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Abstract: Tool wear prediction is a major contributor to the dimensional errors of a work piece in precision 
machining, which plays an important role in industry for higher productivity and product quality. Tool wear 
monitoring is an effective way to predict the tool wear loss in milling process. In this paper, a new bionic prediction 
model is presented based on the generation mechanism of tool wear loss. Different milling conditions are estimated 
as the input variables, tool wear loss is estimated as the output variable, neural network method is proposed to 
establish the mapping relation and ant algorithm is used to train the weights of BP neural networks during tool wear 
modeling. Finally, a real-time tool wear loss estimator is developed based on ant colony alogrithm and experiments 
have been conducted for measuring tool wear based on the estimator in a milling machine. The experimental and 
estimated results are found to be in satisfactory agreement with average error lower than 6%. 
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INTRODUCTION 

 
The demand for machining accuracy has shown a 

pronounced and steady growth in recent years and tool 
wear is of vital importance, as it affects the quality of 
the product and the efficiency of the process. 
Palanisamy et al. (2008) focused on two different 
models, namely, regression mathematical and Artificial 
Neural Network (ANN) models for predicting tool 
wear, because tool wear prediction plays an important 
role in industry for higher productivity and product 
quality. Jacob and Joseph (2005) proposed an artificial-
neural-networks-based in-process tool wear prediction 
(ANN-ITWP) system, the input variables for the 
proposed ANN-ITWP system were feed rate, depth of 
cut from the cutting parameters and the average peak 
force in the y-direction collected online using a 
dynamometer and the system could predict the tool 
wear online with an average error of ±0.037 mm. With 
tool wear there is an increase in cutting forces, which 
leads to a deterioration in process stability, part 
accuracy and surface finish, Choi et al. (2004) observed 
cutting force trends and tool wear effects in ramp cut 
machining as machining progresses. In order to 
maintain product quality and process efficiency, 
machining processes attempt to prevent tool breakage 
by predicting the tool wear. However, tool wears 
changes drastically during individual cutting processes. 
Thus, it often fails to predict the tool wear. As a result, 

the tool may break in-process, damaging the workpiece 
and inducing process inefficiency. Tool wear can be 
predicted either out-of-process or inprocess. The 
traditional method is moving the tool out of the 
machine to check the wear under a microscope, or 
checking the tool wear with other measuring devices, 
such as a charge-coupled device camera, machining has 
to be stopped for the out-of-process tool wear 
monitoring. However, in-process tool wear can be 
predicted during machining processes. Of the two, out-
of-process tool wear monitoring is less promising, in-
process tool monitoring leads to optimum process 
efficiency, but depends on well-selected sensors and 
prediction algorithm.  

Girardin et al. (2010) developed a new method 
using standard transducers available on actual machines 
for a better monitoring of cutting process and analyzed 
instantaneous variations in rotational frequency so as to 
observe milling operation. Finally experimental cutting 
tests were performed on a milling machine, cutting 
forces were acquired through common dynamometer 
and signal from spindle integrated rotary encoder is 
acquired using specific angular-sampling methodology 
and a TCM system was developed based on the 
experimental results. Gregory and Samson (2005) 
found a best logistic regression model for predicting 
whether cutting was taking place or not contains signal 
maximum amplitude, controlling for both feed rate and 
depth  of   cut.  The model explains, within the accuracy  
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of the software tools used, 100% of the variability in 

cutting versus non-cutting measurements (R2 = 1.0000) 

and, for the given data, accurately predicts whether or 

not cutting was taking place for all 27 of the 

measurements. Quiza et al. (2008) presents an 

investigation into predicting tool wear in hard 

machining D2 AISI steel using neural networks and an 

experimental was carried out using ceramic cutting 

tools, finally two models were adjusted to predict tool 

wear for different values of cutting speed, feed and 

time, one of them based on statistical regression and the 

other based on a multilayer perceptron neural network. 

