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Abstract: The optimal test case suite constructing problem is defined thus: given a set of test requirements and a test 
suite that satisfies all test requirements, find a subset of the test suite containing a minimum number of test cases that 
still satisfies all test requirements. Existing methods for solving test case suite generation problem do not guarantee 
that obtained test suite is optimal. In this study, we propose a global optimization and generation method to 
construct optimal combinatorial testing data. Firstly, an encoding mechanism is used to map the combinatorial 
testing problem domain to a binary coding space. After that, an improving ethnic group evolution algorithm is used 
to search the binary coding space in order to find the optimal code schema. Finally, a decoding mechanism is used to 
read out the composition information of combinatorial testing data from the optimal code schema and construct 
optimal test case suite according to it. The simulation results show this method is simple and effective and it has the 
characteristics of less producing test data and time consumption. 
 
Keywords: Combinatorial testing, ethnic group evolution computing model, optimal test case suite, test data 

construction algorithm 
 

INTRODUCTION 
 

The combinatorial software testing is a method for 
designing test suite for the Software Under Test (SUT), 
which generate test case based on a certain 
combinatorial covering criterion. According to the 
difference of covering strength, the combinatorial 
software testing method can be classified into single 
factor covering method, pair wise combinatorial 
covering method and multiple combinatorial covering 
methods. All of above test methods try to make use of as 
little as possible test cases to cover as much as possible 
combinatorial sets. Since the costs of executing test 
cases and managing test suites may often be quite 
significant, a test suite subset that can still satisfy all 
requirements is desirable. Such a subset is known as a 
representative set. Assuming that the cost of executing 
and managing each test case is the same, a 
representative set with a minimum number of test cases 
is desirable and is called an optimal test case suite. As 
mentioned in Harrold et al. (1993), the optimal test case 
suite generation problem is NP-complete and as 
mentioned in Yan and Zhang (2009) it is equivalent to 
solving the set-covering problem. Cohen et al. (2003) 
gives the definition of Covering Array (CA) and Mixed 
level Covering Array (MCA). The difference between 
CA and MCA is that each factors of CA has a same 
value range, but in MCA it can be different. So, the CA 

can be looked upon as a special case of MCA and the 
processing method of them has no difference. 

The conventional construction mechanism makes 
use of some mathematical methods, such as orthogonal 
array (Yan and Zhang, 2008) and heuristic algorithms to 
generate an approximate test suite. For heuristic 
algorithms can generate less test data than mathematical 
construction methods, so many researchers are absorbed 
in using heuristic algorithm to generate combinatorial 
test suite. In such studies, the one-test-at-a-time 
mechanism has gotten a wide application in helping a 
heuristic algorithm to generate test data. Based on this 
mechanism, in once computation, a heuristic algorithm 
will select a best test case ti, which can cover most 
strength t combinations in the uncovering Combination 
Set (CS) and make it join Test Suite (TS). Then, these 
strength t combinations, covered by ti, will be deleted 
from CS. After that, this process will repeat until all of 
strength t combinations are covered. There are two 
studies (Shiba et al., 2004; Zha et al., 2010) provide 
heuristic methods based on one-test-at-a-time 
mechanism to construct combinatorial test data. The 
main steps of this mechanism are as follow: 
 
Algorithm 1: The one-test-at-a-time mechanism: 
 
01: Initializing test suite TS = Ø  
02: Initializing combination set CS according to CA 
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Table 1: A system with four parameters 
 Parameter 

------------------------------------------------------------------- 
Value A B C D 
0 a0 b0 c0 d0 
1 a1 b1 c1 d1 
2 a2 b2 c2 d2 
 
Table 2: An optimal test suite covering all pairs 
ID A B C D 
1 a0 b0 c0 d0 
2 a0 b2 c2 d1 
3 a0 b1 c1 d2 
4 a1 b0 c2 d2 
5 a1 b1 c0 d1 
6 a1 b2 c1 d0 
7 a2 b0 c1 d1 
8 a2 b2 c0 d2 
9 a2 b1 c2 d0 
 
