
Research Journal of Applied Sciences, Engineering and Technology 6(2): 309-315, 2013
DOI:10.19026/rjaset.6.4078
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Organization Corp.
Submitted: October 31, 2012 Accepted: December 21, 2012 Published: June 10, 2013

Corresponding Author: Hao Chen, School of Computer Science and Technology, Xi’an University of Posts and

Telecommunications, Xi’an 710121, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

309

Research Article

Construction Optimal Combination Test Suite Based on Ethnic Group
Evolution Algorithm

Hao Chen, Shu-Yan Wang and Xiao-Ying Pan

School of Computer Science and Technology, Xi’an University of
Posts and Telecommunications, Xi’an 710121, China

Abstract: The optimal test case suite constructing problem is defined thus: given a set of test requirements and a test
suite that satisfies all test requirements, find a subset of the test suite containing a minimum number of test cases that
still satisfies all test requirements. Existing methods for solving test case suite generation problem do not guarantee
that obtained test suite is optimal. In this study, we propose a global optimization and generation method to
construct optimal combinatorial testing data. Firstly, an encoding mechanism is used to map the combinatorial
testing problem domain to a binary coding space. After that, an improving ethnic group evolution algorithm is used
to search the binary coding space in order to find the optimal code schema. Finally, a decoding mechanism is used to
read out the composition information of combinatorial testing data from the optimal code schema and construct
optimal test case suite according to it. The simulation results show this method is simple and effective and it has the
characteristics of less producing test data and time consumption.

Keywords: Combinatorial testing, ethnic group evolution computing model, optimal test case suite, test data

construction algorithm

INTRODUCTION

The combinatorial software testing is a method for
designing test suite for the Software Under Test (SUT),
which generate test case based on a certain
combinatorial covering criterion. According to the
difference of covering strength, the combinatorial
software testing method can be classified into single
factor covering method, pair wise combinatorial
covering method and multiple combinatorial covering
methods. All of above test methods try to make use of as
little as possible test cases to cover as much as possible
combinatorial sets. Since the costs of executing test
cases and managing test suites may often be quite
significant, a test suite subset that can still satisfy all
requirements is desirable. Such a subset is known as a
representative set. Assuming that the cost of executing
and managing each test case is the same, a
representative set with a minimum number of test cases
is desirable and is called an optimal test case suite. As
mentioned in Harrold et al. (1993), the optimal test case
suite generation problem is NP-complete and as
mentioned in Yan and Zhang (2009) it is equivalent to
solving the set-covering problem. Cohen et al. (2003)
gives the definition of Covering Array (CA) and Mixed
level Covering Array (MCA). The difference between
CA and MCA is that each factors of CA has a same
value range, but in MCA it can be different. So, the CA

can be looked upon as a special case of MCA and the
processing method of them has no difference.

The conventional construction mechanism makes
use of some mathematical methods, such as orthogonal
array (Yan and Zhang, 2008) and heuristic algorithms to
generate an approximate test suite. For heuristic
algorithms can generate less test data than mathematical
construction methods, so many researchers are absorbed
in using heuristic algorithm to generate combinatorial
test suite. In such studies, the one-test-at-a-time
mechanism has gotten a wide application in helping a
heuristic algorithm to generate test data. Based on this
mechanism, in once computation, a heuristic algorithm
will select a best test case ti, which can cover most
strength t combinations in the uncovering Combination
Set (CS) and make it join Test Suite (TS). Then, these
strength t combinations, covered by ti, will be deleted
from CS. After that, this process will repeat until all of
strength t combinations are covered. There are two
studies (Shiba et al., 2004; Zha et al., 2010) provide
heuristic methods based on one-test-at-a-time
mechanism to construct combinatorial test data. The
main steps of this mechanism are as follow:

Algorithm 1: The one-test-at-a-time mechanism:

01: Initializing test suite TS = Ø
02: Initializing combination set CS according to CA

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

310

Table 1: A system with four parameters
 Parameter

Value A B C D
0 a0 b0 c0 d0
1 a1 b1 c1 d1
2 a2 b2 c2 d2

Table 2: An optimal test suite covering all pairs
ID A B C D
1 a0 b0 c0 d0
2 a0 b2 c2 d1
3 a0 b1 c1 d2
4 a1 b0 c2 d2
5 a1 b1 c0 d1
6 a1 b2 c1 d0
7 a2 b0 c1 d1
8 a2 b2 c0 d2
9 a2 b1 c2 d0