The neural network model has shown better capability 

to make accurate predictions of tool wear under the 

conditions studied. Shahabi and Ratnam (2008) 

developed a vision system using high-resolution CCD 

camera and back-light for the on-line measurement of 

tool wear, an algorithm using Wiener filtering, median 

filtering, morphological operations and thresholding 

was developed to measure the nose wear area of the 

inserts under different machining conditions. Luo 

(2004) analyzed the formation mechanism of tool wear 

and presents a complete solution to calculate wear using 

a ball end cutter for high-speed cutting. An improved 

algorithm and a knowledge-based decision model 

developed to calculate effective tool contact are also 

discussed to help reduce calculation time and improve 

calculation efficiency. The calculation results include 

output form and a 3D wear model showing wear data 

distributed on the tool contour. 

The conclusion can be drawn that contemporary 

research on tool wear prediction is mainly focused on 

different neural networks and regression models. 

However, most of these studies cannot overcome the 

non-linear and time-varying problem of the tool wear 

monitoring. In this paper, a real-time, in-process tool 

wear monitoring system in milling operations is 

developed and ant colony algorithm is proposed for 

training the weights of neural network model, which 

solves the problem of poor convergence and local 

minimum. As machining parameters and force signals 

in milling operations are all used for tool wear 

monitoring, the prediction accuracy of the estimator is 

improved. 

 

EXPERIMENT SETUP 

 

Since milling is one of the most complex 

machining operations, milling process is selceted in this 

study; the tool wear can be formally described by a 

discrete nonlinear relationship: 

 

( ) ),,,,( DfFFFMtT zyx=  

where, M is an unknown function to identify, F�̀, F�̀, 

F�̀ is   the  cutting  force  exerted during  the removal of  

 

 
Fig. 1: The milling machine used in the experiment 

 

 
 
Fig. 2: The structure of the experimental setup 
 

metal chips, D is the radial depth of cut and f is the 

relative feed speed between tool and worktable. 
As shown in Fig. 1, the experiment was 

implemented on a high-precision CNC milling 

machine, which is interfaced with a personal computer 

by an RS-232 communication link. Both feed speed f 

and depth of cut D are collected through the CNC 

control system and cutting force is collected through 

two sensors: dynamometer and proximity sensor. The 

complete experimental setup is shown in Fig. 2 and 

consists of hardware and software setups. 
By monitoring cutting force and controlling cutting 

conditions, the system can predict tool wear and sense 

tool change. The dynamometer and the proximity 

sensor used in the study like an eye to the machine that 

monitors tool wear by observing the change of the 

cutting force. With the sensor integrating a tool wear 

prediction system based on BP neural networks and ant 

colony algorithm (BPN-ACA TWP System, which is 

composed of the BPN-ACA estimator and the personal 

computer) into the experimental system, the machine 

has the capability of interpreting and reacting to data 

from the sensors. In addition, the machining parameters 

are collected from the CNC control system of the 

milling machine. 
The software setup is mainly composed of three 

modules: 
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Fig. 3: The cutting force history of Fx during milling process 

 

• The NC program, which is uploaded to the CNC 

control system, is used for the collecting of the 

milling parameters.  

• The VC-based cutting force collecting sub-

program. This VC-based program allowed the 

BPN-ACA TWP System to collect the cutting force 

signals and proximity signals. Figure 3 shows one 

sample of the cutting force.  

• A BPN-ACA model sub-program, this program 

was integrated with the data collection program to 

reach the purpose of online tool wear monitoring. 

 

During the milling process, the average peak 

cutting force and the machining parameters are sent to 

the BPN-ACA TWP system and the tool wear is 

predicted in-process finally. The structure and the 

testing procedures of the BPN-ACA estimator will be 

discussed in the next section. 

 

TOOL WEAR PREDICTION 

 

Neural network model: Neural networks have good 

performance of nonlinear mapping, which have been 

applied to tool wear monitoring widely in recent years. 

