Published: June 30, 2013

Research Article Traffic Safety Evaluation Model for Highway in Cold Region Based on Fuzzy Theory

Xue-Jing Du, Zhan-Yu Wang, Huan-Huan Guo and Jin-Peng Li College of Traffic, Northeast Forestry University, Harbin 150040, China

Abstract: Aiming at the problem of highway traffic safety in cold region, traffic safety evaluation model is established by applying the fuzzy comprehensive evaluation theory and the highway safety level is judged. On the basis of the comprehensive analysis of the factors affecting highway traffic safety, the index system for highway traffic safety evaluation is established combining with expert evaluation method, the weight value of influence factors in the traffic incident are confirmed. The comprehensive evaluating result is obtained. The value is 1.8858 in range from 1 to 2. The result shows that the highway safety level in the certain cold region is good. The assessment model can offer the theoretical foundation for highway safety evaluation in other cold region.

Keywords: Cold Region, fuzzy theory, evaluation model, traffic safety

INTRODUCTION

With the development of economy, Highway construction has come into fast development stage. At the same time, the high-speed flow and gather of people and the rapid growth amount of vehicle make the traffic demand increasingly strong, the transportation security problems become the inevitable result of social economic development (Ma, 2012). In recent years, the highway traffic accident rate remains high and the highway traffic accidents are particularly serious in the cold region. Scholars at home and abroad have devoted to the researches of highway traffic safety evaluation and have achieved significant results. Foreign scholars propose to use Poisson regression model (Miaou and Lum, 1993), negative binomial regression model (Hinde and Demetrio, 1998), zero-inflated probability model (Lord et al., 2005), to analyze the relationship between traffic accidents and the influence factors. Zhao et al. (2012) from Chongqing Jiaotong University establish a total vehicle travel safety rating model by using the Analytic Hierarchy Process to calculate the parameters weight. Yao et al. (2010) establish safety rating evaluation system based on the three aspects of road alignment, vehicle design parameters and road-vehicle correlation parameters and build the mountain road safety rating model combining the fuzzy mathematics method. As it is difficulty to establish the scientific comprehensive model accords with current situation, Wang and Nan (2008) propose macroscopic evaluation model based on fuzzy logic. Due to the special geography, climatic conditions and the complex road environment, road traffic accidents in cold region have distinguishing features different from other parts. Traffic accident statistics analysis showed that the accidents happened in cold region had seasonal variations. In winter, traffic accident rate was obviously improved. The highway traffic safety fuzzy evaluation model established in this study is significance for reducing the traffic accident rate, which can judge the highway safety level through finding out and analyzing highway traffic safety factors in cold region.

THE FUZZY COMPREHENSIVE EVALUATION THEORY

Applying the fuzzy comprehensive evaluation theory will arrive at a scientific evaluation conclusion through selecting the neighborhood of each factor in a system reasonably and evaluating the factors. Its fundamental theory is:

$$F = B \times S^{\mathrm{T}} \tag{1}$$

where,

F = The total score of the system

B = The evaluation matrix of the system

 $\overline{S}^{\mathrm{T}}$ = Factor fraction:

$$=A \cdot R$$
 (2)

where,

В

B = The evaluation matrix of the system

A = The weight distribution set of each factor

R = Evaluation matrix:

$$B_i = A_i \cdot R_i \tag{3}$$

where,

 B_i = Sub-factors of evaluation matrix in the system

Table 1: Gradation index system

A gradation	B gradation	C gradation	
The highway safety level evaluation index	Dimly-lit in morning and evening in winter b_1	-	
system in cold region A	Environmental factor in winter b_2	Dazzle C_{21}	
		Snow C_{22}	
		Hail C_{23}	
		Frost fog C_{24}	
	Influence of low temperature on performance of	Inferior braking C_{31}	
	automobile b_3	Steering inoperative C_{32}	
		Lighting inoperative C_{33}	
	Low attachment coefficient on snowy road b_4	-	
	Driver personal factors b_5	Driving skill C_{51}	
		Driving habits C_{52}	
		Self-diathesis C_{53}	
		Adaptability to the road in the cold region C_{54}	

 A_i = The weight distribution set of sub-factors R_i = Evaluation matrix of sub-factors

