
Research Journal of Applied Sciences, Engineering and Technology 6(3): 437-441, 2013

DOI:10.19026/rjaset.6.4098

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Organization Corp.

Submitted: August 17, 2012 Accepted: September 27, 2012 Published: June 15, 2013

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
437

Research Article
An Approach of System Similarity Measurement Based on Segmented-Digital-Fingerprint

Liao Gen-Wei
Faculty of Forensic Science, East China University of Political Science and Law, Shanghai, PRC

Abstract: Analysis and identification on software infringement, which is a time-consuming and complicated work,
is always done in lab. However, to check whether suspect software infringes upon other’s copyright quickly is the
necessity in software infringement cases. An approach of copyright checking based on digital fingerprint is provided
in this study, which computes system similarity through segmenting files to be compared, searching boundaries by
sliding window and finding the same digital fingerprints of data blocks with simple and complex hash. The approach
fits for finding preliminary evidences on the law enforcement spot of software infringement case, thus it has the
attributes of efficiency and reliability.

Keywords: Compute forensics, digital fingerprint, software infringement, system similarity

INTRODUCTION

With the development of science technology, the

emergence and application of a variety of new software
and programs, has greatly ameliorated people's working
practices and living conditions. At the same time, some
enterprises and individuals have adventured to acquire
illegal interests by stealing and plagiarizing digital
products with legal software copyright. They
sometimes use or sale the other’s software as their own
only by simply altering. It is important to find and
identify the software infringement as such. And the key
of the judgment of software copyright infringement is
to compare the suspected software to the software with
copyright and then judge whether they are “substantial
similarity”. What’s more, the standard of “substantial
similarity” is not the same at different times or different
counties. The procedure of software infringement
identification is always complex and time-consuming,
for example, in USA, the way to judge the “substantial
similarity” of two software product is often “the Altai
test”, which contains three steps of abstraction,
filtration and comparison. The judicial identification or
forensic technology about that is obviously a very
complex process, which can not complete at a short
time. However, in law enforcement, only when the
preliminary evidences have found at the scene, can the
suspected software or computer be copied or seized and
the subsequent analysis and identification be
performed.

In the law enforcement, the preliminary evidences
about software infringement are often acquired
according to the running interface of software, or file
name, or MD5 hash value (also called the digital
fingerprint). These methods have low reliability, easily
lead to misjudgment, sometimes even result in illegal

detention and disadvantageous social consequences.
Therefore, it is necessary to study and develop the
quick and comparatively accurate detecting tools of
infringing software.

In the field of computer science, there are two
different ways to judge the similarity of software code.
One is the attribute counting method; the other is the
structure measurement method. The attribute counting
method measures the program operand, the program
operator and others properties which are available for
gathering statistics without considering the program
structure. Halstead (1977) the structure measurement
method measures the system similarity according to the
internal structure of the program. Ottenstein (1976) and
Parker and Hamblen (1989) both methods are more
suitable for assisted detection of forensic computer
programs, or automatically detection for network
program which are often time-consuming. This study
presents a new idea different from the above detection
methods. The new method breaks the software into data
blocks and calculates the block’s digital fingerprint; at
the same time, it calculates the characteristic value for
each data block from its head. When comparing two
program, characteristic value of each data block of
them are compared and the block fingerprint will be
calculated and compared only when two blocks have
same characteristic values. Finally, we calculate the
similarity according to the number of same block
fingerprints.

New ideas for system similarity detection: In law

enforcement, to check the software infringement at the

scene is to compare the suspect software with the legal

software. The software comparison is actually to check

one file or a number of files related to the software. A

file can be viewed as a string sequence composed of

Res. J. Appl. Sci. Eng. Technol., 6(3): 437-441, 2013

438

bytes or bits (binary digits). Thus, to compare the legal

software (software with software copyright, in the

following discussion, we simplified the software to

program file A) with suspect software (software may

illegally infringe others’ copyright. In the following

discussion, we simplified the software to program file

B), the simplest way is to directly compare the contents

of program file A and program file B. If the program

file size is very small, the direct content comparison

method is fast, efficient, accurate and practical.

