considered to be the outliers and to be rejected. The 
mapped frequency response point of Z2

(1)

 
is into the 

Eq. (4) to obtain the polynomial coefficients{v2m
(2), 

v2m-1
(2), Lv0

(2)} and the polynomial is: 
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Likewise, the fitting error can be calculated by the 
similar expression: 
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• The K-means is used to classify the error vector 

{ek
(2)} and rejected the outliers set Z1

(1). The above 
process is repeated until the fitting parameters are 
stable. 

 
The outliers clustering algorithm eventually cluster 

the error set E into two classes E = {Ek} = Z1 ∪ Z2 where the large error Z1 is mapped into the frequency 
response outliers and must be rejected, the small error 
Z2

(1) is mapped into the reasonable frequency response 
points and to be kept. 

In engineering analysis, the parameter estimation 
method using Levy algorithm based on outliers 
clustering of frequency response can not only 
effectively detect and eliminate the outliers but also fit 
the reasonable frequency response points to identify the 
parameters. It reduces the influence of noise and dense 
modes and makes the system analysis more accurate 
and reliable. The next, this algorithm is applied to 
different modes of vibration simulation signal to verify 
the effectiveness of the algorithm. Experiments also 
show that this algorithm can get good fitting effect 
under strong noise, dense modes and high ratio of peak. 

 
ILLUSTRATIVE EXAMPLES 

 
In order to test the algorithm this study proposed, 

the following viscous damper system simulation signals 
are used: 
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where, R is the white Gaussian noise and segam is its 
intensity. The noise is stacked on the signals S1 S2 to 
evaluate the resistance performance of noise. δi, i = 1, 2, 
3

 
is damping coefficients. To turn out the effectiveness 

of the algorithm in this study, the fixed-two mode 
frequency signal S1 is used. Likely, ƒ in S2 is a variable 
to assess the influence of different mode frequency 
space. Sampling number is N = 512. 

In order to evaluate the extraction accuracy of 
mode parameters, this study uses the evaluation 
function defined in literature (Ye and Wang, 2009). 
Suppose that the Theoretical mode parameters are {rk, 
ξk, ωdk| k = 1,…, M}. The Fitting mode parameters are 
{rk

*, ξk
*, ωdk

*| k = 1,…, M}. So the average relative 
error is ε, that is: 
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Several examples of using the outliers clustering fitting 
algorithm are given here. 
 
• For the bridge signal's characteristic (rapid 

decreases, low natural frequency, dense mode), the 
frequencies in S1 are given ƒ1 = 5 Hz, ƒ2 = 8 Hz, ƒ3 
= 12 Hz so the number of sampling can be obtained 

by nk = 
ƒ�

ƒ�
 gN respectively, n1 = 25, n2 = 40, n3 = 60. 

And damping coefficients are δ1 = 1.5, δ2 = δ3 = 1.8 
the damping ratio is ξ1 = 0.0477, ξ2 = 0.0358, ξ3 = 

0.0239
 
by ξk = 

	�


��
  where ωnd 

is natural frequency. 

All of these mode parameters are ideal and noise 
free. When the simulation experiment is done, the 
noise must be added. In this experiment, two 
algorithms are compared by using MATLAB and 
the fitting figure is as Fig. 1. 
Figure 1 shows that in different noise intensity the 
fitting result of the improved algorithm and the 
Levy algorithm respectively. The Blue curve (H + 
R) stands for an adding noise signal spectrum 
curve (H is the simulation signal, R is noise signal), 
black curve for the algorithm this study proposed 
and the red dashed line for Levy fitting result. 
Table 1 is the fitting value of parameters. 
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Table 1: Two methods fitting parameters under different noise intensity 
 SNR (dB) Natural frequency (Hz) Damping ratio Fitting error (%) 
Improved algorithm 4.8159 F1 = 4.9757, F2 = 8.0356, F3 = 12.0293 ξ1 = 0.0475, ξ2 = 0.0356, ξ3 = 0.0220 0.0455 