Single ranking weight vector:

$$W = \left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}} / \sum_{k=1}^{n} \left(\prod_{j=1}^{n} a_{kj}\right)^{\frac{1}{n}}$$
(4)

Maximum characteristic root of matrix:

$$\lambda_{\max} = \frac{1}{n} \sum_{i=1}^{n} \frac{(AW)_i}{W_i}$$
(5)

Consistency index of matrix:

$$CI = \frac{\lambda_{\max} - n}{n - 1} \tag{6}$$

Mean random Consistency index:

$$RI = -0.514 + 2.1784 \lg n \ (n > 3) \tag{7}$$

The steps of applying the fuzzy comprehensive evaluation are as followed. Firstly, determine quantitative criteria. Secondly, determine judgment matrix. Thirdly, Single-level sequencing and consistency check, calculate maximum characteristic root λ_{max} of the judgment matrix *A* and its corresponding single ranking weight vector *W* and then calculate the random consistency ratio *CR*, carry on the consistency check:

$$CR = \frac{CI}{RI} \begin{cases} = 0 & A \text{ completely consistency} \\ < 0.1 & A \text{ satisfying consistency} \\ \ge 0.1 & A \text{ nonsatisfy ing consist ency} \end{cases}$$
(8)

Then establish evaluation set $U = \{U_1, U_2, U_3, U_4 \text{ and } U_5\}$, determine the safety level of highway in cold region, the evaluation set is $U = \{\text{excellent, good, medium, low-risk, high risk}\}$, which correspond grade are 1, 2, 3, 4 and 5 respectively.

HIGHWAY SAFETY EVALUATION SYSTEM IN COLD REGION

Applying the multi-level comprehensive evaluation method to evaluate highway safety level in cold region based on many influence factors, the safety comprehensive evaluation index system for highway in the typical cold region Heilongjiang province is established. The highway safety comprehensive evaluation index system in cold region is shown in Table 1.

HIGHWAY SAFETY COMPREHENSIVE EVALUATION IN COLD REGION

- Evaluation factors sets: The factors related to highway safety level comprehensive evaluation in cold region have been divided into 5 subsets, which are $v = \{v_1, v_2, v_3, v_4, v_5\}$ corresponding to {dimly-lit in morning and evening in winter, environmental factor in winter, influence of low temperature on performance of automobile, low attachment coefficient on snowy road, driver personal factors}.
- Sub-factors set of evaluation factors sets: Subfactors sets of judgment factors sets are $v_1 = \{v_{11}\} = \{$ dimly-lit in morning and evening in winter $\}$; $v_2 = \{v_{21}, v_{22}, v_{23}, v_{24}\} = \{$ dazzle, hail, snow, frost fog $\}$; $v_3 = \{v_{31}, v_{32}, v_{33}\} = \{$ inferior braking, steering inoperative, lighting inoperative $\}$; $v_4 = \{v_{41}\} = \{$ low attachment coefficient on snowy road $\}$; $v_5 = \{v_{51}, v_{52}, v_{53}, v_{54}\} = \{$ driving skill, driving habits, self-diathesis, adaptability to the road in the cold region $\}$.
- Determine the quantitative standard by using of ratio scale put forward by A. L. Sarry single ranking calculations of evaluation matrices, *A-B* level, *B*₂-*C*₂ level, *B*₃-*C*₃ level, *B*₅-*C*₅ level and consistency check are shown in Table 2, 3, 4 and 5.
- General sequence and consistency check: Based on single sequence results and general sequence weight of evaluation factors, generals equence weight.