03: While (CS ≠ Ø) 
04: A test case ti has been generated by heuristic 

algorithm and takes it into TS 
05: Updating CS 
06: End While  

 
For the one-test-at-a-time mechanism just can 

generate one test case in once computation process and 
it costs a lot of calculation on matrix transformation 
operation. So, it is likely to take a long time to generate 
whole representative set. Moreover, even to a small-
scale CA, because of the one-test-at-a-time mechanism 
does not have the ability of dynamically adjusting the 
composition of TS in whole construction process. 
Therefore, these heuristic methods can only generate an 
approximate representative set generally. So, heuristic 
methods are difficult to generate an optimal 
combinatorial test suite. For example, there is a CA with 
four factors in Table 1 and 2 is an optimal pair wise 
combinatorial covering test suite of it. If we use one-
test-at-a-time method to generate the combinatorial test 
data, it is likely to select a0b0c0d0, a1b1c1d1 and 
a2b2c2d2 to join TS one by one. Because of both of 
them can cover 6 strength 2 combinations, which suffice 
for the optimality criterion. On this condition, no matter 
whatever test case in left 78 cases has been chosen to 
join TS in next computation cycle, there is at least one 
combination is repetitive with the covered 24 strength 2 
combinations generated by above three test cases. The 
scale of final combinatorial test suite will be more than 
9. And it is no way to generate an optimal combinatorial 
test suite.  

 
THE GLOBAL OPTIMIZATION AND 

GENERATION MECHANISM FOR TEST DATA 

 
In this study, we will translate this problem into a 

code optimization problem and use the Evolution 

Algorithm (EA) to optimize the structure of test data. 
Firstly, we map the combinatorial test problem domain 
to a binary coding space by an encoding process. Then 
an EA has been used to search the coding space in order 
to find the optimal individual. After that, the binary code 
of the optimal individual has been decoded to generate 
combinatorial test suite by a decoding process. The core 
steps of this method as follow: 
 
Algorithm 2: The EA based combinatorial test data 
global optimization and generation mechanism: 
 
01: Mapping the combinatorial test problem domain to 

a binary code space based on encoding process 
02: Initializing the population 
03: While (the termination criteria aren’t reached) 
04: Using an EA to search the coding space 
05: End While 
06: Decoding the code of optimal individual in 

population and generating a combinatorial test suite 
 

As we can see, encoding process, decoding process 
and global searching process are three main processes in 
this mechanism. In this section we will discuss the 
encoding mechanism, decoding mechanism and the 
fitness function. 
 
Encoding mechanism: The aim of encode is to set the 
mapping relationship between the combinatorial test 
problem domain and the binary coding. Firstly, we give 
some basic definitions that are used throughout. 
 
Definition 1: A population of EA consists of an n-tuple 
of strings Ai (i = 0, 1, … n-1) of length L, where the 
genes Γj∈{0, 1}, j = 0, 1, …L-1. 
 
Definition 2: The problem domain of CA (N; t, k, v) is 
Φ and its scale is |Φ| = vk. 
 
Definition 3: Make a serial number for all test cases in 
Φ by ascending order and set the value of serial number 
is from 0 to |Φ|-1. Then we can reference a test case in 
Φ by its serial number, that is tj ∈Φ, j = 0, 1,…, |Φ|-1. 

If we set L = |Φ|, the tj∈Φ can correspond to the 
gene Γj in the binary code by the serial number j. 