When the size of program file A and/or file B is

large, the direct content comparison method is time-

consuming, inefficient and not practical. We can also

indirectly compare file A and file B by their digital

fingerprints which are generated by using a one-way

hash function (such as message digest algorithm MD5,

Secure Hash Algorithm SHA-1 (Lu, 2003) to calculate

the program file A and file B. if the file A’s digital

fingerprint and file B’s digital fingerprint are identical,

it can be concluded that the program files A and B are

exactly the same. When the size of program file A

and/or file B is large, the indirect comparison of digital

fingerprint turns to be more practical than the direct

content comparison method. It can quickly and

accurately determine whether the two program files A

and B are identical or not.

However, the indirect comparison method is only

suitable for the content exactly same files. If the

program file A and B are partly similar, the indirect

comparison method can not be applied to them, because

the fingerprints generated by one-way hash function are

absolutely different when program files A and B are

only slightly different.

In order to accurately detect the similarity of files

A and B by the greatest extent, the above method of

indirect comparison need to be improved. If we split up

the file into several fixed-size data blocks and calculate

each data block’s digital fingerprint by one-way hash

function, which formed the file’s new fingerprint, we

measure the similarity according to the comparison

results of the file fingerprints of A’s data blocks and file

B’s data blocks. This method improved by splitting up

the file into data blocks can find the same content data

block and detect the files with slightly different. In

order to further improve the efficiency of the method,

we can use two hash functions with different

complexity to calculate hash values of the data blocks

of file. The strong hash function can generate strong

hash value which is more complex and time-

consuming, whereas the weak hash function can

generate weak hash value which is simper and faster.

The further improved method calculated the strong hash

value of a data block only when the two data blocks’

weak hash values are calculated and identical. It can

quickly find the data blocks with potentially same

content by firstly using the weak hash value comparison

and then it can be determined whether the data blocks

are identical by strong hash value comparison. This

improvement ensures not only the efficiency but also

the accuracy of detection.
However, one of the defects of the above method

to split up the file into fixed-size data is that the
comparison of data blocks is based on fixed and
invariable boundaries. Any operation to file, such as
insertion, deletion, replacement, transposition, etc., may
affect comparison accuracy of the data blocks after the
operation point, because it is little probability that the
size of data changes is exactly equal to one or multiple
of the size of data block. To solve this problem, we
need to split up the detected file (the suspect file, the
program file B) into data blocks with flexible variable
boundaries so as to reduce the effects of similarity
detection caused by file content operation as low as
possible or to zero.

In order to determine the reasonable boundary of
each block, we can select a certain string (characteristic
value) as the boundary of the data block and then split
up the file into different data blocks according to the
string. When we find the boundary of a data block we
can calculate their weak and strong hash value or
fingerprints. Then we can find those data blocks that
have potentially same content according to the weak
hash value comparison and can determine whether the
data blocks are identical by strong hash value
comparison.

The performance and accuracy of the above method
which detects the similarity according to comparison of
the weak and strong hash values of variable data blocks
are subject to the reasonability of the characteristic
value size selection. If the size of the characteristic
value is reasonable, the different boundaries of the data
blocks separated by it will be relatively appropriate and
it will enhance the possibility to discover the similar
data blocks. Otherwise, the data blocks separated by it
may be too small or too large and the similarity
detection efficiency will be low, the accuracy will be
poor.

If the detection approach takes the advantages of the
fixed-boundaries data block fingerprint and the
variable-boundaries data block fingerprint in above
detection methods, it will ensure not only the accuracy
but also the efficiency of the detection approach.

In the approach, when we say two data blocks are
identical, it must meet the following conditions
simultaneously:

• The sizes of the two data blocks are identical

• The contents of the two data blocks at the same
location are identical;

• The weak fingerprints (weak hash values) of the
two data blocks are identical

• The strong fingerprints (strong hash values) of the
two data blocks are identical

The content and size of the legal software (program

file A) are relatively fixed and known in advance; the

Res. J. Appl. Sci. Eng. Technol., 6(3): 437-441, 2013

439

suspected software (program file B) have been changed

from the legal software by many file operation such as

insertion, deletion, replacement, transposition, etc.