			B_3 influence of				
	B_1 dimly-lit in morning and	B_2 environmental	temperature of performance	of B_4 low attachmen	5	driver personal	
A factor	evening in winter		automobile	coefficient on sno	2		sequencing weight)
B_1	1	1/2	1/2	2/5	1/2		0.1582
B_2	2	1	1	4/5	1/2	2	0.2143
B_3	2	1	1	4/5	1		0.1887
B_4	5/2	5/4	5/4	1	5/4	Ļ	0.2347
B_5	1 DL CD and he abtain	2	$\frac{2}{(4)(5)(0)(7)}$	$\frac{4/5}{0, (8) \text{ that is } \lambda_{\text{max}} = 5.0603; 0}$	$\frac{1}{CI = 0.01509}$	$D_{1} D_{1} = 1.01$	0.2041
			(4), (5), (6), (7)	$\lambda_{max} = 5.0005$, (8) that 18 $\lambda_{max} = 5.0005$, (CI = 0.01508	S; KI = 1.01; CI	k = 0.015 < 0.10
Fable 3: J	udgment matrix of	<i>B</i> ₂ - <i>C</i> ₂					Single-level
B_2 factor	C210	dazzle	C_{22} snow	C_{23} hail	C_{24}	frost fog	sequencing weight W
C_{21}	1	duzzie	4	4/5	4	11051 105	0.2500
C_{22}^{21}	1/4		1	1/5	1		0.1938
C_{22} C_{23}	5/4		5	1/5	5		0.3000
C ₂₃							
CLR	PL CR can be obtain	ed based on formulas	$\frac{1}{(4)(5)(6)(7)}$	$\frac{1/5}{0, (8) \text{ that is } \lambda_{\max} = 4.1065; \text{ of } \lambda_{\max} = 4.1065; \text{ of } \lambda_{\max} = 1.1065; \text{ of } \lambda$	CI = 0.0355	RI = 0.80 · CR	= 0.044 < 0.10
			(-), (3), (0), (7)	, (0) that is $x_{\text{max}} = 4.1005$, (0.0555,	11 0.00, CK	0.011 \0.10
i able 4: J	udgment matrix of	b ₃ -C ₃					Single-level
B_3 factor	C_{31}	inferior braking	C_{32}	steering inoperative	C_{33} lighting	g inoperative	sequencing weight W
C_{31}	1	ŭ	5/4		5	- 1	0.3967
C_{32}	4/5		1		4		0.3471
					1		
λ_{\max}, CI, R	I, CR can be obtain	ed based on formulas	(4), (5), (6), (7)	$\lambda_{max} = 3.00068;$	CI = 0.0003	34; RI = 0.52; C	CR = 0.0006538 < 0.10
Table 5: J	udgement matrix of	² B ₅ -C ₅					
	-		1		C_{54} adaptat		Single-level sequencin
	-		52 driving habits	C_{53} self-diathesis	road in the	oility to the cold region	weight W _i
B_5 factor C_{51}	C ₅₁ d	riving skill C	52 driving habits	C_{53} self-diathesis	road in the 4/5		weight <i>W_i</i> 0.2544
B_5 factor C_{51} C_{52}	-	riving skill C 1 1	52 driving habits	s C ₅₃ self-diathesis	road in the 4/5 4/5		weight <i>W_i</i> 0.2544 0.2426
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$	C ₅₁ d 1 1	riving skill C 1 1 1		1 1 1	road in the 4/5 4/5 4/5	cold region	weight <i>W_i</i> 0.2544 0.2426 0.2485
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$	C ₅₁ d 1 1	riving skill C 1 1 1		1 1 1	road in the 4/5 4/5 4/5	cold region	weight <i>W_i</i> 0.2544 0.2426 0.2485
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$	C ₅₁ d 1 1	riving skill C 1 1 1		1 1 1	road in the 4/5 4/5 4/5	cold region	weight <i>W_i</i> 0.2544 0.2426 0.2485
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I, CR</i> can be obtain Veight and rank of f	riving skill C 1 1 1 1 5/ ed based on formulas		1 1 1	road in the 4/5 4/5 4/5	cold region	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: W The highv	C ₅₁ d 1 1 1 1 5/4 1/, CR can be obtain Veight and rank of f vay safety level	riving skill C 1 1 1 1 5/ ed based on formulas		1 1 1	road in the 4/5 4/5 4/5	cold region	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V The highv evaluatior	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 1 5/ ed based on formulas factors	4 (4), (5), (6), (7)	$\frac{1}{1} \\ \frac{1}{5/4} \\ 0, (8) \text{ that is } \lambda_{\max} = 4.0036; \text{ of } \lambda_{\max} = 4.0036; \text{ of } \lambda_{\max} = 1.0036; \text{ of } \lambda_{\max} = 1.$	$\frac{road in the}{4/5} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{1}{CI} = 0.0012$	<u>cold region</u> ; <i>RI</i> = 0.80; <i>C</i>	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V The highv evaluatior	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 1 5 wed based on formulas factors Factor	4 (4), (5), (6), (7) Weight	1 1 1	road in the 4/5 4/5 4/5	cold region	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V The highv evaluatior	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas factors Factor Dimly-lit in morning	4 (4), (5), (6), (7) Weight g 0.1582	$\frac{1}{1} \\ \frac{1}{5/4} \\ 0, (8) \text{ that is } \lambda_{\max} = 4.0036; \text{ of } \lambda_{\max} = 4.0036; \text{ of } \lambda_{\max} = 1.0036; \text{ of } \lambda_{\max} = 1.$	$\frac{road in the}{4/5} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{1}{CI} = 0.0012$	<u>cold region</u> ; <i>RI</i> = 0.80; <i>C</i>	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto	4 (4), (5), (6), (7) <u>Weight</u> g 0.1582 er	$\frac{1}{1}$ $\frac{1}{5/4}$ $(8) \text{ that is } \lambda_{\max} = 4.0036; \text{ of } Factor$	$\frac{\text{road in the}}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CI} = 0.0012$ Weight	cold region ; <i>RI</i> = 0.80; <i>C</i> Factor	$\frac{\text{weight } W_i}{0.2544}$ 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ $C \text{ level general sequence weight ranking weight}$
