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Abstract: After detailed reviews of the exact mode field distribution of Single Mode Step-Index (SMSI) fibers and 
relevant definitions of Mode Field Diameter (MFD) and a careful comparison between them, a new approximate 
equation to calculate the mode field diameter is presented in this study. This equation is more accurate and flexible 
to determine MFD of Peterman I than Gaussian spot size with that of 1/e and Marcuse empirical equation, and 
what’s more, have a analytic solution of its inverse problem that can be used to directly calculate normalized 
frequency, Numerical Aperture (NA) and the cut-off wavelength. In order to evaluate the new equation, a beam 
propagation method that simulates the distribution of fundamental mode field is adopted. Numerical simulation 
results indicate that the new equation is in good agreement with the theoretical predictions. The new approximation 
function of MFD is a high level functional equation for the theoretical study of the characteristics of the single-mode 
fibers and construction of new special fibers. 
 
Keywords: Beam propagation method, mode field diameter, numerical aperture, single mode fiber  

 
INTRODUCTION 

 
The MFD is an important transmission 

characteristic of single-mode step-index optical fibers, 
which controls substantial splice loss, disperses loss, 
and micro bending loss that is sensitive to fiber bend 
(Li et al., 2009; Chen, 2007; Artiglia et al., 1989). The 
basic approaches to measure MFD are Transmitted 
Near Field (TNF), Variable Aperture (VA), Knife Edge 
(KE), and Far-Field (FF) technologies recommended by 
CCITT  and  IEC  international  committees (N .Gisin 
et al., 1993; Marcuse, 1977). The standard deviation of 
TNF to measure conventional fibers is typically 0.2-
0.4µm (Gloge, 1971). The Numerical Aperture (NA), 
related to the ability of optical fibers to receive light, is 
another important characteristic of single-mode fibers 
and is determined by the ratio of Refractive Index (RI) 
of the core to RI of cladding. TNF and FF can be used 
to measure NA and RI profile as well. The deviation of 
RI, which is  obtained  for  step-index  fibers by Gisin 
et al. (1993) and Peterman (1976), is less than 2.0×10-4. 
Theoretically, the distribution of fundamental mode 
field LP01 determines the MFD of Single-Mode Fibers 
(SMF) of various sizes and many equations have been 
proposed to reveal their relations, but description of 
MFD with the RI profile in a simply and accurate way 
is still very difficult. An empirical equation of 
calculating MFD of single mode fibers, proposed by 
Marcuse (1977), was ever used to calculate Gaussian 

beam waist and to determine NA and cut-off 
wavelength (Gambling and Matsµmura, 1977). 
However, Marcuse (1977) empirical equation is 
arbitrary and inaccuracy for theoretical analysis and too 
complicated to obtain analytic solutions for inverse 
problem. Therefore, a more appropriate and flexible 
model is need. 

This study attempted to establish a new simply 
analytic equation between the MFD and NA, which 
confirms the corresponding optical propagation theory. 
Firstly, we reviewed model field distribution and 3 
MFD definitions used for circularly symmetric fibers. 
Secondly, we made a careful comparison between three 
definitions by numerical calculation; thirdly, based on 
the above results, we constructed a new exponent 
equation and further presented an analytic solution for 
the inverse problem. Last, we used Beam Propagation 
Method (BPM) to compute the mode field distribution 
of SMSI fibers and MFD of 2 kinds of definitions, 
Petermann I and 1/e. The simulation showed that the 
exponent model had good level of fitting the Petermann 
I diameter and the deviation of that was less than 1% in 
the range of 1.5≤V≤2.404.  

 
NUMERICAL APERTURE OF FIBERS 

 
SMSI fibers, commonly used in telecom, are 

typically circular symmetric waveguide. NA of them is 
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given by , where n1 and n2 are the 
refractive indices of the core and the cladding, 
respectively. Those fibers, with the relative refractive 
index difference ∆ = (n1-n2)/n1<<1, typically ∆ = 
0.003~0.008, are weakly guiding optical waveguides. 
Normalized frequency of them is defined as:  

 
aNAV

λ
π2

=                                                             (1)              

 
where, λ is the wavelength of a light in vacuum and the 
parameter a is the radius of the core. According to the 
refractive index profile of those fibers, cut-off 
wavelength λc is given by: 
 

aNAaNAc 613.2
4048.2
2

==
πλ                                      (2)        

 
NA is an important parameter of fibers, as it directly 
determines propagation characteristic parameters, i.e., 
cut-off wavelength and model field diameter. However, 
NA of commercial fibers, measured by experiments, is 
slightly large to make theoretical analysis because of 
approximate theoretical model and Rayleigh-Romman 
scattering of fiber end. For example, core diameter and 
NA of a kind of commercial fiber SMF-28 are 
respectively 8.2 and 0.14µm according to its preference, 
and thus the normalized frequency V, calculated by 
Eq.(1) to 2.753, is significantly larger than cut-off 
frequency of a single-mode fiber, V = 2.4082. 

