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Abstract: Recently stochastic variational inequality has been extensively studied. However there are few methods 
can be effectively realized. This study considers to solve stochastic variational inequality by combining quasi-Monte 
Carlo approach and interior point method. The global convergence is established for the new algorithm. An 
application for the synergies analysis of the supply chain after M&A from the literature is discussed. 
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INTRODUCTION 
 

This study considers the following stochastic 
variational inequality problem: find a vector  
such that: 
 

        (1) 
 
where, ,  is the underlying sample space, 

 is a is continuously differentiable 
mapping,  is the mathematical expectation and 
superscript  denotes transpose. 

Model (1) provides a framework for modeling of 
the equilibrium under uncertainty as a generalization of 
the stochastic complementarily problem (Chen et al., 
2009) and has been receiving much attention in the 
recent literature (Lin, 2009). When , the (1) 
further reduces to a system of stochastic equations: 
Finding  satisfying  

In this study, we propose a Monte Carlo sampling 
method combined with a homogeneous interior‐point 
method for solving (1) based on the new reformulation, 
which is different from all the reformulation mentioned 
above. That is, by the reformulation, we discretize the 
true problem by approximating the expected value of 
the underlying functions with its sample average and 
then solve the sample averaged approximation problem 
by utilizing the homogeneous interior-point methods. 
The Monte Carlo sampling method is a very popular 
method in stochastic programming and it is essentially 
the same as the sample path method. Our focus here is 
on the combination of the Monte Carlo sampling 
method with a homogeneous interior-point method for 
solving (1). This distinguishes our approach from the 
above two ways. We establish convergence of global 

optimal solutions and stationary points of 
approximation problems generated by the proposed 
method. Moreover, as quasi-Monte Carlo methods are 
generally faster than Monte Carlo methods, we suggest 
a combined quasi-Monte Carlo sampling and a 
homogeneous interior-point method. An application for 
the synergies analysis of the supply chain after M&A 
from the literature (Liang and Shi, 2012) is discussed. 

 
ALGORITHM 

 
In this section, we propose an algorithm for solving 

(1) by combining the homogeneous interior point 
method and quasi-Monte Carlo method. We first 
consider the following variation inequality problem. 
Find , such that: 
 

               (2) 
 
which corresponds to the discrete case of (1) where 

. In (2),  denotes the 
probability of the random event . We note that 
problem (2) is equivalent to the following Standard 
Complementarily Problem (SCP): 
 

                             (3) 
 
(SCP) is said to be (asymptotically) feasible if and only 
if there is a bounded sequence , 

, such that: 
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where any limit point  of the sequence is called 
an (asymptotically) feasible point for (SCP). (SCP) has 
an interior feasible if it has an (asymptotically) feasible 
point . (SCP) is said to be 
(asymptotically) solvable if there is an (asymptotically) 
feasible  such that , where  is called 

the “optimal" or “complementary" solution for (SCP). 
Note even if (SCP) is feasible, it does not imply that 
(SCP) has a solution. If (SCP) has a solution, then it has 
a maximal solution  where the number of 
positive components in  is maximal. The 
indices of those positive components are invariant 
among all maximal solutions for (SCP). 
The homogeneous model to (SCP) is (HSCP): 
 

      

       (4) 

 
Let  be defined by: 
 

             (5) 

 
Lemma 1: Let  be defined by (4), then: 
 
•  
•  
•  
 
We suppose that  is positive definite in , i.e., 
given , , 

 
 
Theorem 1: Let  be defined by (4) and let 

 be a maximal complementary 
solution for (HSCP). Then (I) (SCP) has a solution if 
and only if . In this case,  is a 
complementary solution for (SCP). (II) (SCP) is 
(strongly) infeasible if and only if . In this case, 

 is a certificate to prove (strongly) 
infeasibility. 
 
Homogeneous interior point algorithm for solving 
(SCP): Due to Theorem 1,we can solve (SCP) by 
finding a maximal complementary solution of 
(HSCP).Now we design the central path of the 

homogeneous model. Select , ,  and 
 and let the residual vectors 

 Also let 
 Suggested by Andersen and Ye 

(1998), we set: 
 

 
 

Then where  
is the diagonal matrix of . Note that  in 
this setting. About the central path of the homogeneous 
model, we have the following theorem. 
 
Theorem 2: Consider (HSCP). 
 
• For any  there exists a strictly positive 

point  such that: 
 

                      (6) 
 
• Starting from , 

for any  there is a unique strictly positive 
point  that satisfies Eq. 
(5) and: 

 

                                         (7) 
 
• For any , the solution 

 in (2) is bounded. Thus 
for any  and any  satisfying (6): 

 

                        (8) 
 
is a continuous bounded trajectory. 
 
• Any limit point  is a 

maximal complementary solution for (HSCP). 
 
With the help of a central path, we now present an 

interior‐point algorithm that generates iterates within a 
neighborhood of . At iteration  with iterate 

, the algorithm solves a 
system of linear equations for direction  
from: 
 

               (9) 
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and, 
 

            (10) 

 
where,  and  are proper given parameters in  
and: 
 

 
 
After the search direction is computed, the variables are 
updated. A simple update is the linear update 

 where 
 is a given step size. Actually, the step-size  

can be computed by using a simple backtracking line-
search. First,  is computed from 

 Then by 
chosen some positive integer  we can set 

, where  (About the details, we 
recommend the reader to Ye (1998)). 
 
Quasi-monte carlo algorithm for solving SVIP: We 
now develop an efficient numerical method for solving 
the Stochastic Variational Inequality Problem (SVIP). 
From the above discussion, (1) is equivalent to the 
following Standard Stochastic Variation Inequality 
Problems (SSVIP): 
 

            (11) 

 
For an integrals function , the Monte 

Carlosampling estimate for  is obtained by 
taking independentlyandidenticallydistributed random 
samples  from  and letting 

. The strong law of large numbers 
guarantees that this procedure converges with 
probability one (abbreviated by "w.p.l") i.e: 
 

    (12) 

 
where,  is the distribution function of  Birge and 
Louveaux (1997). 