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas cactors Factor Dimly-lit in morning and evening in winto Environmental factor	4 (4), (5), (6), (7) <u>Weight</u> g 0.1582 er	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{5/4}{5}$ $\frac{1}{5}$ (8) that is $\lambda_{max} = 4.0036$; of Factor Dazzle	$\frac{road in the}{4/5} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{1}{CI} = 0.0012 \\ \hline \\ Weight \\ 0.2500 \\ \hline \\$	$\frac{\text{cold region}}{\text{; } RI = 0.80; C}$ $\frac{\text{Factor}}{C_{21}}$	$\frac{\text{weight } W_i}{0.2544}$ 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ $C \text{ level general sequence weight ranking weight}$ 0.0536
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto	4 (4), (5), (6), (7) <u>Weight</u> g 0.1582 er	$\frac{1}{1}$ $\frac{1}{5/4}$ $(8) \text{ that is } \lambda_{\max} = 4.0036; \text{ of } Factor$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ Weight 0.2500 0.1938	$\frac{\text{cold region}}{\text{; } RI = 0.80; C}$ $\frac{\text{Factor}}{C_{21}}$ C_{22}	$\frac{\text{weight } W_i}{0.2544}$ 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ $C \text{ level general sequence weight ranking weight}$
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas cactors Factor Dimly-lit in morning and evening in winto Environmental factor	4 (4), (5), (6), (7) <u>Weight</u> g 0.1582 er	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{5/4}{5}$ $\frac{1}{5}$ (8) that is $\lambda_{max} = 4.0036$; of Factor Dazzle	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ Weight 0.2500 0.1938 0.3000	$\frac{\text{cold region}}{\text{; } RI = 0.80; C}$ $\frac{\text{Factor}}{C_{21}}$ C_{22} C_{23}	$\frac{\text{weight } W_i}{0.2544}$ 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ $C \text{ level general sequence weight ranking weight}$ 0.0536
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54}	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas cactors Factor Dimly-lit in morning and evening in winto Environmental factor	4 (4), (5), (6), (7) Weight g 0.1582	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{5/4}{5}$ $\frac{1}{5}$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ Weight 0.2500 0.1938	$\frac{\text{cold region}}{\text{; } RI = 0.80; C}$ $\frac{\text{Factor}}{C_{21}}$ C_{22} C_{23}	$\frac{\text{weight } W_i}{0.2544}$ 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ $C \text{ level general sequence weight ranking weight}}$ 0.0536 0.0415
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54}	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas cactors Factor Dimly-lit in morning and evening in winto Environmental factor	4 (4), (5), (6), (7) Weight g 0.1582	$\frac{1}{1}$ $\frac{1}{5/4}$ $\lambda_{max} = 4.0036; of the formula for t$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.1938 0.3000 0.2562	$\frac{\text{cold region}}{\text{Factor}}$ $\frac{C_{21}}{C_{22}}$ C_{23} C_{24}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54}	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winte Environmental factor in winter Influence of low	4 (4), (5), (6), (7) Weight g 0.1582 er r 0.2143	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.1938 0.3000 0.2562 0.3967	$\frac{\text{cold region}}{\text{Factor}}$ $\frac{C_{21}}{C_{22}}$ C_{23} C_{24} C_{25}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0549 0.0749