It is known that the RI profiles of a fiber and 
wavelength of incident light co-determine mode field 
distribution of an ideal single mode fiber and its mode 
field diameter. Marcuse (1977) ever gave an empirical 
formula describing the changes of wm with V, which is:  

 
62/3 /879.2/619.165.0 VV

a
wm ++≈                              (3) 

 
However, the Marcuse empirical equation is not 

too accuracy to calculate mode field diameter on basis 
of V and NA of a fiber, and it is still difficult to obtain 
value of NA from a measured or known mode field 
diameter. Hence, a more accurate and appropriate 
equation is need to rebuild relations of them. 

 
MODE FIELD DISTRIBUTION OF SMSI FIBERS 
 

In practical communication application, only LP01 
mode exists in ideal single mode fibers to realize a 
long-distance transmission.  Considering about y 
polarization in Cartesian coordinates, 2 transverse 
components Ey, Ex and a longitude component Ez of the 
LP01 mode, presented ever by Gloge (1971) and Hussey 
and Martinez (1985) are: 
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0≈xE                                                                (6) 

 
In the above, A and B are 2 undetermined 

amplitude constants, and parameter y is a distance away 
from the centre of the core, J0 , J1 are Bessel functions, 
and K0 and K1 are the modified Hankel functions. 

When the boundary condition y = a is imposed on the 
light propagation, the Eigen value equation. of SMSI 
fibers is determined by: 
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where, the parameter   relates to the 
propagation constant β in the fiber core, and the 
parameter     is written similarly as 
U with constant β in the fiber cladding. W and U are 
related to the V number by the following equation: 
 

222 WUV +=                                                          (8) 
 
Depending on the Eigen value equation of an ideal 

step-index fiber and its boundary condition, the 
frequency V number is limited in the range of 
0≤V≤2.4048 to ensure that only LP01 mode transmits in 
the fiber for communication applications.  

Practically, the fundamental mode of single-mode 
fibers is often approximated by a Gaussian distribution 
and the transverse electric field is simplified to: 
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where,  and wg is the spot size of Gaussian 

beam waist, which determined by: 
  

)(
)()(2

0

1
0 WK

WK
U
VaUJwg =                                        (10) 



 
 

Res. J. Appl. Sci. Eng. Technol., 6(3): 382-386, 2013 
 

384 

 
 

(a)                                 (b) 
 

 
 

(c)                                            (d) 
 
Fig. 1: Deviations of the electric field E distribution between 

the exact solution and Gaussian approximation with 
different V number, V = 2.40   and V = 1.15, 
respectively 

 
Based on Eq.(4) and (9), the exact distribution and 
Gaussian approximation of electric field of a fiber is  
denoted in Fig. 1 by a numerical compute method, 
where the deviation of field mode distributions of a 
single mode fiber with different V number, V = 1.15 
and V = 2.4. It is clear that the Gaussian distribution has 
a good level to approximate the field E with the max 
error less than 4% when V = 2.40 denoted in Fig. 1a 
and b. Nevertheless when V number decreases to V = 
1.15, Gaussian approximation of the field E is poor and 
the max error of that increases to about 13% in Fig. 1c 
and d. 
 

MODE FIELD DIAMETER CALCULATION 
 

The MFD is a very important parameter of a step-
index fiber and directly determine its propagation 
characteristic. However, the express of mode field 
distribution of a fiber is so complicated and the analytic 
solution for MFD is still difficult to obtain. Several 
kinds of definition of MFD have been proposed for 
mode field in a lot of literatures (Scarmozzino et al., 
2000; Ling, 2011; Hu et al., 2011) and yet those 
definitions are not strict equivalent.  

There are 3 kinds of MFD widely used in practice, 
which are Gaussian beam waist 2wg (also known as 1/e, 

the width of the field when it decreases to 1/e) 8, and 
Petermann I diameter and Petermann II diameter10, 
named as, 2wPI and 2wPII. Marcuse (1977) proposed an 
empirical equation to evaluate the mode field diameter 
as the Gaussian beam waist size based on numerical 
results by Eq.(3), so the Marcuse diameter wm is still an 
approximation of wg. According to the mode field itself, 
Petermann ever proposed two mode field diameter 2wPI 
and 2wPII.  

On the basis of the near mode field, Petermann 
gave the definition of Petermann I diameter 2wPI of a 
fiber as: 
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where, E(r) is the electric field of near mode field.  

Related to far mode field EFF, the mode field 
diameter of the second Petermann 2wPII is: 
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Substituting Eq. (4) to Eq. (11), Gambling deduced 

the following Eq.11: 
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After integrals of Eq. (12), the closed form of wPII 

is obtained12: 
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Although above 2 equations. Which are composed 

of V number and many Bessel functions have exact 
solutions for mode field diameter, it is still complicated 
to calculate MFD by them.  