Thus, by taking independently and identically 
distributed random samples  from , we 
obtain the following approximation of problem (10): 

            (13) 
 
where, . 

In what follows, let F and X denote the feasible 
regions of problems (10) and (12), respectively and we 
suppose F is nonempty. It is obvious that . We 
investigate convergence properties of the Monte Carlo 
sampling method. From the inerrability of the function 
of F and (10), we get the following result immediately. 
 
Lemma 2: For any fixed , there holds: 
 

              

 
Theorem 3: Suppose that  solves the 
approximate problem (12) for each  and  is an 
accumulation point of the sequence . Then 

 is an optimal solution of problem (10) with 
probability one. 
 
Extensions to Quasi-Monte Carlo approach: We 
have presented a Monte Carlo sampling and penalty 
approach for solving problem (10). Actually, the Monte 
Carlo Sampling methods have been proved useful in the 
evaluation of integration. However, the convergence of 
Monte Carlo methods is not fast and various techniques 
have been proposed to speed up the convergence. In 
this area, the most approach is the introduction of quasi-
Monte Carlo methods, in which the integral is evaluated 
by using deterministic sequences rather than random 
sequences. These deterministic sequences have the 
property that they are well dispersed throughout the 
domain of integration. Sequences with this property are 
called low discrepancy sequences. Niederreiter (1992) 
for more details. 

We may readily develop a quasi-Monte Carlo and 
smoothing approach for solving problem (10). In the 
case where  F is affine, we can establish all the results 
in the above in a similar way and particularly, those 
convergence results are deterministic by (i). 

 
APPLICATIONS 

 
As an application, we use the new algorithm to 

discuss the synergies analysis of the supply chain after 
M&A proposed by Liang and Shi (2012) who proposed 
a stochastic equilibrium model for the supply chain 
integration after horizontal M&A. Because the pages 
are limited, the detailed information about the model 
and notations are all referred to Liang and Shi (2012).  
Similar to Nagurney (2009), we utilize a measure to 
capture the gains, if any, associated with a horizontal 
merger is as follows: 
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Table 1: The cost functions 
A MA

1 ƒ4
1-2 ƒ3

1+2ƒ1 2ƒ4
1+1

A MA
2 ƒ3

2+2ƒ2 ƒ2
2+2ƒ2 2ƒ3

2+2ƒ2
MA

1 DA
1,1 ƒ4

3+2ƒ3 ƒ3
3+2ƒ3 2ƒ2

3
MA

2 DA
1, 2 ƒ3

4+2ƒ4 ƒ4
4+2ƒ2 2ƒ2

4+2ƒ4
DA

1,1 DA
1, 2 ƒ3

5+2ƒ5 ƒ3
5+2ƒ5 ƒ2

5+2
DA

1,2 RA
1 ƒ4

6+2ƒ26 ƒ3
6+2ƒ6 ƒ2

6+2
DA

1,2 RA
2 ƒ3

7+2ƒ7 ƒ4
7+2ƒ2

7 ƒ4
7+2

B MB
1 ƒ3

8+2ƒ8+3 ƒ4
8+3 2ƒ2

8
B MB

2 ƒ3
9+2ƒ9 ƒ4

9+2ƒ2
9 2ƒ2

9+2
MB

1 DB
1, 1 ƒ4

10+2ƒ210 ƒ3
10+2ƒ1 2ƒ2

10+3
MB

2 DB
1, 2 ƒ3

11+2ƒ11 ƒ4
11+2ƒ1 2ƒ3

11
DB

1,1 DB
1, 2 ƒ4

12+2 ƒ3
12+2ƒ1 ƒ2

12+2
DB

1,2 RB
1 ƒ4

13+ƒ213+2 ƒ3
13+2ƒ12 ƒ2

13+2
DB

1,2 RB
2 ƒ3

14+2ƒ14 ƒ2
14+2ƒ1 ƒ3

14+2ƒ14+2
 

0

0

TC TC[ ] 100%
TC

i−
ϒ = ×                          (14) 

 
where, iTC is the total cost associated with the value of 
the objective function 
  

ˆE [c (f *, )]
iQ

ω α α
α

ω
∈
∑   

 
for 0,1i =  valuated at the optimal solution for Case i .  

We consider a sample example that consists of two 
firms and each with two manufactures, one distribution 
center and two retailers. Secondly, a class of stochastic 
variation inequality problems in which Ω  only has 
finitely many elements. Let { }1, , Rω ωΩ = L  and suppose 
that { } 1/ ,r jp P Rω= ∈Ω =  1, , .j R= L  Finally, we 

assume that the random variable ω  is uniformly 
distributed on ]1,0[=Ω . For the quasi-Monte Carlo 
sampling method which has been extensively used to 
industry and economics, we use the classical Halton 
constructions method in to generate samples. Then, we 
employed the homogeneous interior point method to 
solve the sub problem (13). An important feature of the 
homogeneous algorithm is that it can detect a possible 
in feasible or unbounded status of the optimization 
problem.  The capacities on all links in all the examples 

are set to  for links . The demands at the 
retailers, are ,  and , . 

We now provide additional details concerning the 
particular examples. 
 
Example 1: The total cost functions for the links are 
reported in Table 1 with the total costs associated with 
each of the three merger cases are 310.5432, 271.7346, 
271.7346, 210.5536. So the strategic advantage or 
synergy largely doubled for Case 3 relative to Case 1 
and 2 going from 12.5 to 32.2%. 
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