Moreover, we set a given, if Γj = 1 then the tj will be 
chosen to join the test suite. According to these 
definitions, the gene structure of Ai can be translated 
into a subset of test case. For example, there are 81 test 
cases in the CA of Table 1. The test case of this CA are 
a0b0c0d0, a0b0c0d1, … and a2b2c2d2 and its serial 
number are 0, 1, … and 80. If the value of genes 2, 16, 
41 and 77 in an individual are 1, then the corresponding 
test cases are t2, t16, t41 and t77. And its details are 
a0b0c0d2, a0b1c2d1, a1b1c1d2 and a2b2c1d2. 
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Table 3: The corresponding relation between the detail of each test 
case and its serial number 

A B C D Serial number j
0 0 0 0 0 
0 0 0 1 1 
0 0 0 2 2 
0 0 1 0 3 
… …. … … … 
2 2 2 2 80 
 
Decoding mechanism: The role of decoding 
mechanism is to parse the coding structure and 
construct the combinatorial test data according to it. In 
order to facilitate the processing, we use a v’s digit 
number to present the details of a test case. 
 
Definition 4: To a covering array CA (N; t, k, v), a test 
case can be expressed as a v’s digit number and each 
digit correspond to a factor in the CA. The value of jth 
factor is kj and the range of each factor is set from 0 to v-
1. The function of translating v’s digit number of test 
case tj into its serial number can be determined by: 
 

 j = kj*v 
j +…+ k1*v

1 + k0*v
0                                (1) 

 
For example, to the CA in Table 1, we set the order 

of v’s digit number from top digit to low digit is 
corresponding to the factor from A to D. Then the 
corresponding relation between the details of each test 
case with 3’s digit number and its serial number with 
ten’s digit is shown in Table 3. The translating function 
is: 
 

 j = Aj*33 + Bj*32 + Cj*31 + Dj*30                       (2) 
 

So, we can make use of an inverse process of 
formula (1) to get the details of each test case according 
to its serial number. The decoding process for a CA with 
k factors is: 
 
Algorithm 3: Decoding mechanism: 
 
01: Get the coding information of Ai 
02: For j = 0 to L 
03: If (Γj == 1) //Decoding and getting the details of tj 
04: dnum = j, m = 0  
05: While (dnum>0) 
06: x = dnum%v;  dnum/ = v 
07: zj,m= x; //x is the value of mth

 factor in tj 
08: m++ 
09: End While 
10: End If 
11: End For 
 
Fitness function: Generally, we can evaluate the price 
of Ai from two aspects in the iteration searching 
process, the first one is the covering degree for the 
strength t combination and the second one is the scale 
of combinatorial test suite. In this study, the fitness of 
Ai is determined by: 

Fitness = ω*µ-θ                                                     (3) 
 
where, 
ω  = The number of covered combination in CS  
θ   = The scale of combinatorial test suite  
 
Obviously, 0<ω≤vtCt

k and 0<θ≤│Φ│, µ>1 is a 
controlled parameter, which is set to make sure the 
Fitness>0. 

 
CONSTRUCTING TEST SUITE  

BASED ON EGEA/PAD 
 

From Algorithm 2, we can see the quality of 
combinatorial test data is based on the optimization 
performance of EA. In this section, we produce an 
improving Ethnic Group Evolution Algorithm (EGEA) 
to search binary code space and find high quality 
solution. 

As we known, the population structure of EA has a 
heavy influence on its searching efficiency. So, we 
propose a novel population searching mechanism 
EGEA, which makes use of the clustering process to 
analyze the population structure and build up ordered 
ethnic group organization to control the population 
searching process (Hao et al., 2010). The experiment 
has shown it is helpful in avoiding the premature 
convergence phenomenon while increasing the 
convergence speed of population greatly.  

In ethnic group clustering process, individuals have 
been assigned into ethnic group so that they have a high 
degree of similarity within the ethnic group and that the 
ethnic group is to be distinct. The clustering model 
consists of two parts: a technique for calculating 
distance for binary code between two individuals and a 
grouping technique to minimize the distance between 
individuals of each ethnic group. The objective here and 
in any clustering method, is to minimize the distance 
between individuals in each ethnic group while 
maximizing the distance between ethnic groups. 