Dong et al. (2006) introduced the application of neural 

networks based on Bayesian inference, the automatic 

relevance determination algorithm for selecting relevant 

features and designing neural estimators for tool wear 

estimation in face-milling processes. Wang et al. (2008) 

designed a novel but simple neural network-based 

generalized optimal estimator for CBN tool wear 

prediction in hard turning, the proposed estimator based 

on a fully forward connected neural network with 

cutting conditions and machining time as the inputs and 

tool flank wear as the output. Tae and Dong (1996) 

introduced an adaptive signal processing scheme that 

uses a low-order autoregressive time series model to 

model the cutting force data for tool wear monitoring 

during face milling, the modelling scheme was 

implemented using an RLS (recursive least square) 

method to update the model parameters adaptively at 

each sampling instant. Godfrey et al. (2008) presented 

an enhanced approach to predictive modeling for 

determining tool-wear in end-milling operations based 

on enhanced-group method of data handling (e-

GMDH). Through in-process acquisition of signals with  

 
 

Fig. 4: Structure of the network 

 
multi-sensor systems, Sick (1998) estimated and 
classified tool wear parameters by means of neural 
networks. 

According to the number of the machining 
parameters affecting tool wear, 3-layer neural network 
is applied to fuse the input variables in this paper. As 
shown in Fig. 4, the network is mainly composed of 
input layer, hidden layer and output layer. There are 5 
machining parameters (Fx, Fy, Fz, D, f) that influence 
the tool wear, which compose input layer of the 
network. T is denoted by the tool wear of the milling 
machine, which composes the output layer of the 
network. The hidden layer is composed of 11 nodes in 
the network. If the neural cell number is small, the 
network does not train well, the training time is long 
and the training accuracy is low. However, large 
number of neural cells result in problems such as 
decreasing of network reliability, excessive training and 
increasing training time, although it brings the high 
training accuracy and strong function at the same time. 
 

Training of the weights: Gradient descent is the main 
way to train the link weights of BP neural network, but 
the poor convergence and undesired local minimum is 
an obstacle. In order to overcome this problem, ant 
colony algorithm is applied to train the link weights of 
the network. Ant colony algorithm is a new bionics 
algorithm derived from the nature, which simulates the 
characteristics of ant colony behavior and is applied to 
the solving process of many optimization problems. 
Such as, Li and Wang (2005) solved the nonlinear 
regression combination model of daily water demand 
forecasting based on neural networks and ant algorithm 
was used to train neural network weights, this approach 
simplifies neural network training and overcomes the 
limitation of BP algorithm. 
 
Theory of ant colony algorithm: Ants are social 
animals and its individual behavior is very simple, but 
the ant colony composed of the individual acts performs 
extremely complex behavior characteristics. For 
example, the ant colony can fulfill feeding, obstacle 
avoidance and other tasks. The research shows that an 
ant communicates with others through pheromone and 
the ant will leave pheromone on the path it pass. 
Finally, the ant will choose the path has higher 
pheromone concentration. 
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Fig. 5: The sketch for the theory of ant colony algorithm 

 

As shown in Fig. 5, there are 2 paths the ant can 

choose in order to reach position D: 

S→S1→M0→D1→D is longer, S→S1→M1→D1→D 

is shorter. When the first ant reaches S1, the probability 

it choose from M0 or M1 is equal. The later ant chooses 

from M0 or M1 according to the pheromone 

concentration on path S1→M0→D1 and S1→M1→D1. 

Because path S1→M1→D1 is shorter, the pheromone 

concentration of which growth faster and the 

probability the ant choose from M1 is higher. With the 

increasing of pheromone on path S1→M1→D1, the 

ants choose this path will be more and more. Finally, all 

ants will choose the path S→S1 →M1→D1→D and the 

optimization of the path is achieved. 

 

Weights training: There are 66 link weights need to 

train in the 3-layer network designed in this paper and 

assume that there are 30 ants in the ant colony. wij (i = 

1,2,…,5, j = 1, 2, …, 11) represents the link weights 

between input layer and neural cell of hidden layer, ∅j 

(1, 2,…, 11) represents the threshold value of neural 

cell in the hidden layer, uj (j =1, 2,…, 11) represents the 

link weights between neural cell of hidden layer and 

output layer, θ represents the threshold value of the 

node in output layer. Sij(t) represents the pheromone 

remained on the path i→j in moment t, sj(t) represents 

the pheromone remained on path j in moment t, which 

are used to simulate the concentration of pheromone ant 

leaved. The link weights of the network are trained 

based on ant colony algorithm as follows: 

 

• When the training begin, 30 ants are allocated to 

different nodes of the input layer, the initial value 

of the pheromone remained on path i→j is defined 

as sij(0), the initial value of the pheromone 

remained on path j is defined as sj(0). 