03: While (CS ≠ Ø)
04: A test case ti has been generated by heuristic

algorithm and takes it into TS
05: Updating CS
06: End While

For the one-test-at-a-time mechanism just can

generate one test case in once computation process and
it costs a lot of calculation on matrix transformation
operation. So, it is likely to take a long time to generate
whole representative set. Moreover, even to a small-
scale CA, because of the one-test-at-a-time mechanism
does not have the ability of dynamically adjusting the
composition of TS in whole construction process.
Therefore, these heuristic methods can only generate an
approximate representative set generally. So, heuristic
methods are difficult to generate an optimal
combinatorial test suite. For example, there is a CA with
four factors in Table 1 and 2 is an optimal pair wise
combinatorial covering test suite of it. If we use one-
test-at-a-time method to generate the combinatorial test
data, it is likely to select a0b0c0d0, a1b1c1d1 and
a2b2c2d2 to join TS one by one. Because of both of
them can cover 6 strength 2 combinations, which suffice
for the optimality criterion. On this condition, no matter
whatever test case in left 78 cases has been chosen to
join TS in next computation cycle, there is at least one
combination is repetitive with the covered 24 strength 2
combinations generated by above three test cases. The
scale of final combinatorial test suite will be more than
9. And it is no way to generate an optimal combinatorial
test suite.

THE GLOBAL OPTIMIZATION AND

GENERATION MECHANISM FOR TEST DATA

In this study, we will translate this problem into a

code optimization problem and use the Evolution

Algorithm (EA) to optimize the structure of test data.
Firstly, we map the combinatorial test problem domain
to a binary coding space by an encoding process. Then
an EA has been used to search the coding space in order
to find the optimal individual. After that, the binary code
of the optimal individual has been decoded to generate
combinatorial test suite by a decoding process. The core
steps of this method as follow:

Algorithm 2: The EA based combinatorial test data
global optimization and generation mechanism:

01: Mapping the combinatorial test problem domain to

a binary code space based on encoding process
02: Initializing the population
03: While (the termination criteria aren’t reached)
04: Using an EA to search the coding space
05: End While
06: Decoding the code of optimal individual in

population and generating a combinatorial test suite

As we can see, encoding process, decoding process
and global searching process are three main processes in
this mechanism. In this section we will discuss the
encoding mechanism, decoding mechanism and the
fitness function.

Encoding mechanism: The aim of encode is to set the
mapping relationship between the combinatorial test
problem domain and the binary coding. Firstly, we give
some basic definitions that are used throughout.

Definition 1: A population of EA consists of an n-tuple
of strings Ai (i = 0, 1, … n-1) of length L, where the
genes Γj∈{0, 1}, j = 0, 1, …L-1.

Definition 2: The problem domain of CA (N; t, k, v) is
Φ and its scale is |Φ| = vk.

Definition 3: Make a serial number for all test cases in
Φ by ascending order and set the value of serial number
is from 0 to |Φ|-1. Then we can reference a test case in
Φ by its serial number, that is tj ∈Φ, j = 0, 1,…, |Φ|-1.

If we set L = |Φ|, the tj∈Φ can correspond to the
gene Γj in the binary code by the serial number j.

Moreover, we set a given, if Γj = 1 then the tj will be
chosen to join the test suite. According to these
definitions, the gene structure of Ai can be translated
into a subset of test case. For example, there are 81 test
cases in the CA of Table 1. The test case of this CA are
a0b0c0d0, a0b0c0d1, … and a2b2c2d2 and its serial
number are 0, 1, … and 80. If the value of genes 2, 16,
41 and 77 in an individual are 1, then the corresponding
test cases are t2, t16, t41 and t77. And its details are
a0b0c0d2, a0b1c2d1, a1b1c1d2 and a2b2c1d2.

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

311

Table 3: The corresponding relation between the detail of each test
case and its serial number

A B C D Serial number j
0 0 0 0 0
0 0 0 1 1
0 0 0 2 2
0 0 1 0 3
… …. … … …
2 2 2 2 80

Decoding mechanism: The role of decoding
mechanism is to parse the coding structure and
construct the combinatorial test data according to it. In
order to facilitate the processing, we use a v’s digit
number to present the details of a test case.