Therefore, program file A can be divided into a

number of data blocks according to a fixed-size. Then

several bytes or bits of the head of each data block are

extracted as their characteristic value. When analyzing

the file B, we use the characteristic value and a window

(the data block size of file A) to determine the variable

boundary of the program file B. then we compare the

data block with file A’s from weak to strong hash value

(firstly, the size of data blocks must be identical,

secondly, the weak fingerprints of the two data blocks

calculated is equal; finally, to calculate the strong

fingerprints of the two data blocks).

Combining with fixed-boundaries data block

fingerprint detection method and variable boundary

data block fingerprint detection method, selecting the

most appropriate size of data block and size of

characteristic value, making the best of the identical

conditions of data blocks, the possible number of

similar data blocks can be counted efficiently and

accurately.

The detail description of the approach was

provided as follows:

To divide the legal software into blocks according to

the appropriate fixed-size: The size and content of the

legal software (program file A) is fixed and known in

advance, which need pre-process at first.

Firstly, the program file A (supposed the file size is

Size A) is divided into N data blocks in accordance

with an appropriate fixed size BLOCKSIZE: Block A

[0], Block A [1],..., Block A [N-1]; the size of the last

data block may be less than BLOCKSIZE.

The number of data blocks is:

N = ⌈SizeA / BLOCKSIZE⌉

The set of all data blocks is:

SetBlockA = {BlockA[0],BlockA[1],...,BlockA[N-1]}

Secondly, extracting and saving the first

WINDOWSIZE bytes of each block as its characteristic

value to:

TriggerValuesA[0],TriggerValuesA[1],...,TriggerV

aluesA[N-1]

The set of all characteristic values is:

SetTriggerValuesA={TriggerValuesA[0]TriggerVa

luesA[1],...,TriggerValuesA[N-1]}

Thirdly, generating the weak fingerprint and strong

fingerprint of each data with a simple hash function

(such as Alder32 checksum) and a complex hash

function (such as message digest algorithm MD5 or

Secure Hash Algorithm SHA1) respectively to:

SimpleHashA[0],SimpleHashA[1],...,

Simple HashA[N-1];

ComplexHashA[0],ComplexHashA[1]...,Complex

HashA[N-1]

The set of weak fingerprints is:

SetSimpleHashA={SimpleHashA[0],...,

SimpleHashA[N-1]}

The set of strong fingerprint is:

SetComplexHashA={

ComplexHashA[0],ComplexHashA[1],…,ComplexHas

hA[N-1]}

To divide the suspect software into blocks in

accordance with characteristic value：：：：In order to

find the similar data block of the suspect software, the

dynamic boundary of the data block shall be firstly

determined. For this purpose, a rolling window with the

size WINDOWSIZE (starting position of the window is

the head of the program file B) is defined for file B. a

data block boundary is found when the data content of

the window (defined as Current Window Text) is

equivalent to one value in the set of all characteristic

values.

When the content of the rolling window is

equivalent to any element in the set of characteristic

values (Current Window Text ∈ Set Trigger Values A),

the location of the rolling window is recorded and

saved to Positions B [j] and the content of rolling

window may be recorded to Trigger Values B [j]

(whether the data is saved or not is optional). Then

rolling the window forward the WINDOWSIZE,

continues to compare the content of the new window

with elements in characteristic value set to find the

boundary of the new data block.

When the content of the rolling window is not

equivalent to any element in the set of characteristic

values (Current Window Text ∉ Set Trigger Values A),

rolls the window forward a byte and continues to

compare the content of the new window with elements

in characteristic value set to find the boundary of the

new data block.

The detecting program will continue to do above

procedure until the rolling window reaches the end of

file B.