In order to design suitable clustering method, we 
need to analyze the bound characteristics of set covering 
problem. The following inequalities on CAN (t, k, v) are 
basic ones and it can be found in Chateauneuf and 
Kreher (2002) and Martirosyan and Tran Van (2004): 
Symbol-fusing:  
 

CAN (t, k, v-1) ≤CAN (t, k, v)                               (4) 
 
Row-deleting:  
 

CAN (t, k-1, v) ≤CAN (t, k, v)                               (5) 
 
The lower and upper bound: for any v≥2, t≥2 we have: 
 

v
t≤CAN (t, k, v) ≤2t.vt-1                                    (6) 

 
where, k≤2n and n is the smallest integer such that v≤2n. 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013 

 

312 

From these inequalities we can see, the genes, 
whose value are 1, have occupied a small proportion in 
the optimal code schema. In order to emphasize 
importance of these genes, we produce a novel 
hierarchical ethnic group clustering method based On 
Positive Attribute Distance (PAD). 
 
Calculating the similarity of individuals by PAD: In 
EGEA, we calculate the binary code distance between 
two individuals based on the Weighted Hamming 
Distance (WHD) during the ethnic group clustering 
process. The WHD between Ai and Aj is: 
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and the weight of gene is ηw k = Lw - kw + 1. Meanwhile, 
the similarity index between two individuals is as 
follows: 
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The result obtained is thus an expression between 0 

and 1, where 1 designates absolute similarity between 
the two binary codes of individuals and 0 designates 
absolute diversity between the two binary codes of 
individuals. 

In  study  (Gelbard  and  Spiegler,  2000;  Gelbard 
et al., 2007), propose to use PAD to calculate the 
distance between objects. As in the HD, the PAD yields 
a clustering method by calculating the degree of 
similarity between objects whose various features are 
represented in a binary manner. Unlike HD, however, 
PAD follows the outcome of the Hempel's Raven 
paradox regarding the use of positive predicates. In 
PAD, the similarity between two binary sequences is as 
follows: 
 

0,1
2

0 >+≤
+

≤ ji

ji

ij ψψ
ψψ

ψ                              (9) 

 
where, 
ψi  = The number of 1's in ith binary sequences 
ψj  = The number of 1's in jth binary sequences  
ψij  = The number of 1's common to both i

th and j
th
 

Binary sequences 
 

Since the definition of PAD is more simple than 
WHD. Meanwhile, it is easy to calculate and the result 

of PAD is in the interval between 0 and 1, where 1 
expresses absolute similarity and 0 expresses absolute 
diversity. These properties make PAD can take place of 
WHD easily. So, we try to make use of PAD as the 
similarity index between individuals for ethnic group 
clustering. 
 
Ethnic group hierarchical clustering based on PAD: 
In this study, we propose a new ethnic group 
hierarchical clustering mechanism based on PAD and 
the details are shown in Algorithm 4: 
 
Algorithm 4: Ethnic Group Hierarchical Clustering: 
 
Step 1: Initialization: Selecting a part of 

representative individuals, named as 
macrogamete Mi (i = 1, 2, …, |M|), from 
population to create |M| independent groups 
and set each Mi to be the center individual of 
each group Oi (i = 1, 2, …, |M|). 

Step 2: Calculating PAD among macrogamete and 
saving these information in a table T. 

Step 3: Finding two groups Or and Ok, which have the 
minimal PAD between their center individuals 
from T: 

 
( ) ( ){ } OjiandjiOOPADOO jikr ,...,2,1,,,min, =≠=  

(10) 
Step 4: Consolidation: If PAD (Or, Ok) <θ, then 

consolidate Or and Ok into a new group Ork 
and set the individual with the maximal race 
exponent to be the new center individual of 
Ork. 

Step 5: If there is a new group who has been generated 
in step 4 then return to step 3. 

Step 6: Creating ethnic group: Transform each O to 
be a ethnic group Oi→Ei and set the center 
individual of Oi to be the center individual of 
Ei. 