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$ $\frac{C_{53}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas factors Factor Dimly-lit in morning and evening in wintt Environmental factor in winter Influence of low temperature on	4 (4), (5), (6), (7) Weight g 0.1582 er r 0.2143	$\frac{1}{1}$ $\frac{1}{5/4}$ $\lambda_{max} = 4.0036; of the formula for t$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$ $\frac{C_{53}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas factors Factor Dimly-lit in morning and evening in winte Environmental factor in winter Influence of low temperature on performance of	4 (4), (5), (6), (7) Weight g 0.1582 er r 0.2143	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.1938 0.3000 0.2562 0.3967	$\frac{\text{cold region}}{\text{Factor}}$ $\frac{C_{21}}{C_{22}}$ C_{23} C_{24} C_{25}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0549 0.0749
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$ $\frac{C_{53}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$ $\frac{C_{54}}{C_{54}}$	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas Factors Factor Dimly-lit in morning and evening in winte Environmental factor in winter Influence of low temperature on performance of automobile	4 (4), (5), (6), (7) Weight g 0.1582 pr r 0.2143 0.1887	$\frac{1}{1}$ $\frac{1}{5/4}$ $\lambda_{max} = 4.0036; of the formula for t$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54}	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5 ed based on formulas Factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snow	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\lambda_{max} = 4.0036; of the formula for t$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 2 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snowy road	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{\text{road in the}}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{1}$ $CI = 0.0012$ $Weight$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471 0.2562	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32} C_{33}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655 0.0483
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} R_{max}, CI, R Table 6: V The highver	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snowy road Driver personal	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.2500 0.2562 0.3967 0.3471 0.2562 0.2544	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32} C_{33} C_{51}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655 0.0483 0.0519
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V The highv evaluatior	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 2 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snowy road	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{\text{road in the}}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{1}$ $CI = 0.0012$ $Weight$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471 0.2562 0.2562 0.2544 0.2426	$\frac{\text{cold region}}{\text{Factor}}$ $\frac{F_{21}}{C_{22}}$ C_{23} C_{24} C_{25} C_{32} C_{33} C_{51} C_{52}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655 0.0483
$\frac{B_5 \text{ factor}}{C_{51}}$ $\frac{C_{52}}{C_{53}}$ $\frac{C_{54}}{\lambda_{\text{max}}, CI, R}$ Table 6: W	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snowy road Driver personal	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{road in the}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{CT} = 0.0012$ $\frac{Weight}{0.2500}$ 0.2500 0.2562 0.3967 0.3471 0.2562 0.2544	cold region ; $RI = 0.80; C$ Factor C_{21} C_{22} C_{23} C_{24} C_{25} C_{32} C_{33} C_{51}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655 0.0483 0.0519
$\frac{B_5 \text{ factor}}{C_{51}}$ C_{52} C_{53} C_{54} $\lambda_{\text{max}}, CI, R$ Table 6: V The highv evaluatior	$\frac{C_{51} d}{1}$ $\frac{1}{1}$ $\frac{1}{5/4}$ <i>I</i> , <i>CR</i> can be obtain Veight and rank of f vay safety level 1 index system in	riving skill C 1 1 1 5, ed based on formulas factors Factor Dimly-lit in morning and evening in winto Environmental factor in winter Influence of low temperature on performance of automobile Low attachment coefficient on snowy road Driver personal	4 (4), (5), (6), (7) Weight g 0.1582 rr 0.2143 0.1887 0.2347	$\frac{1}{1}$ $\frac{1}{5/4}$ $\frac{1}{5$	$\frac{\text{road in the}}{4/5}$ $\frac{4/5}{4/5}$ $\frac{1}{1}$ $CI = 0.0012$ $Weight$ 0.2500 0.1938 0.3000 0.2562 0.3967 0.3471 0.2562 0.2562 0.2544 0.2426	$\frac{\text{cold region}}{\text{Factor}}$ $\frac{F_{21}}{C_{22}}$ C_{23} C_{24} C_{25} C_{32} C_{33} C_{51} C_{52}	weight W_i 0.2544 0.2426 0.2485 0.2545 $R = 0.0015 < 0.10$ C level general sequence weight ranking weight 0.0536 0.0415 0.0643 0.0549 0.0749 0.0655 0.0483