After the completion of data block boundary

searching of file B, the program file B can also be

viewed as a continuous data block (M is the number of

data blocks of program file B after splitting). The

boundary of the data blocks are separated by a series of

characteristic values, which may be partly equivalent to

the characteristic values of the legal software (program

file A). The separated data block can be defined as

follows:

Block B [0], Block B [1], …, Block B [M-1]

In addition, an array of the position of

the characteristic vale and an array of data content

between characteristic values can be defined as follows:

Positions B [0], Positions B [1], …, Positions B[M-1]

Trigger Values B [0], Trigger Values B [1],…,

Trigger Values B[M-1]

Res. J. Appl. Sci. Eng. Technol., 6(3): 437-441, 2013

440

Calculating the number of the same data blocks

between the legal software and the suspect

software：：：：Pointer i and j (at the beginning, i = 0, j =

0), respectively, point to the location Positions B [i] and

the location Positions B [j] of the suspect software

(program file B). The data block between Positions B

[i] (start position) and Positions B [j] (end position) is

the current data block Current Block B, the current data

block size |Current Block B| is equal to (Positions B [j]

- Positions B [i]).

According to the different occasions that the size of

the current data block |Current Block B| is greater than,

equal to or less than the fixed size BLOCKSIZE, the

main task of this stage is to do as follows:

A-1: If the current data block size

(|CurrentBlockB|) is smaller than the fixed size

BLOCKSIZE (|CurrentBlockB| < BLOCKSIZE), move

the pointer at the end of the data block to the location of

next characteristic value (j = j +1), then continue to

compare the size of the data block;

A-2: If the current data block size

(|CurrentBlockB|) is equal to the size BLOCKSIZE

(|CurrentBlockB| = BLOCKSIZE), whether the current

data block Current Block B is identical to any one data

block of the legal program file A (Current Block B ∈

Set Block A) or not is determined according to the two

different situations A-2-1 and A-2-2:

A-2-1: If the current data block is identical to any

one data block of file A, the number of similarity data

block are increased by one. Then move the pointer at

the beginning of the data block to the end data block (i

= j) and move the other pointer at the end of the data

block to the location of the next characteristic value (j =

i+1);

A-2-2: If the current data block is not equivalent to

any one data block of file A, move the pointer from the

beginning of the data block to the next location (i = i+1)

and move the other pointer from the end of the data

block to the next location of the former pointer (j = i+1)

and then continue to compare the size of the data block;

A-3: If the current data block size |CurrentBlockB|

is larger than BLOCKSIZE (|CurrentBlockB|>

BLOCKSIZE), the BLOCKSIZE of CurrentBlockB

extracted (Current Block B = Sub String (sizeof(

BLOCKSIZE))), whether the new current data block

Current Block B is identical to any one data block of

the legal program file A (Current Block B ∈ Set Block

A) or not is determined according to the two different

situations as follows:

A-3-1: If the current data block is identical to any

one data block of file A, the number of similarity data

block will be added to one. Then move the pointer from

the beginning of the data block to the end data block (i

= j) and move the other pointer from the end of the data

block to the location of the next characteristic value (j =

i+1);

A-3-2: If the current data block is not equivalent to

any one data block of file A, move the pointer from the

beginning of the data block to the next location (i = i+1)

and then continue to compare the size of the data block;

The above operation continues until the pointers

reach the end of the program file B.

When determine whether the two data blocks are

identical, procedure above firstly generates weak

fingerprint with simple hash function and compares two

data blocks’ weak fingerprints, which can quickly find

those different data blocks. And it continues to generate

strong fingerprint with complex hash function and

compares their strong fingerprints only when their weak

fingerprint are the same.

System similarity calculation: The common method

of code similarity measurement is the longest common

subsequence method (Wang, 2007), which is relatively

complex. The similarity between a legal software and

suspect software can be defined as the percentage of the

identical data blocks (Common Blocks).

Assuming the size of the suspect software is Size

B, the fix-size of data block to split the legal software is

BLOCKSIZE. Then in theory, the number of

BLOCKSIZE data blocks that the suspect software can

be divided into is: Theory Blocks B = [Size

B/BLOCKSIZE].