Definition 4: To a covering array CA (N; t, k, v), a test
case can be expressed as a v’s digit number and each
digit correspond to a factor in the CA. The value of jth
factor is kj and the range of each factor is set from 0 to v-
1. The function of translating v’s digit number of test
case tj into its serial number can be determined by:

 j = kj*v
j +…+ k1*v

1 + k0*v
0 (1)

For example, to the CA in Table 1, we set the order

of v’s digit number from top digit to low digit is
corresponding to the factor from A to D. Then the
corresponding relation between the details of each test
case with 3’s digit number and its serial number with
ten’s digit is shown in Table 3. The translating function
is:

 j = Aj*33 + Bj*32 + Cj*31 + Dj*30 (2)

So, we can make use of an inverse process of
formula (1) to get the details of each test case according
to its serial number. The decoding process for a CA with
k factors is:

Algorithm 3: Decoding mechanism:

01: Get the coding information of Ai
02: For j = 0 to L
03: If (Γj == 1) //Decoding and getting the details of tj
04: dnum = j, m = 0
05: While (dnum>0)
06: x = dnum%v; dnum/ = v
07: zj,m= x; //x is the value of mth

 factor in tj
08: m++
09: End While
10: End If
11: End For

Fitness function: Generally, we can evaluate the price
of Ai from two aspects in the iteration searching
process, the first one is the covering degree for the
strength t combination and the second one is the scale
of combinatorial test suite. In this study, the fitness of
Ai is determined by:

Fitness = ω*µ-θ (3)

where,
ω = The number of covered combination in CS
θ = The scale of combinatorial test suite

Obviously, 0<ω≤vtCt

k and 0<θ≤│Φ│, µ>1 is a
controlled parameter, which is set to make sure the
Fitness>0.

CONSTRUCTING TEST SUITE

BASED ON EGEA/PAD

From Algorithm 2, we can see the quality of
combinatorial test data is based on the optimization
performance of EA. In this section, we produce an
improving Ethnic Group Evolution Algorithm (EGEA)
to search binary code space and find high quality
solution.

As we known, the population structure of EA has a
heavy influence on its searching efficiency. So, we
propose a novel population searching mechanism
EGEA, which makes use of the clustering process to
analyze the population structure and build up ordered
ethnic group organization to control the population
searching process (Hao et al., 2010). The experiment
has shown it is helpful in avoiding the premature
convergence phenomenon while increasing the
convergence speed of population greatly.

In ethnic group clustering process, individuals have
been assigned into ethnic group so that they have a high
degree of similarity within the ethnic group and that the
ethnic group is to be distinct. The clustering model
consists of two parts: a technique for calculating
distance for binary code between two individuals and a
grouping technique to minimize the distance between
individuals of each ethnic group. The objective here and
in any clustering method, is to minimize the distance
between individuals in each ethnic group while
maximizing the distance between ethnic groups.

In order to design suitable clustering method, we
need to analyze the bound characteristics of set covering
problem. The following inequalities on CAN (t, k, v) are
basic ones and it can be found in Chateauneuf and
Kreher (2002) and Martirosyan and Tran Van (2004):
Symbol-fusing:

CAN (t, k, v-1) ≤CAN (t, k, v) (4)

Row-deleting:

CAN (t, k-1, v) ≤CAN (t, k, v) (5)

The lower and upper bound: for any v≥2, t≥2 we have:

v
t≤CAN (t, k, v) ≤2t.vt-1 (6)

where, k≤2n and n is the smallest integer such that v≤2n.

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

312

From these inequalities we can see, the genes,
whose value are 1, have occupied a small proportion in
the optimal code schema. In order to emphasize
importance of these genes, we produce a novel
hierarchical ethnic group clustering method based On
Positive Attribute Distance (PAD).

Calculating the similarity of individuals by PAD: In
EGEA, we calculate the binary code distance between
two individuals based on the Weighted Hamming
Distance (WHD) during the ethnic group clustering
process. The WHD between Ai and Aj is:

()∑ ∑
= =

×=

m

w

l

k

kwkwij

w

b
1 1

,, ηδ (7)

where,

=

≠
=

kwjkwi

kwjkwi

kw
aa

aa
b

,,,,

,,,,
, ,0

,1

and the weight of gene is ηw k = Lw - kw + 1. Meanwhile,
the similarity index between two individuals is as
follows:

() ∑ ∑
= =

==

m

w

L

k

kwijji

w

DAAD
1 1

,ij, ηδ (8)

The result obtained is thus an expression between 0

and 1, where 1 designates absolute similarity between
the two binary codes of individuals and 0 designates
absolute diversity between the two binary codes of
individuals.