of each evaluation factor in *B* level and *C* level can be obtained. General sequence weight P_{ij} can be calculated by $P_{ij} = W_i \times B_{ij}$ (I = 1, 2, 3 and 4; j = 1, 2, 3, 4 and 5).

evaluation result is shown in Table 7 through marking and accessing the factors related to highway safety in cold region by experts.

• Scheme evaluation of highway safety level:

Table 2: Judgment matrix of A-B

• Establish the evaluation matrix: Scheme

Each judgment matrix of environmental factor in winter, influence of low temperature on performance of

Table 7: Assessment grade of influencing factors of highway traffic safety in cold region

Factor	Grade						
	Excellent	Good	Medium	Low-risk	High risk		
<i>v</i> ₁₁	1	3	2	2	2		
V21	0	0	3	4	3		
V22	2	2	1	3	2		
V23	0	0	0	2	8		
V24	1	0	1	3	5		
v_{31}	0	0	0	1	9		
V32	1	1	0	3	5		
V ₃₃	2	2	1	4	1		
v_{41}	0	0	1	2	7		
<i>v</i> ₅₁	0	0	2	3	5		
V52	0	0	0	9	1		
V53	0	0	1	6	3		
V54	0	0	1	5	4		

automobile, driver personal factors is shown as follows according to Table7:

 $D_2 = \begin{bmatrix} 0/10 & 0/10 & 3/10 & 4/10 & 3/10 \\ 2/10 & 2/10 & 1/10 & 3/10 & 2/10 \\ 0/10 & 0/10 & 0/10 & 2/10 & 8/10 \\ 1/10 & 0/10 & 1/10 & 3/10 & 5/10 \end{bmatrix}; D_3 = \begin{bmatrix} 0/10 & 0/10 & 0/10 & 1/10 & 9/10 \\ 1/10 & 1/10 & 0/10 & 3/10 & 5/10 \\ 2/10 & 2/10 & 1/10 & 1/10 \end{bmatrix};$

 $D_5 = \begin{bmatrix} 0/10 & 0/10 & 2/10 & 3/10 & 5/10 \\ 0/10 & 0/10 & 0/10 & 9/10 & 1/10 \\ 0/10 & 0/10 & 1/10 & 6/10 & 3/10 \\ 0/10 & 0/10 & 1/10 & 5/10 & 4/10 \end{bmatrix}$

• **Confirm fuzzy relation matrix:** Conduct Onelevel fuzzy comprehensive assessment is conducted and the fuzzy relation matrix $R = (R_2, R_3 \text{ and } R_5)^T$ is confirmed:

```
R_{2} = W_{2}^{\mathrm{T}} \cdot D_{2} = (w_{21}, w_{22}, w_{23}, w_{24}, w_{25}) \cdot D_{2}
= (0.2500, 0.1938, 0.3000, 0.2562).
\begin{bmatrix} 0/10 & 0/10 & 3/10 & 4/10 & 3/10 \\ 2/10 & 2/10 & 1/10 & 3/10 & 2/10 \\ 0/10 & 0/10 & 0/10 & 2/10 & 8/10 \\ 1/10 & 0/10 & 1/10 & 3/10 & 5/10 \end{bmatrix}
```

=(0.0644, 0.0388, 0.1200, 0.2950, 0.4819)

```
R_3 = W_3^{\mathrm{T}} \cdot D_3
```

```
= (0.3967, 0.3471, 0.2562) \cdot \begin{bmatrix} 0/10 & 0/10 & 0/10 & 1/10 & 9/10 \\ 1/10 & 1/10 & 0/10 & 3/10 & 5/10 \\ 2/10 & 2/10 & 1/10 & 4/10 & 1/10 \end{bmatrix}= (0.0163, 0.0163, 0.0049, 0.0467, 0.050)
```

```
R_{5} = (0.2544, 0.2426, 0.2485, 0.2545) \cdot \\ \begin{bmatrix} 0/10 & 0/10 & 2/10 & 3/10 & 5/10 \\ 0/10 & 0/10 & 0/10 & 9/10 & 1/10 \\ 0/10 & 0/10 & 1/10 & 6/10 & 3/10 \\ 0/10 & 0/10 & 1/10 & 5/10 & 4/10 \end{bmatrix} \\ = (0, 0, 0.1012, 0.5710, 0.3278)
```