Similarity between a legal software and suspect

software is:

Similarity = (CommonBlocks/TheoryBlocksB) *100%

Pseudo code of the detecting approach:

#define BLOCKSIZE 512KB;

#define WINDOWSIZE 8KB;

for (int i=0; i<BlocksA; i++) {

TriggerValuesA[i] = the first WINDOWSIZE bytes

of the i-th data block of file A;

// the length of data block of file A is fixed t

BLOCKSIZE,

// except to the last data block

CurrentBlockA = the i-th data block of file A;

SimpleHashA[i] = SimpleHash(CurrentBlockA);

ComplexHash[i] = ComplexHash(CurrentBlockA)

}

ActualBlocksB = 0;

for (int j=0; j<SizeB;) {

HeadB = the WINDOWSIZE bytes beginning from

the position j;

if (HeadB ∈TriggerValuesA) {

PositionB[ActualBlocksB]=j; // record the position

j

TriggerValuesB[ActualBlocksB]=HeadB; // record

the characteristic value

ActualBlocksB = ActualBlocksB + 1;

Res. J. Appl. Sci. Eng. Technol., 6(3): 437-441, 2013

441

j = j + WINDOWSIZE;

} else {j = j + 1;}

}

CommonBlocks=0;

for (int i=0; i<ActualBlocksB;)

for (int j=i+1; j<ActualBlocksB;) {

CurrentBlockSize = (PositionB[j] - PositionB[i]);

if (CurrentBlockSize == BLOCKSIZE) {

CurrentBlockB = data block from Positions[i] to

PositionsB[j] of file B;

SimpleHashB = SimpleHash(CurrentBlockB);

if (SimpleHashB ∈ SimpleHashA) {

ComplexHashB = ComplexHash (CurrentBlockB);

if (ComplexHashB ∈ ComplexHashA){

CommonBlocks= CommonBlocks+1;

i=j;

j++;

}

}

i ++; j++;

}else if (CurrentBlockSize > BLOCKSIZE) {

CurrentBlockB = data block from Positions[i] to

PositionsB[i+BLOCKSIZE] of file B;

SimpleHashB = SimpleHash(CurrentBlockB);

if (SimpleHashB ∈ SimpleHashA) {

ComplexHashB = ComplexHash (CurrentBlockB);

if (ComplexHashB ∈ ComplexHashA){

CommonBlocks= CommonBlocks+1;

i=j;

j++;

}

}

i++;

} else{

// CurrentBlockSize < BLOCKSIZE

// continue;

j++;

}

} //end of internal for

} //end of first for

Similarity = (CommonBlocks / ActualBlocksB) *

100%

CONCLUSION

The approach provided in this study, by taking the

advantages of the method of digital fingerprint

detecting based on fix-size segment and the variable

boundary splitting, can rapidly, efficiently and

accurately detect the identical data blocks and calculate

the similarity when the data block size and

characteristic value are reasonable. The approach

makes use of identical conditions of data blocks,

applies the simple and complicated fingerprints based

on hash functions and improves the accuracy and

efficiency of similarity detecting. Thus it is particularly

suitable for law enforcement.

ACKNOWLEDGMENT

This study is supported in part by Humanity and

Social Science Youth Foundation of Ministry of

Education of China (No. 11YJCZH175) and Scientific

Research Innovation Program of Shanghai Municipal

Education Commission (No. 10YS152).

REFERENCES

Halstead, M.H., 1977. Elements of Software Science.

Elsevier, North-Holland, New York, USA.

Lu, K.D., 2003. Computer Cryptography: Data Privacy

and Security of the Computer Network. 3rd Edn.,

Tsinghua University Press, Beijing, China.

Ottenstein, K.J., 1976. An algorithmic approach to the

detection and prevention of plagiarism. ACM

Sigcse Bull., 8(4): 30-41.

Parker, A. and J.O. Hamblen, 1989. Computer

algorithms for plagiarism detection. IEEE T. Educ.,

32(2): 94-99.

Wang, H., 2007. Subsequence counting as a measure of

similarity for sequences. Int. J. Pattern Recogn.,

21(4): 745-758.