• wij (Every link weights) compose a class called Lwij 

and uj (Every link weights) compose a class called 

Ruj. For Lwij and Ruj, the ant choose an element 

according to the pheromone concentration ratio of 

the element in the class. The probability of the ant 

choose an element from class Lwij and Ruj is as 

follows: 
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where, pwij(t) represents the probability of the ant 

choosing an element from LWij in moment t, puj(t) 

represents the probability of the ant choosing an 

element from Ruj in moment t, swij(t) represents the 

pheromone value of any one element in Lwij at moment 

t, sRuj(t) represents the pheromone value of any one 
element in Ruj at moment t. Finally, the ant chooses the 

element has the largest selection probability in the class 

as the link weights.  

After the ant finished the choosing of the element, 

the pheromone value of the element is adjusted 

according to the following equations: 
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where, α represents the attenuation degree of the 

pheromone, ∆t represents the time step that the ant need 

to choose an element, ∆
n

ij represents the pheromone 

that the ant n left on path i→j, ∆
n

j  represents the 
pheromone that the ant n  left on path j, the calculation 

rule is as follows: 

 

ijw

n

ij eQs =∆
                                                         (5) 

 

ju

n

j eQs =∆
                                                     (6) 

 

where, Q is a constant, which is used to adjust the 

growth rate of the pheromone. ewij represents the 

maximum sampling error of the neural cells in the 

hidden layer, euj represents the maximum sampling 

error of the neural cells in output layer. 
ll

m

l
OYe −=

=1
max , 

m is the sample number, Yl represents the anticipated 

output of the neural cells, Ol represents the practical 

output of the neural cells. 

 

• According to the adjusting equation, the smaller 

the error, the faster the pheromone grows. When 

the pheromone concentration reached a certain 

value, the error reached its precision and the 

optimized link weights are achieved. If the error 
can not reach the precision demand, the training 

process returns to step (2). 

 

According to the train method based on ant colony 

algorithm, the tool wear model is achieved finally, 

which overcomes the poor convergence and undesired 

local minimum problem of BP neural networks. 
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Table 1: The tool wears results during milling process 

Feed rate (in/min) Depth of cut (in) 

Flank wear (0.5mm) 

tool wear 

6 0.02 0.21 
0.04 0.33 

0.06 0.42 

8 0.02 0.35 
0.04 0.49 

0.06 0.62 

10 0.02 0.38 
0.04 0.51 

0.06 0.73 

12 0.02 0.48 
0.04 0.64 

0.06 0.79 

 

 

 

Fig. 6: The prediction performance of the PPR model 

 

THE EXPERIMENTAL RUNS 
 

In order to test the performance of the PPR model, 
one experiment was carried out. During the experiment, 
the milling machine was set up as the following 
combination of machining parameters: feed rate at 6, 8, 
10, 12 ipm; depth of cut at 0.02, 0.04, 0.06 inch; flank 
wear at 0.45mm. Finally, the tool wear were measured 
out-of-process and the results are shown in Table 1. The 
predicted values of the tool wear were obtained using 
the BPN-ACA model. 

Figure 6 shows the comparison of the measured 
and the predicted values for the test cut. The results 
suggest that the proposed BPN-ACA TWP system 
could reasonably predict tool wear in an online real 
time fashion. 
 

CONCLUSION 
 

In this study, a BPN-ACA TWP system was 
proposed for the prediction of the tool wear on a CNC 
milling machine. The approximation ability of the 
proposed BPN-ACA tool wear monitoring system is 
very well. During the performance test, it can be seen 
that the approximation ability of the estimator is very 
well and the predict error of the model is lower than 
6%. 
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