Step 7: Setting ethnic group weight: Sort Ei 
according to the race exponent of its center 
individual. If the sequence number of Ei in this 
queue is j, then the weight of Ei is: 

 
( ) ( ) EjiEEjEhi ,...,2,1,,12

2
=++−= (11) 

 
The parameter θ∈ (0, 1) has been set up for 

controlling the clustering granularity. For it affect the 
structure of ethnic group directly, we hope θ can 
dynamically adjust its value according to the status of 
population. So, a adaptive mechanism has been 
designed to adjust the number of θ. The formula is: 
 

( ) 2εγθ +=                                        (12) 
 
where, 
 γ = Diversity parameter of population and ε∈ (0, 1) is 

a constant 
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SIMULATION RESULTS 

 
In this section, there are four serials and 19 CA 

problems are selected for simulation tests. Based on 
Algorithm 2, we make use of EGEA/PAD and CGA to 
search the binary code space. Both the source codes are 
realized by VC++6.0 on a 2.1-GHz AMD Phenom PC 
with 1 GB memory and the operation system are 
Windows 2003.  

The experimental statistic results of EGEA/PAD 
and CGA are obtained over 20 independent trials. In 
first round experiments, we set t = 2, v = 2 and k is 
gradually increasing from 3 to 9 and the statistic results 

are shown in Table 4. In second round experiments, we 
set t = 2, v = 3 and the k is gradually increasing from 3 
to 7 and the statistic results are shown in Table 5. In 
third round experiments, we set t = 3, v = 2 and the k is 
gradually increasing from 4 to 8 and the statistic results 
are shown in Table 6. In finally round experiments, we 
set t = 3, v = 3 and the k is gradually increasing from 4 
to 7 and the statistic results are shown in Table 7. So far 
the best result of these problems can be found in 
Colbourn’s web site (Colbourn, 2009). 

As we can see, the EGEA/PAD and CGA can find 
the best result when v = 2, t = 2 and k is less than 9 and 
7, meanwhile, the EGEA/PAD and CGA can find the 

  
Table 4: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 2 and v = 2 

k Φ 

Combination 
scale 

Best 
result 

The scale of test data generated by CGA 
------------------------------------------------- 

The scale of test data by EGEA/PAD 
------------------------------------------------- 

Generation Max. Min. Avg. St. Max. Min. Avg. St. 
3 8 12 4 4 4 4 0 4 4 4 0 20 
4 16 24 5 5 5 5 0 5 5 5 0 20 
5 32 40 6 6 6 6 0 6 6 6 0 50 
6 64 60 6 6 6 6 0 6 6 6 0 200 
7 128 84 6 12 6 9.4 2.48 6 6 6 0 500 
8 256 112 6 18 6 11.3 4.37 12 6 9.5 2.67 1000 
9 512 144 6 66 42 52.9 11.80 41 28 31.2 8.32 2000 
Max.: Maximum; Min.: Minimum; Avg.: Average 

 
Table 5: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 2 and v = 3  

 k Φ 
Combination 
scale 

Best 
result 

The scale of test data generated by CGA 
------------------------------------------------- 

The scale of test data by EGEA/PAD 
------------------------------------------------- 

Generation Max. Min. Avg. St. Max. Min. Avg. St. 
 3 27 27 9 9 9 9 0 9 9 9 0 100 
 4 81 54 9 9 9 9 0 9 9 9 0 500 
 5 243 90 11 18 11 16.7 2.64 13 11 11.4 0.33 1000 
 6 729 135 12 20 15 18.3 2.25 19 13 15.7 2.67 2000 
 7 2187 189 12 265 207 235.5 20.80 194 153 179.2 14.85 2000 
Max.: Maximum; Min.: Minimum; Avg.: Average 
 
Table 6: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 3 and v = 2 

 k Φ 
Combination 
scale 

Best 
result 

The scale of test data generated by CGA 
------------------------------------------------ 

The scale of test data by EGEA/PAD 
-------------------------------------------------- 