In study (Gelbard and Spiegler, 2000; Gelbard
et al., 2007), propose to use PAD to calculate the
distance between objects. As in the HD, the PAD yields
a clustering method by calculating the degree of
similarity between objects whose various features are
represented in a binary manner. Unlike HD, however,
PAD follows the outcome of the Hempel's Raven
paradox regarding the use of positive predicates. In
PAD, the similarity between two binary sequences is as
follows:

0,1
2

0 >+≤
+

≤ ji

ji

ij ψψ
ψψ

ψ (9)

where,
ψi = The number of 1's in ith binary sequences
ψj = The number of 1's in jth binary sequences
ψij = The number of 1's common to both i

th and j
th

Binary sequences

Since the definition of PAD is more simple than
WHD. Meanwhile, it is easy to calculate and the result

of PAD is in the interval between 0 and 1, where 1
expresses absolute similarity and 0 expresses absolute
diversity. These properties make PAD can take place of
WHD easily. So, we try to make use of PAD as the
similarity index between individuals for ethnic group
clustering.

Ethnic group hierarchical clustering based on PAD:
In this study, we propose a new ethnic group
hierarchical clustering mechanism based on PAD and
the details are shown in Algorithm 4:

Algorithm 4: Ethnic Group Hierarchical Clustering:

Step 1: Initialization: Selecting a part of

representative individuals, named as
macrogamete Mi (i = 1, 2, …, |M|), from
population to create |M| independent groups
and set each Mi to be the center individual of
each group Oi (i = 1, 2, …, |M|).

Step 2: Calculating PAD among macrogamete and
saving these information in a table T.

Step 3: Finding two groups Or and Ok, which have the
minimal PAD between their center individuals
from T:

() (){ } OjiandjiOOPADOO jikr ,...,2,1,,,min, =≠=

(10)
Step 4: Consolidation: If PAD (Or, Ok) <θ, then

consolidate Or and Ok into a new group Ork
and set the individual with the maximal race
exponent to be the new center individual of
Ork.

Step 5: If there is a new group who has been generated
in step 4 then return to step 3.

Step 6: Creating ethnic group: Transform each O to
be a ethnic group Oi→Ei and set the center
individual of Oi to be the center individual of
Ei.

Step 7: Setting ethnic group weight: Sort Ei
according to the race exponent of its center
individual. If the sequence number of Ei in this
queue is j, then the weight of Ei is:

() () EjiEEjEhi ,...,2,1,,12

2
=++−= (11)

The parameter θ∈ (0, 1) has been set up for

controlling the clustering granularity. For it affect the
structure of ethnic group directly, we hope θ can
dynamically adjust its value according to the status of
population. So, a adaptive mechanism has been
designed to adjust the number of θ. The formula is:

() 2εγθ += (12)

where,
 γ = Diversity parameter of population and ε∈ (0, 1) is

a constant

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

313

SIMULATION RESULTS

In this section, there are four serials and 19 CA

problems are selected for simulation tests. Based on
Algorithm 2, we make use of EGEA/PAD and CGA to
search the binary code space. Both the source codes are
realized by VC++6.0 on a 2.1-GHz AMD Phenom PC
with 1 GB memory and the operation system are
Windows 2003.

The experimental statistic results of EGEA/PAD
and CGA are obtained over 20 independent trials. In
first round experiments, we set t = 2, v = 2 and k is
gradually increasing from 3 to 9 and the statistic results

are shown in Table 4. In second round experiments, we
set t = 2, v = 3 and the k is gradually increasing from 3
to 7 and the statistic results are shown in Table 5. In
third round experiments, we set t = 3, v = 2 and the k is
gradually increasing from 4 to 8 and the statistic results
are shown in Table 6. In finally round experiments, we
set t = 3, v = 3 and the k is gradually increasing from 4
to 7 and the statistic results are shown in Table 7. So far
the best result of these problems can be found in
Colbourn’s web site (Colbourn, 2009).