1.8785 F1 = 4.9635, F2 = 8.0755, F3 = 11.9973 ξ1 = 0.0481, ξ2 = 0.0364, ξ3 = 0.0240 0.1010 
Levy algorithm 4.8159 F1 = 4.9401, F2 = 7.8962, F3 = 11.9962 ξ1 = 0.0385, ξ2 = 0.0368, ξ3 = 0.0261 0.3381 

1.8785 F1 = 36.3484, F2 = 8.0138, F3 = 12.1775 ξ1 = 0.0116, ξ2 = 0.0286, ξ3 = 0.0360 7.0846 
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Fig. 1: The two algorithms in different noise intensity 
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From the Fig. 1, the algorithm in this study and 
Levy algorithm can both identify the two modes 
when the simulation signals SNR = 4.8159 dB and 
fitting errors are 0.0455 and 0.3381, respectively. 
But when SNR = 1.8785 dB, the noise is so strong 
that the frequency ƒ1 = 5 Hz

 
is almost covered by 

noise, levy algorithm's fitting error is absolutely 
larger than the improved algorithm's. To be 
Specific, using the outliers cluster fitting method 
can effectively identify two mode parameters and 
the fitting error is 0.1010. Furthermore, this 
algorithm's fitting error keeps within 0.2 when 
signal strength rises. This experiment results show 
the algorithm can still precisely identify mode 
parameters in strong noise cases. 

• The influence of Different frequency space is 
verified between the improved algorithm and Levy 
method. Like S1, the signal S2 is  given  that  ƒ1 = 5 
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Fig. 3: Average relative error comparison between two 

algorithms in different SNR 
 

Hz δ1 = 1.5, δ2 = 1.8 segam = 0.02 and the variable 
ƒ2 'range is 6-10. For each ƒ2 we calculate the 
parameters identification of relative error (ε) by 
using the improved algorithm and levy algorithm. 

 
Figure 2 shows that the algorithm this study put 

forward performs better than Levy algorithm and its 
mode parameter identification average relative error is 
less than 0.6. The Fig. 2 also suggests that the 
parameter identification average relative error when 
dealing with two intensive modes is much bigger than 
two far apart modes. So this experiment turns out that 
this algorithm performs better in identifying the dense 
mode parameters than Levy algorithm. Next, the 
accuracy of the algorithm under different SNR is 
evaluated. 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(5): 802-806, 2013 

 

806 

We still use S2 
to do the test. Suppose that the 

frequency ƒ2 = 8 Hz is regular but the noise intensity 
changes. Then the average relative error is calculated in 
different SNR and the result is in Fig. 3 shows: 

In Fig. 3, the noise intensity (segam) changes and 
for each (segam) value, we randomly generated 500 
different noise signal to add to the signal S2 

and 
calculate the mode parameters average relative error. 
From the graph, when the SNR >10 dB, both of the two 
algorithm's parameters identification average relative 
error is less than 0.2. However, When the SNR is 
between 5 and 10 dB, the improved algorithm's 
parameters identification average relative error is more 
accurate than the Levy algorithm's. When SNR <5 dB, 
Levy algorithm identification error is larger, but the 
algorithm does not change obviously, still keeping in 
the range 0.2.  

In a word, these above simulation experiments 
have proved that the improved Levy algorithm based on 
outliers clustering in this study is more accurate to 
identify dense mode parameters than the existing Levy 
algorithm and has stronger ability to resist the noise. 

 
CONCLUSION 

 
This study has presented here a new mode 

parameters identification algorithm using the spectrum 
of clustering fitting method. The outliers are eliminated 
by the K-means clustering algorithm and the rest of the 
available frequency response points are used to estimate 
the mode parameters. Plenty of simulation experiments 
show this multi-mode fitting method cannot only obtain 
accurate mode parameters value but also has good 
interference rejection. It also turns out that this 
algorithm performs better in different frequency space 
than Levy algorithm. It can effectively identify two 
main frequencies being close. And in different noise 
intensity, the algorithm also performs well. This study 
proves that this algorithm has the advantage of high 
stability, low noise sensitivity. 
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