Generation Max. Min. Avg. St. Max. Min. Avg. St. 
 4 16 32 8 8 8 8 0 8 8 8 0 100 
 5 32 80 10 13 10 11.2 1.16 11 10 9.3 0.58 200 
 6 64 160 12 17 15 16.4 1.24 14 12 12.5 0.69 500 
 7 128 280 12 22 17 19.4 2.31 17 12 13.2 2.09 1000 
 8 256 448 12 63 42 54.2 14.60 41 38 37.2 1.38 2000 
Max.: Maximum; Min.: Minimum; Avg.: Average 
 
Table 7: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 3 and v = 3 

 k Φ 

Combination 
scale 

Best 
result 

The scale of test data generated by CGA 
------------------------------------------------- 

The scale of test data by EGEA/PAD 
------------------------------------------------- 

Generation Max. Min. Avg. St. Max. Min. Avg. St. 
 4 81 108 27 31 29 30 0.89 29 27 27.5 0.67 500 
 5 243 270 33 51 39 44 4.31 45 33 36.2 4.82 1000 
 6 729 540 33 108 96 101.5 5.89 59 42 47.9 5.16 2000 
 7 2187 945 40 356 296 335.6 28.90 254 193 215.4 20.68 2000 
Max.: Maximum; Min.: Minimum; Avg.: Average 
 
Table 8: Comparison between EGEA/PAD and another two methods on the minimum scale of test data when t = 2 

v 
2 
------------------------------------------------------------------------------ 

3 
----------------------------------------------------- 

k 3 4 5 6 7 8 9 3 4 5 6 7 
Hartman et al. (2004) The min scale of test data 4 5 6 6 6 6 6 9 9 15 15 15 
Williams et al. (2002) The min scale of test data 4 5 6 6 6 - - - 9 13 - - 

Time (s) <0.01 0.01 0.70 16.57 441.21 - - - 0.08 - - - 
EGEA/PAD The min scale of test data 4 5 6 6 6 6 28 9 9 11 13 153 

Time (s) <0.01 <0.01 0.04 4.09 54.56 122.4 251.2 0.05 0.10 68.9 205.6 554.5 
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V = 2 

 

 
V = 3 

 
Fig. 1: Comparison between EGEA/PAD and CTS on the 

minimum scale of test data with t = 3 
 
best result when v up to 3 and k is less than 7 and 6. If t 
is up to 3, the EGEA/PAD and CGA can find the best 
result when v = 2 and k is less than 8 and 6, but only 
the EGEA/PAD can find the best result when v = 3 and 
k is less than 6. The result show an EA based 
combinatorial test data global optimization and 
generation mechanism is valid. It can find most optimal 
results in 19 CA problems. Meanwhile, the 
performance of searching algorithm have a heavily 
influence on the quality of solution. The comparison of 
statistic results between EGEA/PAD and CGA show 
the EGEA/PAD can improve the quality of solution 
greatly. 

In study (Alan and Leonid, 2004), Hartman use the 
Combinatorial Test Services (CTS) package to solve 
CA problems. Williams translate optimal combinatorial 
test suite construction problem into an integer program 
problem and list the minimum scale of test data in study 
(Williams and Probert, 2002). The comparison is shown 
in Table 8. And the run times are also compared. 

Meanwhile, the comparison between EGEA/PAD 
and CTS on the test data minimum scale when t = 3 is 
shown in Fig. 1. As can be seen, the EGEA/PAD 
significantly outperforms another two methods for 10 
CA problems in all 12 problems when t = 2, 
meanwhile, it also has get the best results for 7 CA 
problems in all 9 problems when t = 3. 

CONCLUSION 
 

In this study, we propose a combinatorial test data 
global optimization and generation method, which 
include the encoding and decoding mechanism and an 
improving ethnic group evolution algorithm-
EGEA/PAD. The experimental results show this 
mechanism have a good performance in most testing 
problem. 

However, the problem scale of CA is growing 
exponentially and it restrains the searching ability of this 
method heavily. In future study, we will focus on design 
more succinct coding mechanism or coding compression 
mechanism to make this method can solve more large-
scale and complex CA problem. 
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