As we can see, the EGEA/PAD and CGA can find
the best result when v = 2, t = 2 and k is less than 9 and
7, meanwhile, the EGEA/PAD and CGA can find the

Table 4: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 2 and v = 2

k Φ

Combination
scale

Best
result

The scale of test data generated by CGA

The scale of test data by EGEA/PAD

Generation Max. Min. Avg. St. Max. Min. Avg. St.
3 8 12 4 4 4 4 0 4 4 4 0 20
4 16 24 5 5 5 5 0 5 5 5 0 20
5 32 40 6 6 6 6 0 6 6 6 0 50
6 64 60 6 6 6 6 0 6 6 6 0 200
7 128 84 6 12 6 9.4 2.48 6 6 6 0 500
8 256 112 6 18 6 11.3 4.37 12 6 9.5 2.67 1000
9 512 144 6 66 42 52.9 11.80 41 28 31.2 8.32 2000
Max.: Maximum; Min.: Minimum; Avg.: Average

Table 5: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 2 and v = 3

 k Φ
Combination
scale

Best
result

The scale of test data generated by CGA

The scale of test data by EGEA/PAD

Generation Max. Min. Avg. St. Max. Min. Avg. St.
 3 27 27 9 9 9 9 0 9 9 9 0 100
 4 81 54 9 9 9 9 0 9 9 9 0 500
 5 243 90 11 18 11 16.7 2.64 13 11 11.4 0.33 1000
 6 729 135 12 20 15 18.3 2.25 19 13 15.7 2.67 2000
 7 2187 189 12 265 207 235.5 20.80 194 153 179.2 14.85 2000
Max.: Maximum; Min.: Minimum; Avg.: Average

Table 6: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 3 and v = 2

 k Φ
Combination
scale

Best
result

The scale of test data generated by CGA
--

The scale of test data by EGEA/PAD
--

Generation Max. Min. Avg. St. Max. Min. Avg. St.
 4 16 32 8 8 8 8 0 8 8 8 0 100
 5 32 80 10 13 10 11.2 1.16 11 10 9.3 0.58 200
 6 64 160 12 17 15 16.4 1.24 14 12 12.5 0.69 500
 7 128 280 12 22 17 19.4 2.31 17 12 13.2 2.09 1000
 8 256 448 12 63 42 54.2 14.60 41 38 37.2 1.38 2000
Max.: Maximum; Min.: Minimum; Avg.: Average

Table 7: The statistic results of EGEA/PAD and CGA on the scale of test data when t = 3 and v = 3

 k Φ

Combination
scale

Best
result

The scale of test data generated by CGA

The scale of test data by EGEA/PAD

Generation Max. Min. Avg. St. Max. Min. Avg. St.
 4 81 108 27 31 29 30 0.89 29 27 27.5 0.67 500
 5 243 270 33 51 39 44 4.31 45 33 36.2 4.82 1000
 6 729 540 33 108 96 101.5 5.89 59 42 47.9 5.16 2000
 7 2187 945 40 356 296 335.6 28.90 254 193 215.4 20.68 2000
Max.: Maximum; Min.: Minimum; Avg.: Average

Table 8: Comparison between EGEA/PAD and another two methods on the minimum scale of test data when t = 2

v
2
--

3

k 3 4 5 6 7 8 9 3 4 5 6 7
Hartman et al. (2004) The min scale of test data 4 5 6 6 6 6 6 9 9 15 15 15
Williams et al. (2002) The min scale of test data 4 5 6 6 6 - - - 9 13 - -

Time (s) <0.01 0.01 0.70 16.57 441.21 - - - 0.08 - - -
EGEA/PAD The min scale of test data 4 5 6 6 6 6 28 9 9 11 13 153

Time (s) <0.01 <0.01 0.04 4.09 54.56 122.4 251.2 0.05 0.10 68.9 205.6 554.5

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

314

V = 2

V = 3

Fig. 1: Comparison between EGEA/PAD and CTS on the

minimum scale of test data with t = 3

best result when v up to 3 and k is less than 7 and 6. If t
is up to 3, the EGEA/PAD and CGA can find the best
result when v = 2 and k is less than 8 and 6, but only
the EGEA/PAD can find the best result when v = 3 and
k is less than 6. The result show an EA based
combinatorial test data global optimization and
generation mechanism is valid. It can find most optimal
results in 19 CA problems. Meanwhile, the
performance of searching algorithm have a heavily
influence on the quality of solution. The comparison of
statistic results between EGEA/PAD and CGA show
the EGEA/PAD can improve the quality of solution
greatly.