So the fuzzy relation matrix *R* can be obtained.

$$R = \begin{pmatrix} R_2 & R_3 & R_5 \end{pmatrix}^{\mathrm{T}}$$

• Confirm evaluation vector: One-level fuzzy comprehensive assessment is conducted and the evaluation vector of the evaluated object is confirmed.

```
E = W^{\mathrm{T}} \cdot R = \begin{pmatrix} 0.1582, \ 0.2143, \ 0.1887, \ 0.2347, \ 0.2041 \end{pmatrix} \cdot \begin{bmatrix} 0.0644 & 0.0388 & 0.1200 & 0.2950 & 0.4819 \\ 0.0163 & 0.0163 & 0.0049 & 0.0467 & 0.1050 \\ 0 & 0 & 0.1012 & 0.5710 & 0.3278 \end{bmatrix}
```

=(0.0169, 0.0114, 0.0473, 0.1886, 0.1900)

• Determine comprehensive evaluation value of Scheme evaluation based on evaluation weight coefficient matrix.

$$P_1 = E \cdot Q = (0.0169, 0.0114, 0.0473, 0.1887, 0.1900) \cdot \{1, 2, 3, 4, 5\}^T$$

= 1.8858

 $1 < P_1 = 1.8858 < 2$, so the highway traffic safety level in a region of Heilongjiang Province in winter is good.

CONCLUSION

This study comprehensively analyzes the factors influencing the highway traffic safety in typical cold region of Heilongjiang Province in winter for studying the problems of highway traffic safety in cold region, selects evaluation index and establishes highway traffic safety evaluation system in cold region. Highway traffic safety fuzzy comprehensive evaluation model in cold region can be established through conducting quantitative evaluation on highway traffic safety in cold region combining with the fuzzy theory, transforming the multi-objective evaluation problems of the highway traffic safety into single objective evaluation, determining the weight value of influence factors in the traffic incident. The highway traffic safety level in the region in winter is good for the comprehensive evaluation value of scheme evaluation $1 < P_1 =$ 1.8858<2. The highway safety level evaluation index system in cold region built in this study can more accurately reflect the traffic safety condition in a region and offer theoretical foundation for highway safety evaluation in other cold region.

ACKNOWLEDGMENT

This study was supported by the National Natural Science Foundation of China (Grant No. 51108068) and the S&T Plan Projects of Heilongjiang Provincial Education Department (Grant No. 11553025) and the Fundamental Research Funds for the Central Universities (Grant No. DL12CB03).

REFERENCES

- Hinde, J. and C.B. Demetrio, 1998. Over dispersion: Models and estimation. Computat. Stat. Data Anal., 27(2): 151-170.
- Lord, D., S.P. Washington and J.N. Ivan, 2005. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: Balancing statistical fit and theory. Accident Anal. Prevent., 37(1): 35-46.
- Ma, S.Q., 2012. Theory and Method of Road Traffic Safety Evaluation in a Region. Beijing Jiaotong University, Beijing.
- Miaou, S.P. and H. Lum, 1993. Modeling vehicle accidents and high-way geometric design relationships. Accident Anal. Prevent., 25(6): 689-709.

- Wang, F.X. and A.Q. Nan, 2008. Road traffic safety evaluation based on fuzzy-set theory. Commun. Standard., 8: 56-60.
- Yao, H.Y., J. Huang and J.Y. Meng, 2010. Mountain road safety evaluation model based on the fuzzy mathematics. J. Transport Inform. Safety, 5: 82-85.
- Zhao, Y., H.Y. Yao, D.M. Yan, *et al.*, 2012. Analysis of traffic safety evaluation model for expressway. J. Chongqing Jiaotong Univ. Nat. Sci., 31(4): 846-851.