According to the Eigen value equation of a single 
mode fiber and definitions of MFD, we calculated 
values of different definitions of MFD in the range of 
0.5≤V≤2.4048 by numerical methods, which were 
depicted in Fig. 2. Those real points, plus signs denote 
wPI, wPII respectively, which are obtained by Eq. (13) 
and (14). Similarly, circles and star signs describe wg 
and wm. The differences of other 3 kinds of diameter 
with wPI is shown in Fig. 2b. The wm is most close to 
Peterman  I   diameter,   followed   by   Petermann II. In 
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Fig. 2: wPI/a, wPII/a, wg/a, wm/a about V and their differences 
with wPI/a where wm is most close to wPI, (a) 
Numerical results of many definitions of MFD, (b) 
Differences of them with wPI/a 

 

 
 

Fig. 3: Results of wPI/a, wE/a, wg/a, wm/a and their differences, 
(a) Numerical results of wPI/a, wg/a, wm/a and wE/a, 
(b) differences of wE/a, wg/a, wm/a with wPI/a 

 
short, Fig. 2 shows that the value of those definitions is 
not completely same.  

When 2.4048→V ，according to Eq. (7) and (11), 
the smallest mode field radius is obtained and

10.1/ ≈aw . Based on the points calculated by Eq. (11) 
and numerical method, mode field radius, labeled as wE, 
can be approximated in an exponent form by the Gauss-
Newton fitting method as: 

  

1)
141.2

)412.3(exp(04.172 2
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V

a
wE                          (15) 

 
Figure 3 shows numerical results of the wPI/a and 

wE/a in the range of 1.0<V≤2.4048, and the fitting 
difference of wE with wPI is less than 1% and less than 
that of  wm with  wPI. 

Another significant advantage of Eq. (15) is that 
we can easily obtain its inverse analytic function: 
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awawV E

E
.                 (16) 

 
Using Eq. (16) and Eq. (1), Numerical Aperture is 

rewritten in an analytic form as: 

 
 

Fig. 4: Simulation results of mode field radius with different λ 
when NA = 0.1117, a = 4.1, (a) wE/a, wg/a by 
comparison with wPI/a and that of 1/e, (b) differences 
of wE/a with wPI/a and wg/a with that of 1/e 
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Similarly, the cut-off of a fiber is:  
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4048.2

awVc λ
λλ =               (18) 

 
where, 2wλ is a known MFD correspondent with 
wavelength λ. 
  

SIMULATION OF FIELD MODE DIAMETER 
 

In order to verify Eq. (15), we used the Finite 
Difference Beam Propagation Method (FDBPM) to 
simulate mode field distribution of single-mode step-
index fibers, which is a well-known parabolic or 
paraxial approximation of Helmholtz equation with 
transparent boundary condition and widely used for 
propagation simulation of modeling fiber-optic devices. 
In our experiments, a single-mode step-index fiber was 
used, which is characterized by NA = 0.1117 and 2a = 
8.2 µm, and the wavelength of an incident laser into the 
fiber is 1.3 or 2.0 µm. The mode fields diameters of 
Petermann I are 9.63 and 16.87µm by numerical 
compute methods, while the mode field diameters 
obtained from our exponent approximation are very 
close to that of Petermann I, 9.62 and 16.52µm 
respectively. 

Generally speaking, the wavelength λ of lasers in 
communication is set to [1.2, 2.0], and then number V 
obtained as 1.44≤V≤2.40. Simulation results of 
Petermann I diameter and Gaussian (1/e) are shown in 
Fig. 4.  

We selected intentionally some wavelengths of an 
incident light as listed in the Table 1 and simulated the 
MFD after calculated the V number. Based on Eq. (15), 
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Table 1: Simulated MFD and inverse results of NA for a fiber with NA = 0.1117 and a = 4.1µm 
Λ (µm) V  MFD (wE, µm) MFD (wPI, µm) NA simulated ∆ of NA 
1.2 2.3989 9.094 9.05 0.1127 0.0043 
1.3 2.2135 9.616 9.63 0.1115 0.0002 
1.5 1.9183 11.068 11.07 0.1117 0.0000 
1.6 1.7984 11.978 11.93 0.1120 0.0003 
1.7 1.6927 12.994 12.93 0.1121 0.0004 
1.8 1.5986 14.099 14.07 0.1119 0.0002 
2.0 1.4388 16.520 16.87 0.1102 0.0015 

 
we computed NA and their differences inversely which 
kept very small when those wavelengths below 1.8µm. 

 
CONCLUSION 

 
On the basis of the numerical solution of the mode 

field diameter of Petermann I with normalized 
frequency V number, a new simply equation of MFD 
with parameter V that had a good level of 
approximation in the range of 1.5≤V≤2.40 was 
established by nonlinear numerical fitting methods. 
Since the new approximation equation has a more 
functional form for the theoretical study of the 
characteristics of the single-mode fibers, which is 
adopted to obtain an analytic Eq. about inverse problem 
conveniently, the mode field diameter can be calculated 
directly by the fiber geometric parameters, size of the 
core and refractive index difference, and vice versa. 
Comparison analyses by numerical calculations and 
simulations show that the new equation to evaluate 
Petermann I diameter had a more accuracy than the 
Marcuse diameter and the Gaussian diameter.  
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