In study (Alan and Leonid, 2004), Hartman use the
Combinatorial Test Services (CTS) package to solve
CA problems. Williams translate optimal combinatorial
test suite construction problem into an integer program
problem and list the minimum scale of test data in study
(Williams and Probert, 2002). The comparison is shown
in Table 8. And the run times are also compared.

Meanwhile, the comparison between EGEA/PAD
and CTS on the test data minimum scale when t = 3 is
shown in Fig. 1. As can be seen, the EGEA/PAD
significantly outperforms another two methods for 10
CA problems in all 12 problems when t = 2,
meanwhile, it also has get the best results for 7 CA
problems in all 9 problems when t = 3.

CONCLUSION

In this study, we propose a combinatorial test data
global optimization and generation method, which
include the encoding and decoding mechanism and an
improving ethnic group evolution algorithm-
EGEA/PAD. The experimental results show this
mechanism have a good performance in most testing
problem.

However, the problem scale of CA is growing
exponentially and it restrains the searching ability of this
method heavily. In future study, we will focus on design
more succinct coding mechanism or coding compression
mechanism to make this method can solve more large-
scale and complex CA problem.

ACKNOWLEDGMENT

This study is supported by the National Natural

Science Foundation of China under Grant No.
61050003.

REFERENCES

Alan, H. and R. Leonid, 2004. Problems and algorithms

for covering arrays. Discrete Math., 284: 149-156.
Chateauneuf, M. and D.L. Kreher, 2002. On the state of

Strength-Three Covering Arrays. J. Combin. Des.,
10: 217-238.

Cohen, M.B., P.B. Gibbons, W.B. Mugridge and
C.J. Colbourn, 2003. Constructing test suites for
interaction testing. Proceeding of the International
Conference on Software Engineering, pp: 38-48.

Colbourn, C.J., 2009. CA Tables for t = 2, 3, 4, 5, 6.
Retrieved from: http://www.public.asu. edu/~
ccolbou/src/tabby/catable.html.

Gelbard, R. and I. Spiegler, 2000. Hempel’s raven
paradox: A positive approach to cluster analysis.
Comput. Oper. Res., 27(4): 305-320.

Gelbard, R., O. Goldman and I. Spiegler, 2007.
Investigating diversity of clustering methods: An
empirical comparison. Data Knowl. Eng., 63(1):
155-166.

Hao, C., C. Du-Wu, C. Yin-An, T. Yong-Qin and
L. Kun, 2010. Ethnic group evolution algorithm.
Chin. J. Softw., 21(5): 978-990.

Harrold, M.J., R. Gupta and M.L. Soffa, 1993. A
methodology for controlling the size of a test suite.
ACM T. Softw. Eng. Methodol., 2(3): 270-285.

Martirosyan, S. and T. Tran Van, 2004. On t-covering
array. Designs Code Cryptogr., 32: 323-339.

Shiba, T., T. Tsuchiya and T. Kikuno, 2004. Using
artificial life techniques to generate test cases for
combinatorial testing. Proceeding of the IEEE
Annual International Conference on Computer
Software and Applications, pp: 72-77.

Res. J. Appl. Sci. Eng. Technol., 6(2): 309-315, 2013

315

Williams, A.W. and R.L. Probert, 2002. Formulation of
the interaction test coverage problem as an integer
program. Proceeding of the 14th International
Conference on the Testing of Communicating
Systems, pp: 283-298.

Yan, J. and J. Zhang, 2008. A backtracking search tool
for constructing combinatorial test suites. J. Syst.
Softw., 81(10): 1681-1693.

Yan, J. and J. Zhang, 2009. Combinatorial testing:
Principles and methods. Chin. J. Softw., 20(6):
1393-1405.

Zha, R.J., D.P. Zhang, C.H. Nie and B.W. Xu, 2010.
Test data generation algorithms of combinatorial
testing and comparison based on cross-entropy and
particle swarm optimization method. Chin.
J. Comput., 33(10): 1896-1908.

